linux/fs/nfsd/nfs4state.c

7898 lines
201 KiB
C
Raw Normal View History

/*
* Copyright (c) 2001 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <kandros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/file.h>
#include <linux/fs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/namei.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/ratelimit.h>
#include <linux/sunrpc/svcauth_gss.h>
#include <linux/sunrpc/addr.h>
2014-12-10 15:33:11 +00:00
#include <linux/jhash.h>
#include <linux/string_helpers.h>
#include "xdr4.h"
#include "xdr4cb.h"
#include "vfs.h"
#include "current_stateid.h"
#include "netns.h"
nfsd: implement pNFS operations Add support for the GETDEVICEINFO, LAYOUTGET, LAYOUTCOMMIT and LAYOUTRETURN NFSv4.1 operations, as well as backing code to manage outstanding layouts and devices. Layout management is very straight forward, with a nfs4_layout_stateid structure that extends nfs4_stid to manage layout stateids as the top-level structure. It is linked into the nfs4_file and nfs4_client structures like the other stateids, and contains a linked list of layouts that hang of the stateid. The actual layout operations are implemented in layout drivers that are not part of this commit, but will be added later. The worst part of this commit is the management of the pNFS device IDs, which suffers from a specification that is not sanely implementable due to the fact that the device-IDs are global and not bound to an export, and have a small enough size so that we can't store the fsid portion of a file handle, and must never be reused. As we still do need perform all export authentication and validation checks on a device ID passed to GETDEVICEINFO we are caught between a rock and a hard place. To work around this issue we add a new hash that maps from a 64-bit integer to a fsid so that we can look up the export to authenticate against it, a 32-bit integer as a generation that we can bump when changing the device, and a currently unused 32-bit integer that could be used in the future to handle more than a single device per export. Entries in this hash table are never deleted as we can't reuse the ids anyway, and would have a severe lifetime problem anyway as Linux export structures are temporary structures that can go away under load. Parts of the XDR data, structures and marshaling/unmarshaling code, as well as many concepts are derived from the old pNFS server implementation from Andy Adamson, Benny Halevy, Dean Hildebrand, Marc Eshel, Fred Isaman, Mike Sager, Ricardo Labiaga and many others. Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-05-05 11:11:59 +00:00
#include "pnfs.h"
#include "filecache.h"
#define NFSDDBG_FACILITY NFSDDBG_PROC
#define all_ones {{~0,~0},~0}
static const stateid_t one_stateid = {
.si_generation = ~0,
.si_opaque = all_ones,
};
static const stateid_t zero_stateid = {
/* all fields zero */
};
static const stateid_t currentstateid = {
.si_generation = 1,
};
static const stateid_t close_stateid = {
.si_generation = 0xffffffffU,
};
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static u64 current_sessionid = 1;
#define ZERO_STATEID(stateid) (!memcmp((stateid), &zero_stateid, sizeof(stateid_t)))
#define ONE_STATEID(stateid) (!memcmp((stateid), &one_stateid, sizeof(stateid_t)))
#define CURRENT_STATEID(stateid) (!memcmp((stateid), &currentstateid, sizeof(stateid_t)))
#define CLOSE_STATEID(stateid) (!memcmp((stateid), &close_stateid, sizeof(stateid_t)))
/* forward declarations */
static bool check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner);
static void nfs4_free_ol_stateid(struct nfs4_stid *stid);
void nfsd4_end_grace(struct nfsd_net *nn);
/* Locking: */
/*
* Currently used for the del_recall_lru and file hash table. In an
* effort to decrease the scope of the client_mutex, this spinlock may
* eventually cover more:
*/
static DEFINE_SPINLOCK(state_lock);
enum nfsd4_st_mutex_lock_subclass {
OPEN_STATEID_MUTEX = 0,
LOCK_STATEID_MUTEX = 1,
};
/*
* A waitqueue for all in-progress 4.0 CLOSE operations that are waiting for
* the refcount on the open stateid to drop.
*/
static DECLARE_WAIT_QUEUE_HEAD(close_wq);
/*
* A waitqueue where a writer to clients/#/ctl destroying a client can
* wait for cl_rpc_users to drop to 0 and then for the client to be
* unhashed.
*/
static DECLARE_WAIT_QUEUE_HEAD(expiry_wq);
static struct kmem_cache *client_slab;
static struct kmem_cache *openowner_slab;
static struct kmem_cache *lockowner_slab;
static struct kmem_cache *file_slab;
static struct kmem_cache *stateid_slab;
static struct kmem_cache *deleg_slab;
static struct kmem_cache *odstate_slab;
static void free_session(struct nfsd4_session *);
static const struct nfsd4_callback_ops nfsd4_cb_recall_ops;
static const struct nfsd4_callback_ops nfsd4_cb_notify_lock_ops;
static bool is_session_dead(struct nfsd4_session *ses)
{
return ses->se_flags & NFS4_SESSION_DEAD;
}
static __be32 mark_session_dead_locked(struct nfsd4_session *ses, int ref_held_by_me)
{
if (atomic_read(&ses->se_ref) > ref_held_by_me)
return nfserr_jukebox;
ses->se_flags |= NFS4_SESSION_DEAD;
return nfs_ok;
}
static bool is_client_expired(struct nfs4_client *clp)
{
return clp->cl_time == 0;
}
static __be32 get_client_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
if (is_client_expired(clp))
return nfserr_expired;
atomic_inc(&clp->cl_rpc_users);
return nfs_ok;
}
/* must be called under the client_lock */
static inline void
renew_client_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
if (is_client_expired(clp)) {
WARN_ON(1);
printk("%s: client (clientid %08x/%08x) already expired\n",
__func__,
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
return;
}
dprintk("renewing client (clientid %08x/%08x)\n",
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
list_move_tail(&clp->cl_lru, &nn->client_lru);
clp->cl_time = get_seconds();
}
static void put_client_renew_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
if (!atomic_dec_and_test(&clp->cl_rpc_users))
return;
if (!is_client_expired(clp))
renew_client_locked(clp);
else
wake_up_all(&expiry_wq);
}
static void put_client_renew(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
if (!atomic_dec_and_lock(&clp->cl_rpc_users, &nn->client_lock))
return;
if (!is_client_expired(clp))
renew_client_locked(clp);
else
wake_up_all(&expiry_wq);
spin_unlock(&nn->client_lock);
}
static __be32 nfsd4_get_session_locked(struct nfsd4_session *ses)
{
__be32 status;
if (is_session_dead(ses))
return nfserr_badsession;
status = get_client_locked(ses->se_client);
if (status)
return status;
atomic_inc(&ses->se_ref);
return nfs_ok;
}
static void nfsd4_put_session_locked(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
if (atomic_dec_and_test(&ses->se_ref) && is_session_dead(ses))
free_session(ses);
put_client_renew_locked(clp);
}
static void nfsd4_put_session(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
spin_lock(&nn->client_lock);
nfsd4_put_session_locked(ses);
spin_unlock(&nn->client_lock);
}
static struct nfsd4_blocked_lock *
find_blocked_lock(struct nfs4_lockowner *lo, struct knfsd_fh *fh,
struct nfsd_net *nn)
{
struct nfsd4_blocked_lock *cur, *found = NULL;
spin_lock(&nn->blocked_locks_lock);
list_for_each_entry(cur, &lo->lo_blocked, nbl_list) {
if (fh_match(fh, &cur->nbl_fh)) {
list_del_init(&cur->nbl_list);
list_del_init(&cur->nbl_lru);
found = cur;
break;
}
}
spin_unlock(&nn->blocked_locks_lock);
if (found)
locks_delete_block(&found->nbl_lock);
return found;
}
static struct nfsd4_blocked_lock *
find_or_allocate_block(struct nfs4_lockowner *lo, struct knfsd_fh *fh,
struct nfsd_net *nn)
{
struct nfsd4_blocked_lock *nbl;
nbl = find_blocked_lock(lo, fh, nn);
if (!nbl) {
nbl= kmalloc(sizeof(*nbl), GFP_KERNEL);
if (nbl) {
fh_copy_shallow(&nbl->nbl_fh, fh);
locks_init_lock(&nbl->nbl_lock);
nfsd4_init_cb(&nbl->nbl_cb, lo->lo_owner.so_client,
&nfsd4_cb_notify_lock_ops,
NFSPROC4_CLNT_CB_NOTIFY_LOCK);
}
}
return nbl;
}
static void
free_blocked_lock(struct nfsd4_blocked_lock *nbl)
{
locks_delete_block(&nbl->nbl_lock);
locks_release_private(&nbl->nbl_lock);
kfree(nbl);
}
static void
remove_blocked_locks(struct nfs4_lockowner *lo)
{
struct nfs4_client *clp = lo->lo_owner.so_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
struct nfsd4_blocked_lock *nbl;
LIST_HEAD(reaplist);
/* Dequeue all blocked locks */
spin_lock(&nn->blocked_locks_lock);
while (!list_empty(&lo->lo_blocked)) {
nbl = list_first_entry(&lo->lo_blocked,
struct nfsd4_blocked_lock,
nbl_list);
list_del_init(&nbl->nbl_list);
list_move(&nbl->nbl_lru, &reaplist);
}
spin_unlock(&nn->blocked_locks_lock);
/* Now free them */
while (!list_empty(&reaplist)) {
nbl = list_first_entry(&reaplist, struct nfsd4_blocked_lock,
nbl_lru);
list_del_init(&nbl->nbl_lru);
free_blocked_lock(nbl);
}
}
static void
nfsd4_cb_notify_lock_prepare(struct nfsd4_callback *cb)
{
struct nfsd4_blocked_lock *nbl = container_of(cb,
struct nfsd4_blocked_lock, nbl_cb);
locks_delete_block(&nbl->nbl_lock);
}
static int
nfsd4_cb_notify_lock_done(struct nfsd4_callback *cb, struct rpc_task *task)
{
/*
* Since this is just an optimization, we don't try very hard if it
* turns out not to succeed. We'll requeue it on NFS4ERR_DELAY, and
* just quit trying on anything else.
*/
switch (task->tk_status) {
case -NFS4ERR_DELAY:
rpc_delay(task, 1 * HZ);
return 0;
default:
return 1;
}
}
static void
nfsd4_cb_notify_lock_release(struct nfsd4_callback *cb)
{
struct nfsd4_blocked_lock *nbl = container_of(cb,
struct nfsd4_blocked_lock, nbl_cb);
free_blocked_lock(nbl);
}
static const struct nfsd4_callback_ops nfsd4_cb_notify_lock_ops = {
.prepare = nfsd4_cb_notify_lock_prepare,
.done = nfsd4_cb_notify_lock_done,
.release = nfsd4_cb_notify_lock_release,
};
static inline struct nfs4_stateowner *
nfs4_get_stateowner(struct nfs4_stateowner *sop)
{
atomic_inc(&sop->so_count);
return sop;
}
static int
same_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner)
{
return (sop->so_owner.len == owner->len) &&
0 == memcmp(sop->so_owner.data, owner->data, owner->len);
}
static struct nfs4_openowner *
find_openstateowner_str_locked(unsigned int hashval, struct nfsd4_open *open,
struct nfs4_client *clp)
{
struct nfs4_stateowner *so;
lockdep_assert_held(&clp->cl_lock);
list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[hashval],
so_strhash) {
if (!so->so_is_open_owner)
continue;
if (same_owner_str(so, &open->op_owner))
return openowner(nfs4_get_stateowner(so));
}
return NULL;
}
static struct nfs4_openowner *
find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open,
struct nfs4_client *clp)
{
struct nfs4_openowner *oo;
spin_lock(&clp->cl_lock);
oo = find_openstateowner_str_locked(hashval, open, clp);
spin_unlock(&clp->cl_lock);
return oo;
}
static inline u32
opaque_hashval(const void *ptr, int nbytes)
{
unsigned char *cptr = (unsigned char *) ptr;
u32 x = 0;
while (nbytes--) {
x *= 37;
x += *cptr++;
}
return x;
}
static void nfsd4_free_file_rcu(struct rcu_head *rcu)
{
struct nfs4_file *fp = container_of(rcu, struct nfs4_file, fi_rcu);
kmem_cache_free(file_slab, fp);
}
void
put_nfs4_file(struct nfs4_file *fi)
{
might_lock(&state_lock);
if (refcount_dec_and_lock(&fi->fi_ref, &state_lock)) {
hlist_del_rcu(&fi->fi_hash);
spin_unlock(&state_lock);
WARN_ON_ONCE(!list_empty(&fi->fi_clnt_odstate));
WARN_ON_ONCE(!list_empty(&fi->fi_delegations));
call_rcu(&fi->fi_rcu, nfsd4_free_file_rcu);
}
}
static struct nfsd_file *
__nfs4_get_fd(struct nfs4_file *f, int oflag)
{
if (f->fi_fds[oflag])
return nfsd_file_get(f->fi_fds[oflag]);
return NULL;
}
static struct nfsd_file *
find_writeable_file_locked(struct nfs4_file *f)
{
struct nfsd_file *ret;
lockdep_assert_held(&f->fi_lock);
ret = __nfs4_get_fd(f, O_WRONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDWR);
return ret;
}
static struct nfsd_file *
find_writeable_file(struct nfs4_file *f)
{
struct nfsd_file *ret;
spin_lock(&f->fi_lock);
ret = find_writeable_file_locked(f);
spin_unlock(&f->fi_lock);
return ret;
}
static struct nfsd_file *
find_readable_file_locked(struct nfs4_file *f)
{
struct nfsd_file *ret;
lockdep_assert_held(&f->fi_lock);
ret = __nfs4_get_fd(f, O_RDONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDWR);
return ret;
}
static struct nfsd_file *
find_readable_file(struct nfs4_file *f)
{
struct nfsd_file *ret;
spin_lock(&f->fi_lock);
ret = find_readable_file_locked(f);
spin_unlock(&f->fi_lock);
return ret;
}
struct nfsd_file *
find_any_file(struct nfs4_file *f)
{
struct nfsd_file *ret;
spin_lock(&f->fi_lock);
ret = __nfs4_get_fd(f, O_RDWR);
if (!ret) {
ret = __nfs4_get_fd(f, O_WRONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDONLY);
}
spin_unlock(&f->fi_lock);
return ret;
}
static atomic_long_t num_delegations;
unsigned long max_delegations;
/*
* Open owner state (share locks)
*/
/* hash tables for lock and open owners */
#define OWNER_HASH_BITS 8
#define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS)
#define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1)
static unsigned int ownerstr_hashval(struct xdr_netobj *ownername)
{
unsigned int ret;
ret = opaque_hashval(ownername->data, ownername->len);
return ret & OWNER_HASH_MASK;
}
/* hash table for nfs4_file */
#define FILE_HASH_BITS 8
#define FILE_HASH_SIZE (1 << FILE_HASH_BITS)
static unsigned int nfsd_fh_hashval(struct knfsd_fh *fh)
{
return jhash2(fh->fh_base.fh_pad, XDR_QUADLEN(fh->fh_size), 0);
}
static unsigned int file_hashval(struct knfsd_fh *fh)
{
return nfsd_fh_hashval(fh) & (FILE_HASH_SIZE - 1);
}
static struct hlist_head file_hashtbl[FILE_HASH_SIZE];
static void
__nfs4_file_get_access(struct nfs4_file *fp, u32 access)
{
lockdep_assert_held(&fp->fi_lock);
if (access & NFS4_SHARE_ACCESS_WRITE)
atomic_inc(&fp->fi_access[O_WRONLY]);
if (access & NFS4_SHARE_ACCESS_READ)
atomic_inc(&fp->fi_access[O_RDONLY]);
}
static __be32
nfs4_file_get_access(struct nfs4_file *fp, u32 access)
{
lockdep_assert_held(&fp->fi_lock);
/* Does this access mode make sense? */
if (access & ~NFS4_SHARE_ACCESS_BOTH)
return nfserr_inval;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/* Does it conflict with a deny mode already set? */
if ((access & fp->fi_share_deny) != 0)
return nfserr_share_denied;
__nfs4_file_get_access(fp, access);
return nfs_ok;
}
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
static __be32 nfs4_file_check_deny(struct nfs4_file *fp, u32 deny)
{
/* Common case is that there is no deny mode. */
if (deny) {
/* Does this deny mode make sense? */
if (deny & ~NFS4_SHARE_DENY_BOTH)
return nfserr_inval;
if ((deny & NFS4_SHARE_DENY_READ) &&
atomic_read(&fp->fi_access[O_RDONLY]))
return nfserr_share_denied;
if ((deny & NFS4_SHARE_DENY_WRITE) &&
atomic_read(&fp->fi_access[O_WRONLY]))
return nfserr_share_denied;
}
return nfs_ok;
}
static void __nfs4_file_put_access(struct nfs4_file *fp, int oflag)
{
might_lock(&fp->fi_lock);
if (atomic_dec_and_lock(&fp->fi_access[oflag], &fp->fi_lock)) {
struct nfsd_file *f1 = NULL;
struct nfsd_file *f2 = NULL;
swap(f1, fp->fi_fds[oflag]);
if (atomic_read(&fp->fi_access[1 - oflag]) == 0)
swap(f2, fp->fi_fds[O_RDWR]);
spin_unlock(&fp->fi_lock);
if (f1)
nfsd_file_put(f1);
if (f2)
nfsd_file_put(f2);
}
}
static void nfs4_file_put_access(struct nfs4_file *fp, u32 access)
{
WARN_ON_ONCE(access & ~NFS4_SHARE_ACCESS_BOTH);
if (access & NFS4_SHARE_ACCESS_WRITE)
__nfs4_file_put_access(fp, O_WRONLY);
if (access & NFS4_SHARE_ACCESS_READ)
__nfs4_file_put_access(fp, O_RDONLY);
}
/*
* Allocate a new open/delegation state counter. This is needed for
* pNFS for proper return on close semantics.
*
* Note that we only allocate it for pNFS-enabled exports, otherwise
* all pointers to struct nfs4_clnt_odstate are always NULL.
*/
static struct nfs4_clnt_odstate *
alloc_clnt_odstate(struct nfs4_client *clp)
{
struct nfs4_clnt_odstate *co;
co = kmem_cache_zalloc(odstate_slab, GFP_KERNEL);
if (co) {
co->co_client = clp;
refcount_set(&co->co_odcount, 1);
}
return co;
}
static void
hash_clnt_odstate_locked(struct nfs4_clnt_odstate *co)
{
struct nfs4_file *fp = co->co_file;
lockdep_assert_held(&fp->fi_lock);
list_add(&co->co_perfile, &fp->fi_clnt_odstate);
}
static inline void
get_clnt_odstate(struct nfs4_clnt_odstate *co)
{
if (co)
refcount_inc(&co->co_odcount);
}
static void
put_clnt_odstate(struct nfs4_clnt_odstate *co)
{
struct nfs4_file *fp;
if (!co)
return;
fp = co->co_file;
if (refcount_dec_and_lock(&co->co_odcount, &fp->fi_lock)) {
list_del(&co->co_perfile);
spin_unlock(&fp->fi_lock);
nfsd4_return_all_file_layouts(co->co_client, fp);
kmem_cache_free(odstate_slab, co);
}
}
static struct nfs4_clnt_odstate *
find_or_hash_clnt_odstate(struct nfs4_file *fp, struct nfs4_clnt_odstate *new)
{
struct nfs4_clnt_odstate *co;
struct nfs4_client *cl;
if (!new)
return NULL;
cl = new->co_client;
spin_lock(&fp->fi_lock);
list_for_each_entry(co, &fp->fi_clnt_odstate, co_perfile) {
if (co->co_client == cl) {
get_clnt_odstate(co);
goto out;
}
}
co = new;
co->co_file = fp;
hash_clnt_odstate_locked(new);
out:
spin_unlock(&fp->fi_lock);
return co;
}
struct nfs4_stid *nfs4_alloc_stid(struct nfs4_client *cl, struct kmem_cache *slab,
void (*sc_free)(struct nfs4_stid *))
{
struct nfs4_stid *stid;
int new_id;
stid = kmem_cache_zalloc(slab, GFP_KERNEL);
if (!stid)
return NULL;
idr_preload(GFP_KERNEL);
spin_lock(&cl->cl_lock);
/* Reserving 0 for start of file in nfsdfs "states" file: */
new_id = idr_alloc_cyclic(&cl->cl_stateids, stid, 1, 0, GFP_NOWAIT);
spin_unlock(&cl->cl_lock);
idr_preload_end();
if (new_id < 0)
goto out_free;
stid->sc_free = sc_free;
stid->sc_client = cl;
stid->sc_stateid.si_opaque.so_id = new_id;
stid->sc_stateid.si_opaque.so_clid = cl->cl_clientid;
/* Will be incremented before return to client: */
refcount_set(&stid->sc_count, 1);
spin_lock_init(&stid->sc_lock);
/*
* It shouldn't be a problem to reuse an opaque stateid value.
* I don't think it is for 4.1. But with 4.0 I worry that, for
* example, a stray write retransmission could be accepted by
* the server when it should have been rejected. Therefore,
* adopt a trick from the sctp code to attempt to maximize the
* amount of time until an id is reused, by ensuring they always
* "increase" (mod INT_MAX):
*/
return stid;
out_free:
kmem_cache_free(slab, stid);
return NULL;
}
/*
* Create a unique stateid_t to represent each COPY.
*/
int nfs4_init_cp_state(struct nfsd_net *nn, struct nfsd4_copy *copy)
{
int new_id;
idr_preload(GFP_KERNEL);
spin_lock(&nn->s2s_cp_lock);
new_id = idr_alloc_cyclic(&nn->s2s_cp_stateids, copy, 0, 0, GFP_NOWAIT);
spin_unlock(&nn->s2s_cp_lock);
idr_preload_end();
if (new_id < 0)
return 0;
copy->cp_stateid.si_opaque.so_id = new_id;
copy->cp_stateid.si_opaque.so_clid.cl_boot = nn->boot_time;
copy->cp_stateid.si_opaque.so_clid.cl_id = nn->s2s_cp_cl_id;
return 1;
}
void nfs4_free_cp_state(struct nfsd4_copy *copy)
{
struct nfsd_net *nn;
nn = net_generic(copy->cp_clp->net, nfsd_net_id);
spin_lock(&nn->s2s_cp_lock);
idr_remove(&nn->s2s_cp_stateids, copy->cp_stateid.si_opaque.so_id);
spin_unlock(&nn->s2s_cp_lock);
}
static struct nfs4_ol_stateid * nfs4_alloc_open_stateid(struct nfs4_client *clp)
{
struct nfs4_stid *stid;
stid = nfs4_alloc_stid(clp, stateid_slab, nfs4_free_ol_stateid);
if (!stid)
return NULL;
return openlockstateid(stid);
}
static void nfs4_free_deleg(struct nfs4_stid *stid)
{
kmem_cache_free(deleg_slab, stid);
atomic_long_dec(&num_delegations);
}
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
/*
* When we recall a delegation, we should be careful not to hand it
* out again straight away.
* To ensure this we keep a pair of bloom filters ('new' and 'old')
* in which the filehandles of recalled delegations are "stored".
* If a filehandle appear in either filter, a delegation is blocked.
* When a delegation is recalled, the filehandle is stored in the "new"
* filter.
* Every 30 seconds we swap the filters and clear the "new" one,
* unless both are empty of course.
*
* Each filter is 256 bits. We hash the filehandle to 32bit and use the
* low 3 bytes as hash-table indices.
*
* 'blocked_delegations_lock', which is always taken in block_delegations(),
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
* is used to manage concurrent access. Testing does not need the lock
* except when swapping the two filters.
*/
static DEFINE_SPINLOCK(blocked_delegations_lock);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
static struct bloom_pair {
int entries, old_entries;
time_t swap_time;
int new; /* index into 'set' */
DECLARE_BITMAP(set[2], 256);
} blocked_delegations;
static int delegation_blocked(struct knfsd_fh *fh)
{
u32 hash;
struct bloom_pair *bd = &blocked_delegations;
if (bd->entries == 0)
return 0;
if (seconds_since_boot() - bd->swap_time > 30) {
spin_lock(&blocked_delegations_lock);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
if (seconds_since_boot() - bd->swap_time > 30) {
bd->entries -= bd->old_entries;
bd->old_entries = bd->entries;
memset(bd->set[bd->new], 0,
sizeof(bd->set[0]));
bd->new = 1-bd->new;
bd->swap_time = seconds_since_boot();
}
spin_unlock(&blocked_delegations_lock);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
}
2014-12-10 15:33:11 +00:00
hash = jhash(&fh->fh_base, fh->fh_size, 0);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
if (test_bit(hash&255, bd->set[0]) &&
test_bit((hash>>8)&255, bd->set[0]) &&
test_bit((hash>>16)&255, bd->set[0]))
return 1;
if (test_bit(hash&255, bd->set[1]) &&
test_bit((hash>>8)&255, bd->set[1]) &&
test_bit((hash>>16)&255, bd->set[1]))
return 1;
return 0;
}
static void block_delegations(struct knfsd_fh *fh)
{
u32 hash;
struct bloom_pair *bd = &blocked_delegations;
2014-12-10 15:33:11 +00:00
hash = jhash(&fh->fh_base, fh->fh_size, 0);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
spin_lock(&blocked_delegations_lock);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
__set_bit(hash&255, bd->set[bd->new]);
__set_bit((hash>>8)&255, bd->set[bd->new]);
__set_bit((hash>>16)&255, bd->set[bd->new]);
if (bd->entries == 0)
bd->swap_time = seconds_since_boot();
bd->entries += 1;
spin_unlock(&blocked_delegations_lock);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
}
static struct nfs4_delegation *
alloc_init_deleg(struct nfs4_client *clp, struct nfs4_file *fp,
struct svc_fh *current_fh,
struct nfs4_clnt_odstate *odstate)
{
struct nfs4_delegation *dp;
long n;
dprintk("NFSD alloc_init_deleg\n");
n = atomic_long_inc_return(&num_delegations);
if (n < 0 || n > max_delegations)
goto out_dec;
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
if (delegation_blocked(&current_fh->fh_handle))
goto out_dec;
dp = delegstateid(nfs4_alloc_stid(clp, deleg_slab, nfs4_free_deleg));
if (dp == NULL)
goto out_dec;
/*
* delegation seqid's are never incremented. The 4.1 special
* meaning of seqid 0 isn't meaningful, really, but let's avoid
* 0 anyway just for consistency and use 1:
*/
dp->dl_stid.sc_stateid.si_generation = 1;
INIT_LIST_HEAD(&dp->dl_perfile);
INIT_LIST_HEAD(&dp->dl_perclnt);
INIT_LIST_HEAD(&dp->dl_recall_lru);
dp->dl_clnt_odstate = odstate;
get_clnt_odstate(odstate);
dp->dl_type = NFS4_OPEN_DELEGATE_READ;
dp->dl_retries = 1;
nfsd4_init_cb(&dp->dl_recall, dp->dl_stid.sc_client,
&nfsd4_cb_recall_ops, NFSPROC4_CLNT_CB_RECALL);
get_nfs4_file(fp);
dp->dl_stid.sc_file = fp;
return dp;
out_dec:
atomic_long_dec(&num_delegations);
return NULL;
}
void
nfs4_put_stid(struct nfs4_stid *s)
{
struct nfs4_file *fp = s->sc_file;
struct nfs4_client *clp = s->sc_client;
might_lock(&clp->cl_lock);
if (!refcount_dec_and_lock(&s->sc_count, &clp->cl_lock)) {
wake_up_all(&close_wq);
return;
}
idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id);
spin_unlock(&clp->cl_lock);
s->sc_free(s);
if (fp)
put_nfs4_file(fp);
}
void
nfs4_inc_and_copy_stateid(stateid_t *dst, struct nfs4_stid *stid)
{
stateid_t *src = &stid->sc_stateid;
spin_lock(&stid->sc_lock);
if (unlikely(++src->si_generation == 0))
src->si_generation = 1;
memcpy(dst, src, sizeof(*dst));
spin_unlock(&stid->sc_lock);
}
static void put_deleg_file(struct nfs4_file *fp)
{
struct nfsd_file *nf = NULL;
spin_lock(&fp->fi_lock);
if (--fp->fi_delegees == 0)
swap(nf, fp->fi_deleg_file);
spin_unlock(&fp->fi_lock);
if (nf)
nfsd_file_put(nf);
}
static void nfs4_unlock_deleg_lease(struct nfs4_delegation *dp)
{
struct nfs4_file *fp = dp->dl_stid.sc_file;
struct nfsd_file *nf = fp->fi_deleg_file;
WARN_ON_ONCE(!fp->fi_delegees);
vfs_setlease(nf->nf_file, F_UNLCK, NULL, (void **)&dp);
put_deleg_file(fp);
}
static void destroy_unhashed_deleg(struct nfs4_delegation *dp)
{
put_clnt_odstate(dp->dl_clnt_odstate);
nfs4_unlock_deleg_lease(dp);
nfs4_put_stid(&dp->dl_stid);
}
void nfs4_unhash_stid(struct nfs4_stid *s)
{
s->sc_type = 0;
}
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
/**
* nfs4_delegation_exists - Discover if this delegation already exists
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
* @clp: a pointer to the nfs4_client we're granting a delegation to
* @fp: a pointer to the nfs4_file we're granting a delegation on
*
* Return:
* On success: true iff an existing delegation is found
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
*/
static bool
nfs4_delegation_exists(struct nfs4_client *clp, struct nfs4_file *fp)
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
{
struct nfs4_delegation *searchdp = NULL;
struct nfs4_client *searchclp = NULL;
lockdep_assert_held(&state_lock);
lockdep_assert_held(&fp->fi_lock);
list_for_each_entry(searchdp, &fp->fi_delegations, dl_perfile) {
searchclp = searchdp->dl_stid.sc_client;
if (clp == searchclp) {
return true;
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
}
}
return false;
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
}
/**
* hash_delegation_locked - Add a delegation to the appropriate lists
* @dp: a pointer to the nfs4_delegation we are adding.
* @fp: a pointer to the nfs4_file we're granting a delegation on
*
* Return:
* On success: NULL if the delegation was successfully hashed.
*
* On error: -EAGAIN if one was previously granted to this
* nfs4_client for this nfs4_file. Delegation is not hashed.
*
*/
static int
hash_delegation_locked(struct nfs4_delegation *dp, struct nfs4_file *fp)
{
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
struct nfs4_client *clp = dp->dl_stid.sc_client;
lockdep_assert_held(&state_lock);
lockdep_assert_held(&fp->fi_lock);
if (nfs4_delegation_exists(clp, fp))
return -EAGAIN;
refcount_inc(&dp->dl_stid.sc_count);
dp->dl_stid.sc_type = NFS4_DELEG_STID;
list_add(&dp->dl_perfile, &fp->fi_delegations);
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
list_add(&dp->dl_perclnt, &clp->cl_delegations);
return 0;
}
static bool
unhash_delegation_locked(struct nfs4_delegation *dp)
{
struct nfs4_file *fp = dp->dl_stid.sc_file;
lockdep_assert_held(&state_lock);
if (list_empty(&dp->dl_perfile))
return false;
dp->dl_stid.sc_type = NFS4_CLOSED_DELEG_STID;
/* Ensure that deleg break won't try to requeue it */
++dp->dl_time;
spin_lock(&fp->fi_lock);
list_del_init(&dp->dl_perclnt);
list_del_init(&dp->dl_recall_lru);
list_del_init(&dp->dl_perfile);
spin_unlock(&fp->fi_lock);
return true;
}
static void destroy_delegation(struct nfs4_delegation *dp)
{
bool unhashed;
spin_lock(&state_lock);
unhashed = unhash_delegation_locked(dp);
spin_unlock(&state_lock);
if (unhashed)
destroy_unhashed_deleg(dp);
}
static void revoke_delegation(struct nfs4_delegation *dp)
{
struct nfs4_client *clp = dp->dl_stid.sc_client;
WARN_ON(!list_empty(&dp->dl_recall_lru));
if (clp->cl_minorversion) {
dp->dl_stid.sc_type = NFS4_REVOKED_DELEG_STID;
refcount_inc(&dp->dl_stid.sc_count);
spin_lock(&clp->cl_lock);
list_add(&dp->dl_recall_lru, &clp->cl_revoked);
spin_unlock(&clp->cl_lock);
}
destroy_unhashed_deleg(dp);
}
/*
* SETCLIENTID state
*/
static unsigned int clientid_hashval(u32 id)
{
return id & CLIENT_HASH_MASK;
}
static unsigned int clientstr_hashval(struct xdr_netobj name)
{
return opaque_hashval(name.data, 8) & CLIENT_HASH_MASK;
}
/*
* We store the NONE, READ, WRITE, and BOTH bits separately in the
* st_{access,deny}_bmap field of the stateid, in order to track not
* only what share bits are currently in force, but also what
* combinations of share bits previous opens have used. This allows us
* to enforce the recommendation of rfc 3530 14.2.19 that the server
* return an error if the client attempt to downgrade to a combination
* of share bits not explicable by closing some of its previous opens.
*
* XXX: This enforcement is actually incomplete, since we don't keep
* track of access/deny bit combinations; so, e.g., we allow:
*
* OPEN allow read, deny write
* OPEN allow both, deny none
* DOWNGRADE allow read, deny none
*
* which we should reject.
*/
static unsigned int
bmap_to_share_mode(unsigned long bmap) {
int i;
unsigned int access = 0;
for (i = 1; i < 4; i++) {
if (test_bit(i, &bmap))
access |= i;
}
return access;
}
/* set share access for a given stateid */
static inline void
set_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH);
stp->st_access_bmap |= mask;
}
/* clear share access for a given stateid */
static inline void
clear_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH);
stp->st_access_bmap &= ~mask;
}
/* test whether a given stateid has access */
static inline bool
test_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
return (bool)(stp->st_access_bmap & mask);
}
/* set share deny for a given stateid */
static inline void
set_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH);
stp->st_deny_bmap |= mask;
}
/* clear share deny for a given stateid */
static inline void
clear_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH);
stp->st_deny_bmap &= ~mask;
}
/* test whether a given stateid is denying specific access */
static inline bool
test_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
return (bool)(stp->st_deny_bmap & mask);
}
static int nfs4_access_to_omode(u32 access)
{
switch (access & NFS4_SHARE_ACCESS_BOTH) {
case NFS4_SHARE_ACCESS_READ:
return O_RDONLY;
case NFS4_SHARE_ACCESS_WRITE:
return O_WRONLY;
case NFS4_SHARE_ACCESS_BOTH:
return O_RDWR;
}
WARN_ON_ONCE(1);
return O_RDONLY;
}
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/*
* A stateid that had a deny mode associated with it is being released
* or downgraded. Recalculate the deny mode on the file.
*/
static void
recalculate_deny_mode(struct nfs4_file *fp)
{
struct nfs4_ol_stateid *stp;
spin_lock(&fp->fi_lock);
fp->fi_share_deny = 0;
list_for_each_entry(stp, &fp->fi_stateids, st_perfile)
fp->fi_share_deny |= bmap_to_share_mode(stp->st_deny_bmap);
spin_unlock(&fp->fi_lock);
}
static void
reset_union_bmap_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
int i;
bool change = false;
for (i = 1; i < 4; i++) {
if ((i & deny) != i) {
change = true;
clear_deny(i, stp);
}
}
/* Recalculate per-file deny mode if there was a change */
if (change)
recalculate_deny_mode(stp->st_stid.sc_file);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
}
/* release all access and file references for a given stateid */
static void
release_all_access(struct nfs4_ol_stateid *stp)
{
int i;
struct nfs4_file *fp = stp->st_stid.sc_file;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
if (fp && stp->st_deny_bmap != 0)
recalculate_deny_mode(fp);
for (i = 1; i < 4; i++) {
if (test_access(i, stp))
nfs4_file_put_access(stp->st_stid.sc_file, i);
clear_access(i, stp);
}
}
static inline void nfs4_free_stateowner(struct nfs4_stateowner *sop)
{
kfree(sop->so_owner.data);
sop->so_ops->so_free(sop);
}
static void nfs4_put_stateowner(struct nfs4_stateowner *sop)
{
struct nfs4_client *clp = sop->so_client;
might_lock(&clp->cl_lock);
if (!atomic_dec_and_lock(&sop->so_count, &clp->cl_lock))
return;
sop->so_ops->so_unhash(sop);
spin_unlock(&clp->cl_lock);
nfs4_free_stateowner(sop);
}
static bool unhash_ol_stateid(struct nfs4_ol_stateid *stp)
{
struct nfs4_file *fp = stp->st_stid.sc_file;
lockdep_assert_held(&stp->st_stateowner->so_client->cl_lock);
if (list_empty(&stp->st_perfile))
return false;
spin_lock(&fp->fi_lock);
list_del_init(&stp->st_perfile);
spin_unlock(&fp->fi_lock);
list_del(&stp->st_perstateowner);
return true;
}
static void nfs4_free_ol_stateid(struct nfs4_stid *stid)
{
struct nfs4_ol_stateid *stp = openlockstateid(stid);
put_clnt_odstate(stp->st_clnt_odstate);
release_all_access(stp);
if (stp->st_stateowner)
nfs4_put_stateowner(stp->st_stateowner);
kmem_cache_free(stateid_slab, stid);
}
static void nfs4_free_lock_stateid(struct nfs4_stid *stid)
{
struct nfs4_ol_stateid *stp = openlockstateid(stid);
struct nfs4_lockowner *lo = lockowner(stp->st_stateowner);
struct nfsd_file *nf;
nf = find_any_file(stp->st_stid.sc_file);
if (nf) {
get_file(nf->nf_file);
filp_close(nf->nf_file, (fl_owner_t)lo);
nfsd_file_put(nf);
}
nfs4_free_ol_stateid(stid);
}
/*
* Put the persistent reference to an already unhashed generic stateid, while
* holding the cl_lock. If it's the last reference, then put it onto the
* reaplist for later destruction.
*/
static void put_ol_stateid_locked(struct nfs4_ol_stateid *stp,
struct list_head *reaplist)
{
struct nfs4_stid *s = &stp->st_stid;
struct nfs4_client *clp = s->sc_client;
lockdep_assert_held(&clp->cl_lock);
WARN_ON_ONCE(!list_empty(&stp->st_locks));
if (!refcount_dec_and_test(&s->sc_count)) {
wake_up_all(&close_wq);
return;
}
idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id);
list_add(&stp->st_locks, reaplist);
}
static bool unhash_lock_stateid(struct nfs4_ol_stateid *stp)
{
nfsd: Fix general protection fault in release_lock_stateid() When I push NFSv4.1 / RDMA hard, (xfstests generic/089, for example), I get this crash on the server: Oct 28 22:04:30 klimt kernel: general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC Oct 28 22:04:30 klimt kernel: Modules linked in: cts rpcsec_gss_krb5 iTCO_wdt iTCO_vendor_support sb_edac edac_core x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm btrfs irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel lrw gf128mul glue_helper ablk_helper cryptd xor pcspkr raid6_pq i2c_i801 i2c_smbus lpc_ich mfd_core sg mei_me mei ioatdma shpchp wmi ipmi_si ipmi_msghandler rpcrdma ib_ipoib rdma_ucm acpi_power_meter acpi_pad ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c mlx4_ib mlx4_en ib_core sr_mod cdrom sd_mod ast drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm crc32c_intel igb ahci libahci ptp mlx4_core pps_core dca libata i2c_algo_bit i2c_core dm_mirror dm_region_hash dm_log dm_mod Oct 28 22:04:30 klimt kernel: CPU: 7 PID: 1558 Comm: nfsd Not tainted 4.9.0-rc2-00005-g82cd754 #8 Oct 28 22:04:30 klimt kernel: Hardware name: Supermicro Super Server/X10SRL-F, BIOS 1.0c 09/09/2015 Oct 28 22:04:30 klimt kernel: task: ffff880835c3a100 task.stack: ffff8808420d8000 Oct 28 22:04:30 klimt kernel: RIP: 0010:[<ffffffffa05a759f>] [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP: 0018:ffff8808420dbce0 EFLAGS: 00010246 Oct 28 22:04:30 klimt kernel: RAX: ffff88084e6660f0 RBX: ffff88084e667020 RCX: 0000000000000000 Oct 28 22:04:30 klimt kernel: RDX: 0000000000000007 RSI: 0000000000000000 RDI: ffff88084e667020 Oct 28 22:04:30 klimt kernel: RBP: ffff8808420dbcf8 R08: 0000000000000001 R09: 0000000000000000 Oct 28 22:04:30 klimt kernel: R10: ffff880835c3a100 R11: ffff880835c3aca8 R12: 6b6b6b6b6b6b6b6b Oct 28 22:04:30 klimt kernel: R13: ffff88084e6670d8 R14: ffff880835f546f0 R15: ffff880835f1c548 Oct 28 22:04:30 klimt kernel: FS: 0000000000000000(0000) GS:ffff88087bdc0000(0000) knlGS:0000000000000000 Oct 28 22:04:30 klimt kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Oct 28 22:04:30 klimt kernel: CR2: 00007ff020389000 CR3: 0000000001c06000 CR4: 00000000001406e0 Oct 28 22:04:30 klimt kernel: Stack: Oct 28 22:04:30 klimt kernel: ffff88084e667020 0000000000000000 ffff88084e6670d8 ffff8808420dbd20 Oct 28 22:04:30 klimt kernel: ffffffffa05ac80d ffff880835f54548 ffff88084e640008 ffff880835f545b0 Oct 28 22:04:30 klimt kernel: ffff8808420dbd70 ffffffffa059803d ffff880835f1c768 0000000000000870 Oct 28 22:04:30 klimt kernel: Call Trace: Oct 28 22:04:30 klimt kernel: [<ffffffffa05ac80d>] nfsd4_free_stateid+0xfd/0x1b0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa059803d>] nfsd4_proc_compound+0x40d/0x690 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa0583114>] nfsd_dispatch+0xd4/0x1d0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa047bbf9>] svc_process_common+0x3d9/0x700 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa047ca64>] svc_process+0xf4/0x330 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa05827ca>] nfsd+0xfa/0x160 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa05826d0>] ? nfsd_destroy+0x170/0x170 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffff810b367b>] kthread+0x10b/0x120 Oct 28 22:04:30 klimt kernel: [<ffffffff810b3570>] ? kthread_stop+0x280/0x280 Oct 28 22:04:30 klimt kernel: [<ffffffff8174e8ba>] ret_from_fork+0x2a/0x40 Oct 28 22:04:30 klimt kernel: Code: c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 55 41 54 53 48 8b 87 b0 00 00 00 48 89 fb 4c 8b a0 98 00 00 00 <49> 8b 44 24 20 48 8d b8 80 03 00 00 e8 10 66 1a e1 48 89 df e8 Oct 28 22:04:30 klimt kernel: RIP [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP <ffff8808420dbce0> Oct 28 22:04:30 klimt kernel: ---[ end trace cf5d0b371973e167 ]--- Jeff Layton says: > Hm...now that I look though, this is a little suspicious: > > struct nfs4_openowner *oo = openowner(stp->st_openstp->st_stateowner); > > I wonder if it's possible for the openstateid to have already been > destroyed at this point. > > We might be better off doing something like this to get the client pointer: > > stp->st_stid.sc_client; > > ...which should be more direct and less dependent on other stateids > staying valid. With the suggested change, I am no longer able to reproduce the above oops. v2: Fix unhash_lock_stateid() as well Fix-suggested-by: Jeff Layton <jlayton@redhat.com> Fixes: 42691398be08 ('nfsd: Fix race between FREE_STATEID and LOCK') Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2016-10-29 22:19:03 +00:00
lockdep_assert_held(&stp->st_stid.sc_client->cl_lock);
list_del_init(&stp->st_locks);
nfs4_unhash_stid(&stp->st_stid);
return unhash_ol_stateid(stp);
}
static void release_lock_stateid(struct nfs4_ol_stateid *stp)
{
nfsd: Fix general protection fault in release_lock_stateid() When I push NFSv4.1 / RDMA hard, (xfstests generic/089, for example), I get this crash on the server: Oct 28 22:04:30 klimt kernel: general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC Oct 28 22:04:30 klimt kernel: Modules linked in: cts rpcsec_gss_krb5 iTCO_wdt iTCO_vendor_support sb_edac edac_core x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm btrfs irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel lrw gf128mul glue_helper ablk_helper cryptd xor pcspkr raid6_pq i2c_i801 i2c_smbus lpc_ich mfd_core sg mei_me mei ioatdma shpchp wmi ipmi_si ipmi_msghandler rpcrdma ib_ipoib rdma_ucm acpi_power_meter acpi_pad ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c mlx4_ib mlx4_en ib_core sr_mod cdrom sd_mod ast drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm crc32c_intel igb ahci libahci ptp mlx4_core pps_core dca libata i2c_algo_bit i2c_core dm_mirror dm_region_hash dm_log dm_mod Oct 28 22:04:30 klimt kernel: CPU: 7 PID: 1558 Comm: nfsd Not tainted 4.9.0-rc2-00005-g82cd754 #8 Oct 28 22:04:30 klimt kernel: Hardware name: Supermicro Super Server/X10SRL-F, BIOS 1.0c 09/09/2015 Oct 28 22:04:30 klimt kernel: task: ffff880835c3a100 task.stack: ffff8808420d8000 Oct 28 22:04:30 klimt kernel: RIP: 0010:[<ffffffffa05a759f>] [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP: 0018:ffff8808420dbce0 EFLAGS: 00010246 Oct 28 22:04:30 klimt kernel: RAX: ffff88084e6660f0 RBX: ffff88084e667020 RCX: 0000000000000000 Oct 28 22:04:30 klimt kernel: RDX: 0000000000000007 RSI: 0000000000000000 RDI: ffff88084e667020 Oct 28 22:04:30 klimt kernel: RBP: ffff8808420dbcf8 R08: 0000000000000001 R09: 0000000000000000 Oct 28 22:04:30 klimt kernel: R10: ffff880835c3a100 R11: ffff880835c3aca8 R12: 6b6b6b6b6b6b6b6b Oct 28 22:04:30 klimt kernel: R13: ffff88084e6670d8 R14: ffff880835f546f0 R15: ffff880835f1c548 Oct 28 22:04:30 klimt kernel: FS: 0000000000000000(0000) GS:ffff88087bdc0000(0000) knlGS:0000000000000000 Oct 28 22:04:30 klimt kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Oct 28 22:04:30 klimt kernel: CR2: 00007ff020389000 CR3: 0000000001c06000 CR4: 00000000001406e0 Oct 28 22:04:30 klimt kernel: Stack: Oct 28 22:04:30 klimt kernel: ffff88084e667020 0000000000000000 ffff88084e6670d8 ffff8808420dbd20 Oct 28 22:04:30 klimt kernel: ffffffffa05ac80d ffff880835f54548 ffff88084e640008 ffff880835f545b0 Oct 28 22:04:30 klimt kernel: ffff8808420dbd70 ffffffffa059803d ffff880835f1c768 0000000000000870 Oct 28 22:04:30 klimt kernel: Call Trace: Oct 28 22:04:30 klimt kernel: [<ffffffffa05ac80d>] nfsd4_free_stateid+0xfd/0x1b0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa059803d>] nfsd4_proc_compound+0x40d/0x690 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa0583114>] nfsd_dispatch+0xd4/0x1d0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa047bbf9>] svc_process_common+0x3d9/0x700 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa047ca64>] svc_process+0xf4/0x330 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa05827ca>] nfsd+0xfa/0x160 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa05826d0>] ? nfsd_destroy+0x170/0x170 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffff810b367b>] kthread+0x10b/0x120 Oct 28 22:04:30 klimt kernel: [<ffffffff810b3570>] ? kthread_stop+0x280/0x280 Oct 28 22:04:30 klimt kernel: [<ffffffff8174e8ba>] ret_from_fork+0x2a/0x40 Oct 28 22:04:30 klimt kernel: Code: c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 55 41 54 53 48 8b 87 b0 00 00 00 48 89 fb 4c 8b a0 98 00 00 00 <49> 8b 44 24 20 48 8d b8 80 03 00 00 e8 10 66 1a e1 48 89 df e8 Oct 28 22:04:30 klimt kernel: RIP [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP <ffff8808420dbce0> Oct 28 22:04:30 klimt kernel: ---[ end trace cf5d0b371973e167 ]--- Jeff Layton says: > Hm...now that I look though, this is a little suspicious: > > struct nfs4_openowner *oo = openowner(stp->st_openstp->st_stateowner); > > I wonder if it's possible for the openstateid to have already been > destroyed at this point. > > We might be better off doing something like this to get the client pointer: > > stp->st_stid.sc_client; > > ...which should be more direct and less dependent on other stateids > staying valid. With the suggested change, I am no longer able to reproduce the above oops. v2: Fix unhash_lock_stateid() as well Fix-suggested-by: Jeff Layton <jlayton@redhat.com> Fixes: 42691398be08 ('nfsd: Fix race between FREE_STATEID and LOCK') Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2016-10-29 22:19:03 +00:00
struct nfs4_client *clp = stp->st_stid.sc_client;
bool unhashed;
nfsd: Fix general protection fault in release_lock_stateid() When I push NFSv4.1 / RDMA hard, (xfstests generic/089, for example), I get this crash on the server: Oct 28 22:04:30 klimt kernel: general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC Oct 28 22:04:30 klimt kernel: Modules linked in: cts rpcsec_gss_krb5 iTCO_wdt iTCO_vendor_support sb_edac edac_core x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm btrfs irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel lrw gf128mul glue_helper ablk_helper cryptd xor pcspkr raid6_pq i2c_i801 i2c_smbus lpc_ich mfd_core sg mei_me mei ioatdma shpchp wmi ipmi_si ipmi_msghandler rpcrdma ib_ipoib rdma_ucm acpi_power_meter acpi_pad ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c mlx4_ib mlx4_en ib_core sr_mod cdrom sd_mod ast drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm crc32c_intel igb ahci libahci ptp mlx4_core pps_core dca libata i2c_algo_bit i2c_core dm_mirror dm_region_hash dm_log dm_mod Oct 28 22:04:30 klimt kernel: CPU: 7 PID: 1558 Comm: nfsd Not tainted 4.9.0-rc2-00005-g82cd754 #8 Oct 28 22:04:30 klimt kernel: Hardware name: Supermicro Super Server/X10SRL-F, BIOS 1.0c 09/09/2015 Oct 28 22:04:30 klimt kernel: task: ffff880835c3a100 task.stack: ffff8808420d8000 Oct 28 22:04:30 klimt kernel: RIP: 0010:[<ffffffffa05a759f>] [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP: 0018:ffff8808420dbce0 EFLAGS: 00010246 Oct 28 22:04:30 klimt kernel: RAX: ffff88084e6660f0 RBX: ffff88084e667020 RCX: 0000000000000000 Oct 28 22:04:30 klimt kernel: RDX: 0000000000000007 RSI: 0000000000000000 RDI: ffff88084e667020 Oct 28 22:04:30 klimt kernel: RBP: ffff8808420dbcf8 R08: 0000000000000001 R09: 0000000000000000 Oct 28 22:04:30 klimt kernel: R10: ffff880835c3a100 R11: ffff880835c3aca8 R12: 6b6b6b6b6b6b6b6b Oct 28 22:04:30 klimt kernel: R13: ffff88084e6670d8 R14: ffff880835f546f0 R15: ffff880835f1c548 Oct 28 22:04:30 klimt kernel: FS: 0000000000000000(0000) GS:ffff88087bdc0000(0000) knlGS:0000000000000000 Oct 28 22:04:30 klimt kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Oct 28 22:04:30 klimt kernel: CR2: 00007ff020389000 CR3: 0000000001c06000 CR4: 00000000001406e0 Oct 28 22:04:30 klimt kernel: Stack: Oct 28 22:04:30 klimt kernel: ffff88084e667020 0000000000000000 ffff88084e6670d8 ffff8808420dbd20 Oct 28 22:04:30 klimt kernel: ffffffffa05ac80d ffff880835f54548 ffff88084e640008 ffff880835f545b0 Oct 28 22:04:30 klimt kernel: ffff8808420dbd70 ffffffffa059803d ffff880835f1c768 0000000000000870 Oct 28 22:04:30 klimt kernel: Call Trace: Oct 28 22:04:30 klimt kernel: [<ffffffffa05ac80d>] nfsd4_free_stateid+0xfd/0x1b0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa059803d>] nfsd4_proc_compound+0x40d/0x690 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa0583114>] nfsd_dispatch+0xd4/0x1d0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa047bbf9>] svc_process_common+0x3d9/0x700 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa047ca64>] svc_process+0xf4/0x330 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa05827ca>] nfsd+0xfa/0x160 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa05826d0>] ? nfsd_destroy+0x170/0x170 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffff810b367b>] kthread+0x10b/0x120 Oct 28 22:04:30 klimt kernel: [<ffffffff810b3570>] ? kthread_stop+0x280/0x280 Oct 28 22:04:30 klimt kernel: [<ffffffff8174e8ba>] ret_from_fork+0x2a/0x40 Oct 28 22:04:30 klimt kernel: Code: c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 55 41 54 53 48 8b 87 b0 00 00 00 48 89 fb 4c 8b a0 98 00 00 00 <49> 8b 44 24 20 48 8d b8 80 03 00 00 e8 10 66 1a e1 48 89 df e8 Oct 28 22:04:30 klimt kernel: RIP [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP <ffff8808420dbce0> Oct 28 22:04:30 klimt kernel: ---[ end trace cf5d0b371973e167 ]--- Jeff Layton says: > Hm...now that I look though, this is a little suspicious: > > struct nfs4_openowner *oo = openowner(stp->st_openstp->st_stateowner); > > I wonder if it's possible for the openstateid to have already been > destroyed at this point. > > We might be better off doing something like this to get the client pointer: > > stp->st_stid.sc_client; > > ...which should be more direct and less dependent on other stateids > staying valid. With the suggested change, I am no longer able to reproduce the above oops. v2: Fix unhash_lock_stateid() as well Fix-suggested-by: Jeff Layton <jlayton@redhat.com> Fixes: 42691398be08 ('nfsd: Fix race between FREE_STATEID and LOCK') Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2016-10-29 22:19:03 +00:00
spin_lock(&clp->cl_lock);
unhashed = unhash_lock_stateid(stp);
nfsd: Fix general protection fault in release_lock_stateid() When I push NFSv4.1 / RDMA hard, (xfstests generic/089, for example), I get this crash on the server: Oct 28 22:04:30 klimt kernel: general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC Oct 28 22:04:30 klimt kernel: Modules linked in: cts rpcsec_gss_krb5 iTCO_wdt iTCO_vendor_support sb_edac edac_core x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm btrfs irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel lrw gf128mul glue_helper ablk_helper cryptd xor pcspkr raid6_pq i2c_i801 i2c_smbus lpc_ich mfd_core sg mei_me mei ioatdma shpchp wmi ipmi_si ipmi_msghandler rpcrdma ib_ipoib rdma_ucm acpi_power_meter acpi_pad ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c mlx4_ib mlx4_en ib_core sr_mod cdrom sd_mod ast drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm crc32c_intel igb ahci libahci ptp mlx4_core pps_core dca libata i2c_algo_bit i2c_core dm_mirror dm_region_hash dm_log dm_mod Oct 28 22:04:30 klimt kernel: CPU: 7 PID: 1558 Comm: nfsd Not tainted 4.9.0-rc2-00005-g82cd754 #8 Oct 28 22:04:30 klimt kernel: Hardware name: Supermicro Super Server/X10SRL-F, BIOS 1.0c 09/09/2015 Oct 28 22:04:30 klimt kernel: task: ffff880835c3a100 task.stack: ffff8808420d8000 Oct 28 22:04:30 klimt kernel: RIP: 0010:[<ffffffffa05a759f>] [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP: 0018:ffff8808420dbce0 EFLAGS: 00010246 Oct 28 22:04:30 klimt kernel: RAX: ffff88084e6660f0 RBX: ffff88084e667020 RCX: 0000000000000000 Oct 28 22:04:30 klimt kernel: RDX: 0000000000000007 RSI: 0000000000000000 RDI: ffff88084e667020 Oct 28 22:04:30 klimt kernel: RBP: ffff8808420dbcf8 R08: 0000000000000001 R09: 0000000000000000 Oct 28 22:04:30 klimt kernel: R10: ffff880835c3a100 R11: ffff880835c3aca8 R12: 6b6b6b6b6b6b6b6b Oct 28 22:04:30 klimt kernel: R13: ffff88084e6670d8 R14: ffff880835f546f0 R15: ffff880835f1c548 Oct 28 22:04:30 klimt kernel: FS: 0000000000000000(0000) GS:ffff88087bdc0000(0000) knlGS:0000000000000000 Oct 28 22:04:30 klimt kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Oct 28 22:04:30 klimt kernel: CR2: 00007ff020389000 CR3: 0000000001c06000 CR4: 00000000001406e0 Oct 28 22:04:30 klimt kernel: Stack: Oct 28 22:04:30 klimt kernel: ffff88084e667020 0000000000000000 ffff88084e6670d8 ffff8808420dbd20 Oct 28 22:04:30 klimt kernel: ffffffffa05ac80d ffff880835f54548 ffff88084e640008 ffff880835f545b0 Oct 28 22:04:30 klimt kernel: ffff8808420dbd70 ffffffffa059803d ffff880835f1c768 0000000000000870 Oct 28 22:04:30 klimt kernel: Call Trace: Oct 28 22:04:30 klimt kernel: [<ffffffffa05ac80d>] nfsd4_free_stateid+0xfd/0x1b0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa059803d>] nfsd4_proc_compound+0x40d/0x690 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa0583114>] nfsd_dispatch+0xd4/0x1d0 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa047bbf9>] svc_process_common+0x3d9/0x700 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa047ca64>] svc_process+0xf4/0x330 [sunrpc] Oct 28 22:04:30 klimt kernel: [<ffffffffa05827ca>] nfsd+0xfa/0x160 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffffa05826d0>] ? nfsd_destroy+0x170/0x170 [nfsd] Oct 28 22:04:30 klimt kernel: [<ffffffff810b367b>] kthread+0x10b/0x120 Oct 28 22:04:30 klimt kernel: [<ffffffff810b3570>] ? kthread_stop+0x280/0x280 Oct 28 22:04:30 klimt kernel: [<ffffffff8174e8ba>] ret_from_fork+0x2a/0x40 Oct 28 22:04:30 klimt kernel: Code: c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 55 41 54 53 48 8b 87 b0 00 00 00 48 89 fb 4c 8b a0 98 00 00 00 <49> 8b 44 24 20 48 8d b8 80 03 00 00 e8 10 66 1a e1 48 89 df e8 Oct 28 22:04:30 klimt kernel: RIP [<ffffffffa05a759f>] release_lock_stateid+0x1f/0x60 [nfsd] Oct 28 22:04:30 klimt kernel: RSP <ffff8808420dbce0> Oct 28 22:04:30 klimt kernel: ---[ end trace cf5d0b371973e167 ]--- Jeff Layton says: > Hm...now that I look though, this is a little suspicious: > > struct nfs4_openowner *oo = openowner(stp->st_openstp->st_stateowner); > > I wonder if it's possible for the openstateid to have already been > destroyed at this point. > > We might be better off doing something like this to get the client pointer: > > stp->st_stid.sc_client; > > ...which should be more direct and less dependent on other stateids > staying valid. With the suggested change, I am no longer able to reproduce the above oops. v2: Fix unhash_lock_stateid() as well Fix-suggested-by: Jeff Layton <jlayton@redhat.com> Fixes: 42691398be08 ('nfsd: Fix race between FREE_STATEID and LOCK') Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2016-10-29 22:19:03 +00:00
spin_unlock(&clp->cl_lock);
if (unhashed)
nfs4_put_stid(&stp->st_stid);
}
static void unhash_lockowner_locked(struct nfs4_lockowner *lo)
{
struct nfs4_client *clp = lo->lo_owner.so_client;
lockdep_assert_held(&clp->cl_lock);
list_del_init(&lo->lo_owner.so_strhash);
}
/*
* Free a list of generic stateids that were collected earlier after being
* fully unhashed.
*/
static void
free_ol_stateid_reaplist(struct list_head *reaplist)
{
struct nfs4_ol_stateid *stp;
NFSD: Put the reference of nfs4_file when freeing stid After testing nfs4 lock, I restart the nfsd service, got messages as, [ 5677.403419] nfsd: last server has exited, flushing export cache [ 5677.463728] ============================================================================= [ 5677.463942] BUG nfsd4_files (Tainted: G B OE): Objects remaining in nfsd4_files on kmem_cache_close() [ 5677.464055] ----------------------------------------------------------------------------- [ 5677.464203] INFO: Slab 0xffffea0000233400 objects=28 used=1 fp=0xffff880008cd3d98 flags=0x3ffc0000004080 [ 5677.464318] CPU: 0 PID: 3772 Comm: rmmod Tainted: G B OE 3.16.0-rc2+ #29 [ 5677.464420] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 5677.464538] 0000000000000000 0000000036af2c9f ffff88000ce97d68 ffffffff816eacfa [ 5677.464643] ffffea0000233400 ffff88000ce97e40 ffffffff811cda44 ffffffff00000020 [ 5677.464774] ffff88000ce97e50 ffff88000ce97e00 656a624f00000008 616d657220737463 [ 5677.464875] Call Trace: [ 5677.464925] [<ffffffff816eacfa>] dump_stack+0x45/0x56 [ 5677.464983] [<ffffffff811cda44>] slab_err+0xb4/0xe0 [ 5677.465040] [<ffffffff811d0457>] ? __kmalloc+0x117/0x290 [ 5677.465099] [<ffffffff81100eec>] ? on_each_cpu_cond+0xac/0xf0 [ 5677.465158] [<ffffffff811d1bc0>] ? kmem_cache_close+0x110/0x2e0 [ 5677.465218] [<ffffffff811d1be0>] kmem_cache_close+0x130/0x2e0 [ 5677.465279] [<ffffffff8135a0c1>] ? kobject_cleanup+0x91/0x1b0 [ 5677.465338] [<ffffffff811d22be>] __kmem_cache_shutdown+0xe/0x10 [ 5677.465399] [<ffffffff8119bd28>] kmem_cache_destroy+0x48/0x100 [ 5677.465466] [<ffffffffa05ef78d>] nfsd4_free_slabs+0x2d/0x50 [nfsd] [ 5677.465530] [<ffffffffa05fa987>] exit_nfsd+0x34/0x6ad [nfsd] [ 5677.465589] [<ffffffff81104ac2>] SyS_delete_module+0x162/0x200 [ 5677.465649] [<ffffffff81013b69>] ? do_notify_resume+0x59/0x90 [ 5677.465759] [<ffffffff816f2369>] system_call_fastpath+0x16/0x1b [ 5677.465822] INFO: Object 0xffff880008cd0000 @offset=0 [ 5677.465882] INFO: Allocated in nfsd4_process_open1+0x61/0x350 [nfsd] age=7599 cpu=0 pid=3253 [ 5677.466115] __slab_alloc+0x3b0/0x4b1 [ 5677.466166] kmem_cache_alloc+0x1e4/0x240 [ 5677.466220] nfsd4_process_open1+0x61/0x350 [nfsd] [ 5677.466276] nfsd4_open+0xee/0x860 [nfsd] [ 5677.466329] nfsd4_proc_compound+0x4d7/0x7f0 [nfsd] [ 5677.466384] nfsd_dispatch+0xbb/0x200 [nfsd] [ 5677.466447] svc_process_common+0x453/0x6f0 [sunrpc] [ 5677.466506] svc_process+0x103/0x170 [sunrpc] [ 5677.466559] nfsd+0x117/0x190 [nfsd] [ 5677.466609] kthread+0xd8/0xf0 [ 5677.466656] ret_from_fork+0x7c/0xb0 [ 5677.466775] kmem_cache_destroy nfsd4_files: Slab cache still has objects [ 5677.466839] CPU: 0 PID: 3772 Comm: rmmod Tainted: G B OE 3.16.0-rc2+ #29 [ 5677.466937] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 5677.467049] 0000000000000000 0000000036af2c9f ffff88000ce97eb0 ffffffff816eacfa [ 5677.467150] ffff880020bb2d00 ffff88000ce97ed0 ffffffff8119bdd9 0000000000000000 [ 5677.467250] ffffffffa06065c0 ffff88000ce97ee0 ffffffffa05ef78d ffff88000ce97ef0 [ 5677.467351] Call Trace: [ 5677.467397] [<ffffffff816eacfa>] dump_stack+0x45/0x56 [ 5677.467454] [<ffffffff8119bdd9>] kmem_cache_destroy+0xf9/0x100 [ 5677.467516] [<ffffffffa05ef78d>] nfsd4_free_slabs+0x2d/0x50 [nfsd] [ 5677.467579] [<ffffffffa05fa987>] exit_nfsd+0x34/0x6ad [nfsd] [ 5677.467639] [<ffffffff81104ac2>] SyS_delete_module+0x162/0x200 [ 5677.467765] [<ffffffff81013b69>] ? do_notify_resume+0x59/0x90 [ 5677.467826] [<ffffffff816f2369>] system_call_fastpath+0x16/0x1b Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Reviewed-by: Jeff Layton <jlayton@primarydata.com> Fixes: 11b9164adad7 "nfsd: Add a struct nfs4_file field to struct nfs4_stid" Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-08-05 13:20:27 +00:00
struct nfs4_file *fp;
might_sleep();
while (!list_empty(reaplist)) {
stp = list_first_entry(reaplist, struct nfs4_ol_stateid,
st_locks);
list_del(&stp->st_locks);
NFSD: Put the reference of nfs4_file when freeing stid After testing nfs4 lock, I restart the nfsd service, got messages as, [ 5677.403419] nfsd: last server has exited, flushing export cache [ 5677.463728] ============================================================================= [ 5677.463942] BUG nfsd4_files (Tainted: G B OE): Objects remaining in nfsd4_files on kmem_cache_close() [ 5677.464055] ----------------------------------------------------------------------------- [ 5677.464203] INFO: Slab 0xffffea0000233400 objects=28 used=1 fp=0xffff880008cd3d98 flags=0x3ffc0000004080 [ 5677.464318] CPU: 0 PID: 3772 Comm: rmmod Tainted: G B OE 3.16.0-rc2+ #29 [ 5677.464420] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 5677.464538] 0000000000000000 0000000036af2c9f ffff88000ce97d68 ffffffff816eacfa [ 5677.464643] ffffea0000233400 ffff88000ce97e40 ffffffff811cda44 ffffffff00000020 [ 5677.464774] ffff88000ce97e50 ffff88000ce97e00 656a624f00000008 616d657220737463 [ 5677.464875] Call Trace: [ 5677.464925] [<ffffffff816eacfa>] dump_stack+0x45/0x56 [ 5677.464983] [<ffffffff811cda44>] slab_err+0xb4/0xe0 [ 5677.465040] [<ffffffff811d0457>] ? __kmalloc+0x117/0x290 [ 5677.465099] [<ffffffff81100eec>] ? on_each_cpu_cond+0xac/0xf0 [ 5677.465158] [<ffffffff811d1bc0>] ? kmem_cache_close+0x110/0x2e0 [ 5677.465218] [<ffffffff811d1be0>] kmem_cache_close+0x130/0x2e0 [ 5677.465279] [<ffffffff8135a0c1>] ? kobject_cleanup+0x91/0x1b0 [ 5677.465338] [<ffffffff811d22be>] __kmem_cache_shutdown+0xe/0x10 [ 5677.465399] [<ffffffff8119bd28>] kmem_cache_destroy+0x48/0x100 [ 5677.465466] [<ffffffffa05ef78d>] nfsd4_free_slabs+0x2d/0x50 [nfsd] [ 5677.465530] [<ffffffffa05fa987>] exit_nfsd+0x34/0x6ad [nfsd] [ 5677.465589] [<ffffffff81104ac2>] SyS_delete_module+0x162/0x200 [ 5677.465649] [<ffffffff81013b69>] ? do_notify_resume+0x59/0x90 [ 5677.465759] [<ffffffff816f2369>] system_call_fastpath+0x16/0x1b [ 5677.465822] INFO: Object 0xffff880008cd0000 @offset=0 [ 5677.465882] INFO: Allocated in nfsd4_process_open1+0x61/0x350 [nfsd] age=7599 cpu=0 pid=3253 [ 5677.466115] __slab_alloc+0x3b0/0x4b1 [ 5677.466166] kmem_cache_alloc+0x1e4/0x240 [ 5677.466220] nfsd4_process_open1+0x61/0x350 [nfsd] [ 5677.466276] nfsd4_open+0xee/0x860 [nfsd] [ 5677.466329] nfsd4_proc_compound+0x4d7/0x7f0 [nfsd] [ 5677.466384] nfsd_dispatch+0xbb/0x200 [nfsd] [ 5677.466447] svc_process_common+0x453/0x6f0 [sunrpc] [ 5677.466506] svc_process+0x103/0x170 [sunrpc] [ 5677.466559] nfsd+0x117/0x190 [nfsd] [ 5677.466609] kthread+0xd8/0xf0 [ 5677.466656] ret_from_fork+0x7c/0xb0 [ 5677.466775] kmem_cache_destroy nfsd4_files: Slab cache still has objects [ 5677.466839] CPU: 0 PID: 3772 Comm: rmmod Tainted: G B OE 3.16.0-rc2+ #29 [ 5677.466937] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 5677.467049] 0000000000000000 0000000036af2c9f ffff88000ce97eb0 ffffffff816eacfa [ 5677.467150] ffff880020bb2d00 ffff88000ce97ed0 ffffffff8119bdd9 0000000000000000 [ 5677.467250] ffffffffa06065c0 ffff88000ce97ee0 ffffffffa05ef78d ffff88000ce97ef0 [ 5677.467351] Call Trace: [ 5677.467397] [<ffffffff816eacfa>] dump_stack+0x45/0x56 [ 5677.467454] [<ffffffff8119bdd9>] kmem_cache_destroy+0xf9/0x100 [ 5677.467516] [<ffffffffa05ef78d>] nfsd4_free_slabs+0x2d/0x50 [nfsd] [ 5677.467579] [<ffffffffa05fa987>] exit_nfsd+0x34/0x6ad [nfsd] [ 5677.467639] [<ffffffff81104ac2>] SyS_delete_module+0x162/0x200 [ 5677.467765] [<ffffffff81013b69>] ? do_notify_resume+0x59/0x90 [ 5677.467826] [<ffffffff816f2369>] system_call_fastpath+0x16/0x1b Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Reviewed-by: Jeff Layton <jlayton@primarydata.com> Fixes: 11b9164adad7 "nfsd: Add a struct nfs4_file field to struct nfs4_stid" Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-08-05 13:20:27 +00:00
fp = stp->st_stid.sc_file;
stp->st_stid.sc_free(&stp->st_stid);
NFSD: Put the reference of nfs4_file when freeing stid After testing nfs4 lock, I restart the nfsd service, got messages as, [ 5677.403419] nfsd: last server has exited, flushing export cache [ 5677.463728] ============================================================================= [ 5677.463942] BUG nfsd4_files (Tainted: G B OE): Objects remaining in nfsd4_files on kmem_cache_close() [ 5677.464055] ----------------------------------------------------------------------------- [ 5677.464203] INFO: Slab 0xffffea0000233400 objects=28 used=1 fp=0xffff880008cd3d98 flags=0x3ffc0000004080 [ 5677.464318] CPU: 0 PID: 3772 Comm: rmmod Tainted: G B OE 3.16.0-rc2+ #29 [ 5677.464420] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 5677.464538] 0000000000000000 0000000036af2c9f ffff88000ce97d68 ffffffff816eacfa [ 5677.464643] ffffea0000233400 ffff88000ce97e40 ffffffff811cda44 ffffffff00000020 [ 5677.464774] ffff88000ce97e50 ffff88000ce97e00 656a624f00000008 616d657220737463 [ 5677.464875] Call Trace: [ 5677.464925] [<ffffffff816eacfa>] dump_stack+0x45/0x56 [ 5677.464983] [<ffffffff811cda44>] slab_err+0xb4/0xe0 [ 5677.465040] [<ffffffff811d0457>] ? __kmalloc+0x117/0x290 [ 5677.465099] [<ffffffff81100eec>] ? on_each_cpu_cond+0xac/0xf0 [ 5677.465158] [<ffffffff811d1bc0>] ? kmem_cache_close+0x110/0x2e0 [ 5677.465218] [<ffffffff811d1be0>] kmem_cache_close+0x130/0x2e0 [ 5677.465279] [<ffffffff8135a0c1>] ? kobject_cleanup+0x91/0x1b0 [ 5677.465338] [<ffffffff811d22be>] __kmem_cache_shutdown+0xe/0x10 [ 5677.465399] [<ffffffff8119bd28>] kmem_cache_destroy+0x48/0x100 [ 5677.465466] [<ffffffffa05ef78d>] nfsd4_free_slabs+0x2d/0x50 [nfsd] [ 5677.465530] [<ffffffffa05fa987>] exit_nfsd+0x34/0x6ad [nfsd] [ 5677.465589] [<ffffffff81104ac2>] SyS_delete_module+0x162/0x200 [ 5677.465649] [<ffffffff81013b69>] ? do_notify_resume+0x59/0x90 [ 5677.465759] [<ffffffff816f2369>] system_call_fastpath+0x16/0x1b [ 5677.465822] INFO: Object 0xffff880008cd0000 @offset=0 [ 5677.465882] INFO: Allocated in nfsd4_process_open1+0x61/0x350 [nfsd] age=7599 cpu=0 pid=3253 [ 5677.466115] __slab_alloc+0x3b0/0x4b1 [ 5677.466166] kmem_cache_alloc+0x1e4/0x240 [ 5677.466220] nfsd4_process_open1+0x61/0x350 [nfsd] [ 5677.466276] nfsd4_open+0xee/0x860 [nfsd] [ 5677.466329] nfsd4_proc_compound+0x4d7/0x7f0 [nfsd] [ 5677.466384] nfsd_dispatch+0xbb/0x200 [nfsd] [ 5677.466447] svc_process_common+0x453/0x6f0 [sunrpc] [ 5677.466506] svc_process+0x103/0x170 [sunrpc] [ 5677.466559] nfsd+0x117/0x190 [nfsd] [ 5677.466609] kthread+0xd8/0xf0 [ 5677.466656] ret_from_fork+0x7c/0xb0 [ 5677.466775] kmem_cache_destroy nfsd4_files: Slab cache still has objects [ 5677.466839] CPU: 0 PID: 3772 Comm: rmmod Tainted: G B OE 3.16.0-rc2+ #29 [ 5677.466937] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 5677.467049] 0000000000000000 0000000036af2c9f ffff88000ce97eb0 ffffffff816eacfa [ 5677.467150] ffff880020bb2d00 ffff88000ce97ed0 ffffffff8119bdd9 0000000000000000 [ 5677.467250] ffffffffa06065c0 ffff88000ce97ee0 ffffffffa05ef78d ffff88000ce97ef0 [ 5677.467351] Call Trace: [ 5677.467397] [<ffffffff816eacfa>] dump_stack+0x45/0x56 [ 5677.467454] [<ffffffff8119bdd9>] kmem_cache_destroy+0xf9/0x100 [ 5677.467516] [<ffffffffa05ef78d>] nfsd4_free_slabs+0x2d/0x50 [nfsd] [ 5677.467579] [<ffffffffa05fa987>] exit_nfsd+0x34/0x6ad [nfsd] [ 5677.467639] [<ffffffff81104ac2>] SyS_delete_module+0x162/0x200 [ 5677.467765] [<ffffffff81013b69>] ? do_notify_resume+0x59/0x90 [ 5677.467826] [<ffffffff816f2369>] system_call_fastpath+0x16/0x1b Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Reviewed-by: Jeff Layton <jlayton@primarydata.com> Fixes: 11b9164adad7 "nfsd: Add a struct nfs4_file field to struct nfs4_stid" Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-08-05 13:20:27 +00:00
if (fp)
put_nfs4_file(fp);
}
}
static void release_open_stateid_locks(struct nfs4_ol_stateid *open_stp,
struct list_head *reaplist)
{
struct nfs4_ol_stateid *stp;
lockdep_assert_held(&open_stp->st_stid.sc_client->cl_lock);
while (!list_empty(&open_stp->st_locks)) {
stp = list_entry(open_stp->st_locks.next,
struct nfs4_ol_stateid, st_locks);
WARN_ON(!unhash_lock_stateid(stp));
put_ol_stateid_locked(stp, reaplist);
}
}
static bool unhash_open_stateid(struct nfs4_ol_stateid *stp,
struct list_head *reaplist)
{
bool unhashed;
lockdep_assert_held(&stp->st_stid.sc_client->cl_lock);
unhashed = unhash_ol_stateid(stp);
release_open_stateid_locks(stp, reaplist);
return unhashed;
}
static void release_open_stateid(struct nfs4_ol_stateid *stp)
{
LIST_HEAD(reaplist);
spin_lock(&stp->st_stid.sc_client->cl_lock);
if (unhash_open_stateid(stp, &reaplist))
put_ol_stateid_locked(stp, &reaplist);
spin_unlock(&stp->st_stid.sc_client->cl_lock);
free_ol_stateid_reaplist(&reaplist);
}
static void unhash_openowner_locked(struct nfs4_openowner *oo)
{
struct nfs4_client *clp = oo->oo_owner.so_client;
lockdep_assert_held(&clp->cl_lock);
list_del_init(&oo->oo_owner.so_strhash);
list_del_init(&oo->oo_perclient);
}
static void release_last_closed_stateid(struct nfs4_openowner *oo)
{
struct nfsd_net *nn = net_generic(oo->oo_owner.so_client->net,
nfsd_net_id);
struct nfs4_ol_stateid *s;
spin_lock(&nn->client_lock);
s = oo->oo_last_closed_stid;
if (s) {
list_del_init(&oo->oo_close_lru);
oo->oo_last_closed_stid = NULL;
}
spin_unlock(&nn->client_lock);
if (s)
nfs4_put_stid(&s->st_stid);
}
static void release_openowner(struct nfs4_openowner *oo)
{
struct nfs4_ol_stateid *stp;
struct nfs4_client *clp = oo->oo_owner.so_client;
struct list_head reaplist;
INIT_LIST_HEAD(&reaplist);
spin_lock(&clp->cl_lock);
unhash_openowner_locked(oo);
while (!list_empty(&oo->oo_owner.so_stateids)) {
stp = list_first_entry(&oo->oo_owner.so_stateids,
struct nfs4_ol_stateid, st_perstateowner);
if (unhash_open_stateid(stp, &reaplist))
put_ol_stateid_locked(stp, &reaplist);
}
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
release_last_closed_stateid(oo);
nfs4_put_stateowner(&oo->oo_owner);
}
static inline int
hash_sessionid(struct nfs4_sessionid *sessionid)
{
struct nfsd4_sessionid *sid = (struct nfsd4_sessionid *)sessionid;
return sid->sequence % SESSION_HASH_SIZE;
}
#ifdef CONFIG_SUNRPC_DEBUG
static inline void
dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid)
{
u32 *ptr = (u32 *)(&sessionid->data[0]);
dprintk("%s: %u:%u:%u:%u\n", fn, ptr[0], ptr[1], ptr[2], ptr[3]);
}
#else
static inline void
dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid)
{
}
#endif
/*
* Bump the seqid on cstate->replay_owner, and clear replay_owner if it
* won't be used for replay.
*/
void nfsd4_bump_seqid(struct nfsd4_compound_state *cstate, __be32 nfserr)
{
struct nfs4_stateowner *so = cstate->replay_owner;
if (nfserr == nfserr_replay_me)
return;
if (!seqid_mutating_err(ntohl(nfserr))) {
nfsd4_cstate_clear_replay(cstate);
return;
}
if (!so)
return;
if (so->so_is_open_owner)
release_last_closed_stateid(openowner(so));
so->so_seqid++;
return;
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void
gen_sessionid(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_sessionid *sid;
sid = (struct nfsd4_sessionid *)ses->se_sessionid.data;
sid->clientid = clp->cl_clientid;
sid->sequence = current_sessionid++;
sid->reserved = 0;
}
/*
* The protocol defines ca_maxresponssize_cached to include the size of
* the rpc header, but all we need to cache is the data starting after
* the end of the initial SEQUENCE operation--the rest we regenerate
* each time. Therefore we can advertise a ca_maxresponssize_cached
* value that is the number of bytes in our cache plus a few additional
* bytes. In order to stay on the safe side, and not promise more than
* we can cache, those additional bytes must be the minimum possible: 24
* bytes of rpc header (xid through accept state, with AUTH_NULL
* verifier), 12 for the compound header (with zero-length tag), and 44
* for the SEQUENCE op response:
*/
#define NFSD_MIN_HDR_SEQ_SZ (24 + 12 + 44)
static void
free_session_slots(struct nfsd4_session *ses)
{
int i;
for (i = 0; i < ses->se_fchannel.maxreqs; i++) {
free_svc_cred(&ses->se_slots[i]->sl_cred);
kfree(ses->se_slots[i]);
}
}
/*
* We don't actually need to cache the rpc and session headers, so we
* can allocate a little less for each slot:
*/
static inline u32 slot_bytes(struct nfsd4_channel_attrs *ca)
{
u32 size;
if (ca->maxresp_cached < NFSD_MIN_HDR_SEQ_SZ)
size = 0;
else
size = ca->maxresp_cached - NFSD_MIN_HDR_SEQ_SZ;
return size + sizeof(struct nfsd4_slot);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
/*
* XXX: If we run out of reserved DRC memory we could (up to a point)
* re-negotiate active sessions and reduce their slot usage to make
* room for new connections. For now we just fail the create session.
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
*/
static u32 nfsd4_get_drc_mem(struct nfsd4_channel_attrs *ca, struct nfsd_net *nn)
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
{
u32 slotsize = slot_bytes(ca);
u32 num = ca->maxreqs;
unsigned long avail, total_avail;
unsigned int scale_factor;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&nfsd_drc_lock);
if (nfsd_drc_max_mem > nfsd_drc_mem_used)
total_avail = nfsd_drc_max_mem - nfsd_drc_mem_used;
else
/* We have handed out more space than we chose in
* set_max_drc() to allow. That isn't really a
* problem as long as that doesn't make us think we
* have lots more due to integer overflow.
*/
total_avail = 0;
avail = min((unsigned long)NFSD_MAX_MEM_PER_SESSION, total_avail);
/*
* Never use more than a fraction of the remaining memory,
* unless it's the only way to give this client a slot.
* The chosen fraction is either 1/8 or 1/number of threads,
* whichever is smaller. This ensures there are adequate
* slots to support multiple clients per thread.
* Give the client one slot even if that would require
* over-allocation--it is better than failure.
*/
scale_factor = max_t(unsigned int, 8, nn->nfsd_serv->sv_nrthreads);
avail = clamp_t(unsigned long, avail, slotsize,
total_avail/scale_factor);
num = min_t(int, num, avail / slotsize);
num = max_t(int, num, 1);
nfsd_drc_mem_used += num * slotsize;
spin_unlock(&nfsd_drc_lock);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
return num;
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void nfsd4_put_drc_mem(struct nfsd4_channel_attrs *ca)
{
int slotsize = slot_bytes(ca);
spin_lock(&nfsd_drc_lock);
nfsd_drc_mem_used -= slotsize * ca->maxreqs;
spin_unlock(&nfsd_drc_lock);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static struct nfsd4_session *alloc_session(struct nfsd4_channel_attrs *fattrs,
struct nfsd4_channel_attrs *battrs)
{
int numslots = fattrs->maxreqs;
int slotsize = slot_bytes(fattrs);
struct nfsd4_session *new;
int mem, i;
BUILD_BUG_ON(NFSD_MAX_SLOTS_PER_SESSION * sizeof(struct nfsd4_slot *)
+ sizeof(struct nfsd4_session) > PAGE_SIZE);
mem = numslots * sizeof(struct nfsd4_slot *);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
new = kzalloc(sizeof(*new) + mem, GFP_KERNEL);
if (!new)
return NULL;
/* allocate each struct nfsd4_slot and data cache in one piece */
for (i = 0; i < numslots; i++) {
new->se_slots[i] = kzalloc(slotsize, GFP_KERNEL);
if (!new->se_slots[i])
goto out_free;
}
memcpy(&new->se_fchannel, fattrs, sizeof(struct nfsd4_channel_attrs));
memcpy(&new->se_bchannel, battrs, sizeof(struct nfsd4_channel_attrs));
return new;
out_free:
while (i--)
kfree(new->se_slots[i]);
kfree(new);
return NULL;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
static void free_conn(struct nfsd4_conn *c)
{
svc_xprt_put(c->cn_xprt);
kfree(c);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void nfsd4_conn_lost(struct svc_xpt_user *u)
{
struct nfsd4_conn *c = container_of(u, struct nfsd4_conn, cn_xpt_user);
struct nfs4_client *clp = c->cn_session->se_client;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&clp->cl_lock);
if (!list_empty(&c->cn_persession)) {
list_del(&c->cn_persession);
free_conn(c);
}
nfsd4_probe_callback(clp);
spin_unlock(&clp->cl_lock);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static struct nfsd4_conn *alloc_conn(struct svc_rqst *rqstp, u32 flags)
{
struct nfsd4_conn *conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
conn = kmalloc(sizeof(struct nfsd4_conn), GFP_KERNEL);
if (!conn)
return NULL;
svc_xprt_get(rqstp->rq_xprt);
conn->cn_xprt = rqstp->rq_xprt;
conn->cn_flags = flags;
INIT_LIST_HEAD(&conn->cn_xpt_user.list);
return conn;
}
static void __nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
conn->cn_session = ses;
list_add(&conn->cn_persession, &ses->se_conns);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
static void nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
spin_lock(&clp->cl_lock);
__nfsd4_hash_conn(conn, ses);
spin_unlock(&clp->cl_lock);
}
static int nfsd4_register_conn(struct nfsd4_conn *conn)
{
conn->cn_xpt_user.callback = nfsd4_conn_lost;
return register_xpt_user(conn->cn_xprt, &conn->cn_xpt_user);
}
static void nfsd4_init_conn(struct svc_rqst *rqstp, struct nfsd4_conn *conn, struct nfsd4_session *ses)
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
{
int ret;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
nfsd4_hash_conn(conn, ses);
ret = nfsd4_register_conn(conn);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&conn->cn_xpt_user);
/* We may have gained or lost a callback channel: */
nfsd4_probe_callback_sync(ses->se_client);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static struct nfsd4_conn *alloc_conn_from_crses(struct svc_rqst *rqstp, struct nfsd4_create_session *cses)
{
u32 dir = NFS4_CDFC4_FORE;
if (cses->flags & SESSION4_BACK_CHAN)
dir |= NFS4_CDFC4_BACK;
return alloc_conn(rqstp, dir);
}
/* must be called under client_lock */
static void nfsd4_del_conns(struct nfsd4_session *s)
{
struct nfs4_client *clp = s->se_client;
struct nfsd4_conn *c;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&clp->cl_lock);
while (!list_empty(&s->se_conns)) {
c = list_first_entry(&s->se_conns, struct nfsd4_conn, cn_persession);
list_del_init(&c->cn_persession);
spin_unlock(&clp->cl_lock);
unregister_xpt_user(c->cn_xprt, &c->cn_xpt_user);
free_conn(c);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&clp->cl_lock);
}
spin_unlock(&clp->cl_lock);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void __free_session(struct nfsd4_session *ses)
{
free_session_slots(ses);
kfree(ses);
}
static void free_session(struct nfsd4_session *ses)
{
nfsd4_del_conns(ses);
nfsd4_put_drc_mem(&ses->se_fchannel);
__free_session(ses);
}
static void init_session(struct svc_rqst *rqstp, struct nfsd4_session *new, struct nfs4_client *clp, struct nfsd4_create_session *cses)
{
int idx;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
new->se_client = clp;
gen_sessionid(new);
INIT_LIST_HEAD(&new->se_conns);
new->se_cb_seq_nr = 1;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
new->se_flags = cses->flags;
new->se_cb_prog = cses->callback_prog;
new->se_cb_sec = cses->cb_sec;
atomic_set(&new->se_ref, 0);
idx = hash_sessionid(&new->se_sessionid);
list_add(&new->se_hash, &nn->sessionid_hashtbl[idx]);
spin_lock(&clp->cl_lock);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
list_add(&new->se_perclnt, &clp->cl_sessions);
spin_unlock(&clp->cl_lock);
{
struct sockaddr *sa = svc_addr(rqstp);
/*
* This is a little silly; with sessions there's no real
* use for the callback address. Use the peer address
* as a reasonable default for now, but consider fixing
* the rpc client not to require an address in the
* future:
*/
rpc_copy_addr((struct sockaddr *)&clp->cl_cb_conn.cb_addr, sa);
clp->cl_cb_conn.cb_addrlen = svc_addr_len(sa);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
/* caller must hold client_lock */
static struct nfsd4_session *
__find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net)
{
struct nfsd4_session *elem;
int idx;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
dump_sessionid(__func__, sessionid);
idx = hash_sessionid(sessionid);
/* Search in the appropriate list */
list_for_each_entry(elem, &nn->sessionid_hashtbl[idx], se_hash) {
if (!memcmp(elem->se_sessionid.data, sessionid->data,
NFS4_MAX_SESSIONID_LEN)) {
return elem;
}
}
dprintk("%s: session not found\n", __func__);
return NULL;
}
static struct nfsd4_session *
find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net,
__be32 *ret)
{
struct nfsd4_session *session;
__be32 status = nfserr_badsession;
session = __find_in_sessionid_hashtbl(sessionid, net);
if (!session)
goto out;
status = nfsd4_get_session_locked(session);
if (status)
session = NULL;
out:
*ret = status;
return session;
}
/* caller must hold client_lock */
static void
unhash_session(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
list_del(&ses->se_hash);
spin_lock(&ses->se_client->cl_lock);
list_del(&ses->se_perclnt);
spin_unlock(&ses->se_client->cl_lock);
}
/* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */
static int
STALE_CLIENTID(clientid_t *clid, struct nfsd_net *nn)
{
/*
* We're assuming the clid was not given out from a boot
* precisely 2^32 (about 136 years) before this one. That seems
* a safe assumption:
*/
if (clid->cl_boot == (u32)nn->boot_time)
return 0;
dprintk("NFSD stale clientid (%08x/%08x) boot_time %08lx\n",
clid->cl_boot, clid->cl_id, nn->boot_time);
return 1;
}
/*
* XXX Should we use a slab cache ?
* This type of memory management is somewhat inefficient, but we use it
* anyway since SETCLIENTID is not a common operation.
*/
static struct nfs4_client *alloc_client(struct xdr_netobj name)
{
struct nfs4_client *clp;
int i;
clp = kmem_cache_zalloc(client_slab, GFP_KERNEL);
if (clp == NULL)
return NULL;
xdr_netobj_dup(&clp->cl_name, &name, GFP_KERNEL);
if (clp->cl_name.data == NULL)
goto err_no_name;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 20:55:00 +00:00
clp->cl_ownerstr_hashtbl = kmalloc_array(OWNER_HASH_SIZE,
sizeof(struct list_head),
GFP_KERNEL);
if (!clp->cl_ownerstr_hashtbl)
goto err_no_hashtbl;
for (i = 0; i < OWNER_HASH_SIZE; i++)
INIT_LIST_HEAD(&clp->cl_ownerstr_hashtbl[i]);
INIT_LIST_HEAD(&clp->cl_sessions);
idr_init(&clp->cl_stateids);
atomic_set(&clp->cl_rpc_users, 0);
clp->cl_cb_state = NFSD4_CB_UNKNOWN;
INIT_LIST_HEAD(&clp->cl_idhash);
INIT_LIST_HEAD(&clp->cl_openowners);
INIT_LIST_HEAD(&clp->cl_delegations);
INIT_LIST_HEAD(&clp->cl_lru);
INIT_LIST_HEAD(&clp->cl_revoked);
nfsd: implement pNFS operations Add support for the GETDEVICEINFO, LAYOUTGET, LAYOUTCOMMIT and LAYOUTRETURN NFSv4.1 operations, as well as backing code to manage outstanding layouts and devices. Layout management is very straight forward, with a nfs4_layout_stateid structure that extends nfs4_stid to manage layout stateids as the top-level structure. It is linked into the nfs4_file and nfs4_client structures like the other stateids, and contains a linked list of layouts that hang of the stateid. The actual layout operations are implemented in layout drivers that are not part of this commit, but will be added later. The worst part of this commit is the management of the pNFS device IDs, which suffers from a specification that is not sanely implementable due to the fact that the device-IDs are global and not bound to an export, and have a small enough size so that we can't store the fsid portion of a file handle, and must never be reused. As we still do need perform all export authentication and validation checks on a device ID passed to GETDEVICEINFO we are caught between a rock and a hard place. To work around this issue we add a new hash that maps from a 64-bit integer to a fsid so that we can look up the export to authenticate against it, a 32-bit integer as a generation that we can bump when changing the device, and a currently unused 32-bit integer that could be used in the future to handle more than a single device per export. Entries in this hash table are never deleted as we can't reuse the ids anyway, and would have a severe lifetime problem anyway as Linux export structures are temporary structures that can go away under load. Parts of the XDR data, structures and marshaling/unmarshaling code, as well as many concepts are derived from the old pNFS server implementation from Andy Adamson, Benny Halevy, Dean Hildebrand, Marc Eshel, Fred Isaman, Mike Sager, Ricardo Labiaga and many others. Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-05-05 11:11:59 +00:00
#ifdef CONFIG_NFSD_PNFS
INIT_LIST_HEAD(&clp->cl_lo_states);
#endif
INIT_LIST_HEAD(&clp->async_copies);
spin_lock_init(&clp->async_lock);
spin_lock_init(&clp->cl_lock);
rpc_init_wait_queue(&clp->cl_cb_waitq, "Backchannel slot table");
return clp;
err_no_hashtbl:
kfree(clp->cl_name.data);
err_no_name:
kmem_cache_free(client_slab, clp);
return NULL;
}
static void __free_client(struct kref *k)
{
struct nfsdfs_client *c = container_of(k, struct nfsdfs_client, cl_ref);
struct nfs4_client *clp = container_of(c, struct nfs4_client, cl_nfsdfs);
free_svc_cred(&clp->cl_cred);
kfree(clp->cl_ownerstr_hashtbl);
kfree(clp->cl_name.data);
kfree(clp->cl_nii_domain.data);
kfree(clp->cl_nii_name.data);
idr_destroy(&clp->cl_stateids);
kmem_cache_free(client_slab, clp);
}
static void drop_client(struct nfs4_client *clp)
{
kref_put(&clp->cl_nfsdfs.cl_ref, __free_client);
}
static void
free_client(struct nfs4_client *clp)
{
while (!list_empty(&clp->cl_sessions)) {
struct nfsd4_session *ses;
ses = list_entry(clp->cl_sessions.next, struct nfsd4_session,
se_perclnt);
list_del(&ses->se_perclnt);
WARN_ON_ONCE(atomic_read(&ses->se_ref));
free_session(ses);
}
rpc_destroy_wait_queue(&clp->cl_cb_waitq);
if (clp->cl_nfsd_dentry) {
nfsd_client_rmdir(clp->cl_nfsd_dentry);
clp->cl_nfsd_dentry = NULL;
wake_up_all(&expiry_wq);
}
drop_client(clp);
}
/* must be called under the client_lock */
static void
unhash_client_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
struct nfsd4_session *ses;
lockdep_assert_held(&nn->client_lock);
/* Mark the client as expired! */
clp->cl_time = 0;
/* Make it invisible */
if (!list_empty(&clp->cl_idhash)) {
list_del_init(&clp->cl_idhash);
if (test_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags))
rb_erase(&clp->cl_namenode, &nn->conf_name_tree);
else
rb_erase(&clp->cl_namenode, &nn->unconf_name_tree);
}
list_del_init(&clp->cl_lru);
spin_lock(&clp->cl_lock);
list_for_each_entry(ses, &clp->cl_sessions, se_perclnt)
list_del_init(&ses->se_hash);
spin_unlock(&clp->cl_lock);
}
static void
unhash_client(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
spin_lock(&nn->client_lock);
unhash_client_locked(clp);
spin_unlock(&nn->client_lock);
}
static __be32 mark_client_expired_locked(struct nfs4_client *clp)
{
if (atomic_read(&clp->cl_rpc_users))
return nfserr_jukebox;
unhash_client_locked(clp);
return nfs_ok;
}
static void
__destroy_client(struct nfs4_client *clp)
{
int i;
struct nfs4_openowner *oo;
struct nfs4_delegation *dp;
struct list_head reaplist;
INIT_LIST_HEAD(&reaplist);
spin_lock(&state_lock);
while (!list_empty(&clp->cl_delegations)) {
dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt);
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
while (!list_empty(&reaplist)) {
dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
destroy_unhashed_deleg(dp);
}
while (!list_empty(&clp->cl_revoked)) {
dp = list_entry(clp->cl_revoked.next, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
nfs4_put_stid(&dp->dl_stid);
}
while (!list_empty(&clp->cl_openowners)) {
oo = list_entry(clp->cl_openowners.next, struct nfs4_openowner, oo_perclient);
nfs4_get_stateowner(&oo->oo_owner);
release_openowner(oo);
}
for (i = 0; i < OWNER_HASH_SIZE; i++) {
struct nfs4_stateowner *so, *tmp;
list_for_each_entry_safe(so, tmp, &clp->cl_ownerstr_hashtbl[i],
so_strhash) {
/* Should be no openowners at this point */
WARN_ON_ONCE(so->so_is_open_owner);
remove_blocked_locks(lockowner(so));
}
}
nfsd: implement pNFS operations Add support for the GETDEVICEINFO, LAYOUTGET, LAYOUTCOMMIT and LAYOUTRETURN NFSv4.1 operations, as well as backing code to manage outstanding layouts and devices. Layout management is very straight forward, with a nfs4_layout_stateid structure that extends nfs4_stid to manage layout stateids as the top-level structure. It is linked into the nfs4_file and nfs4_client structures like the other stateids, and contains a linked list of layouts that hang of the stateid. The actual layout operations are implemented in layout drivers that are not part of this commit, but will be added later. The worst part of this commit is the management of the pNFS device IDs, which suffers from a specification that is not sanely implementable due to the fact that the device-IDs are global and not bound to an export, and have a small enough size so that we can't store the fsid portion of a file handle, and must never be reused. As we still do need perform all export authentication and validation checks on a device ID passed to GETDEVICEINFO we are caught between a rock and a hard place. To work around this issue we add a new hash that maps from a 64-bit integer to a fsid so that we can look up the export to authenticate against it, a 32-bit integer as a generation that we can bump when changing the device, and a currently unused 32-bit integer that could be used in the future to handle more than a single device per export. Entries in this hash table are never deleted as we can't reuse the ids anyway, and would have a severe lifetime problem anyway as Linux export structures are temporary structures that can go away under load. Parts of the XDR data, structures and marshaling/unmarshaling code, as well as many concepts are derived from the old pNFS server implementation from Andy Adamson, Benny Halevy, Dean Hildebrand, Marc Eshel, Fred Isaman, Mike Sager, Ricardo Labiaga and many others. Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-05-05 11:11:59 +00:00
nfsd4_return_all_client_layouts(clp);
nfsd4_shutdown_copy(clp);
nfsd4_shutdown_callback(clp);
if (clp->cl_cb_conn.cb_xprt)
svc_xprt_put(clp->cl_cb_conn.cb_xprt);
free_client(clp);
wake_up_all(&expiry_wq);
}
static void
destroy_client(struct nfs4_client *clp)
{
unhash_client(clp);
__destroy_client(clp);
}
static void inc_reclaim_complete(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
if (!nn->track_reclaim_completes)
return;
if (!nfsd4_find_reclaim_client(clp->cl_name, nn))
return;
if (atomic_inc_return(&nn->nr_reclaim_complete) ==
nn->reclaim_str_hashtbl_size) {
printk(KERN_INFO "NFSD: all clients done reclaiming, ending NFSv4 grace period (net %x)\n",
clp->net->ns.inum);
nfsd4_end_grace(nn);
}
}
static void expire_client(struct nfs4_client *clp)
{
unhash_client(clp);
nfsd4_client_record_remove(clp);
__destroy_client(clp);
}
static void copy_verf(struct nfs4_client *target, nfs4_verifier *source)
{
memcpy(target->cl_verifier.data, source->data,
sizeof(target->cl_verifier.data));
}
static void copy_clid(struct nfs4_client *target, struct nfs4_client *source)
{
target->cl_clientid.cl_boot = source->cl_clientid.cl_boot;
target->cl_clientid.cl_id = source->cl_clientid.cl_id;
}
static int copy_cred(struct svc_cred *target, struct svc_cred *source)
{
target->cr_principal = kstrdup(source->cr_principal, GFP_KERNEL);
target->cr_raw_principal = kstrdup(source->cr_raw_principal,
GFP_KERNEL);
target->cr_targ_princ = kstrdup(source->cr_targ_princ, GFP_KERNEL);
if ((source->cr_principal && !target->cr_principal) ||
(source->cr_raw_principal && !target->cr_raw_principal) ||
(source->cr_targ_princ && !target->cr_targ_princ))
return -ENOMEM;
target->cr_flavor = source->cr_flavor;
target->cr_uid = source->cr_uid;
target->cr_gid = source->cr_gid;
target->cr_group_info = source->cr_group_info;
get_group_info(target->cr_group_info);
target->cr_gss_mech = source->cr_gss_mech;
if (source->cr_gss_mech)
gss_mech_get(source->cr_gss_mech);
return 0;
}
static int
compare_blob(const struct xdr_netobj *o1, const struct xdr_netobj *o2)
{
if (o1->len < o2->len)
return -1;
if (o1->len > o2->len)
return 1;
return memcmp(o1->data, o2->data, o1->len);
}
static int
same_verf(nfs4_verifier *v1, nfs4_verifier *v2)
{
return 0 == memcmp(v1->data, v2->data, sizeof(v1->data));
}
static int
same_clid(clientid_t *cl1, clientid_t *cl2)
{
return (cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id);
}
static bool groups_equal(struct group_info *g1, struct group_info *g2)
{
int i;
if (g1->ngroups != g2->ngroups)
return false;
for (i=0; i<g1->ngroups; i++)
cred: simpler, 1D supplementary groups Current supplementary groups code can massively overallocate memory and is implemented in a way so that access to individual gid is done via 2D array. If number of gids is <= 32, memory allocation is more or less tolerable (140/148 bytes). But if it is not, code allocates full page (!) regardless and, what's even more fun, doesn't reuse small 32-entry array. 2D array means dependent shifts, loads and LEAs without possibility to optimize them (gid is never known at compile time). All of the above is unnecessary. Switch to the usual trailing-zero-len-array scheme. Memory is allocated with kmalloc/vmalloc() and only as much as needed. Accesses become simpler (LEA 8(gi,idx,4) or even without displacement). Maximum number of gids is 65536 which translates to 256KB+8 bytes. I think kernel can handle such allocation. On my usual desktop system with whole 9 (nine) aux groups, struct group_info shrinks from 148 bytes to 44 bytes, yay! Nice side effects: - "gi->gid[i]" is shorter than "GROUP_AT(gi, i)", less typing, - fix little mess in net/ipv4/ping.c should have been using GROUP_AT macro but this point becomes moot, - aux group allocation is persistent and should be accounted as such. Link: http://lkml.kernel.org/r/20160817201927.GA2096@p183.telecom.by Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Vasily Kulikov <segoon@openwall.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 00:03:12 +00:00
if (!gid_eq(g1->gid[i], g2->gid[i]))
return false;
return true;
}
/*
* RFC 3530 language requires clid_inuse be returned when the
* "principal" associated with a requests differs from that previously
* used. We use uid, gid's, and gss principal string as our best
* approximation. We also don't want to allow non-gss use of a client
* established using gss: in theory cr_principal should catch that
* change, but in practice cr_principal can be null even in the gss case
* since gssd doesn't always pass down a principal string.
*/
static bool is_gss_cred(struct svc_cred *cr)
{
/* Is cr_flavor one of the gss "pseudoflavors"?: */
return (cr->cr_flavor > RPC_AUTH_MAXFLAVOR);
}
static bool
same_creds(struct svc_cred *cr1, struct svc_cred *cr2)
{
if ((is_gss_cred(cr1) != is_gss_cred(cr2))
|| (!uid_eq(cr1->cr_uid, cr2->cr_uid))
|| (!gid_eq(cr1->cr_gid, cr2->cr_gid))
|| !groups_equal(cr1->cr_group_info, cr2->cr_group_info))
return false;
/* XXX: check that cr_targ_princ fields match ? */
if (cr1->cr_principal == cr2->cr_principal)
return true;
if (!cr1->cr_principal || !cr2->cr_principal)
return false;
return 0 == strcmp(cr1->cr_principal, cr2->cr_principal);
}
static bool svc_rqst_integrity_protected(struct svc_rqst *rqstp)
{
struct svc_cred *cr = &rqstp->rq_cred;
u32 service;
if (!cr->cr_gss_mech)
return false;
service = gss_pseudoflavor_to_service(cr->cr_gss_mech, cr->cr_flavor);
return service == RPC_GSS_SVC_INTEGRITY ||
service == RPC_GSS_SVC_PRIVACY;
}
bool nfsd4_mach_creds_match(struct nfs4_client *cl, struct svc_rqst *rqstp)
{
struct svc_cred *cr = &rqstp->rq_cred;
if (!cl->cl_mach_cred)
return true;
if (cl->cl_cred.cr_gss_mech != cr->cr_gss_mech)
return false;
if (!svc_rqst_integrity_protected(rqstp))
return false;
if (cl->cl_cred.cr_raw_principal)
return 0 == strcmp(cl->cl_cred.cr_raw_principal,
cr->cr_raw_principal);
if (!cr->cr_principal)
return false;
return 0 == strcmp(cl->cl_cred.cr_principal, cr->cr_principal);
}
static void gen_confirm(struct nfs4_client *clp, struct nfsd_net *nn)
{
__be32 verf[2];
/*
* This is opaque to client, so no need to byte-swap. Use
* __force to keep sparse happy
*/
verf[0] = (__force __be32)get_seconds();
verf[1] = (__force __be32)nn->clverifier_counter++;
memcpy(clp->cl_confirm.data, verf, sizeof(clp->cl_confirm.data));
}
static void gen_clid(struct nfs4_client *clp, struct nfsd_net *nn)
{
clp->cl_clientid.cl_boot = nn->boot_time;
clp->cl_clientid.cl_id = nn->clientid_counter++;
gen_confirm(clp, nn);
}
static struct nfs4_stid *
find_stateid_locked(struct nfs4_client *cl, stateid_t *t)
{
struct nfs4_stid *ret;
ret = idr_find(&cl->cl_stateids, t->si_opaque.so_id);
if (!ret || !ret->sc_type)
return NULL;
return ret;
}
static struct nfs4_stid *
find_stateid_by_type(struct nfs4_client *cl, stateid_t *t, char typemask)
{
struct nfs4_stid *s;
spin_lock(&cl->cl_lock);
s = find_stateid_locked(cl, t);
if (s != NULL) {
if (typemask & s->sc_type)
refcount_inc(&s->sc_count);
else
s = NULL;
}
spin_unlock(&cl->cl_lock);
return s;
}
static struct nfs4_client *get_nfsdfs_clp(struct inode *inode)
{
struct nfsdfs_client *nc;
nc = get_nfsdfs_client(inode);
if (!nc)
return NULL;
return container_of(nc, struct nfs4_client, cl_nfsdfs);
}
static void seq_quote_mem(struct seq_file *m, char *data, int len)
{
seq_printf(m, "\"");
seq_escape_mem_ascii(m, data, len);
seq_printf(m, "\"");
}
static int client_info_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct nfs4_client *clp;
u64 clid;
clp = get_nfsdfs_clp(inode);
if (!clp)
return -ENXIO;
memcpy(&clid, &clp->cl_clientid, sizeof(clid));
seq_printf(m, "clientid: 0x%llx\n", clid);
seq_printf(m, "address: \"%pISpc\"\n", (struct sockaddr *)&clp->cl_addr);
seq_printf(m, "name: ");
seq_quote_mem(m, clp->cl_name.data, clp->cl_name.len);
seq_printf(m, "\nminor version: %d\n", clp->cl_minorversion);
if (clp->cl_nii_domain.data) {
seq_printf(m, "Implementation domain: ");
seq_quote_mem(m, clp->cl_nii_domain.data,
clp->cl_nii_domain.len);
seq_printf(m, "\nImplementation name: ");
seq_quote_mem(m, clp->cl_nii_name.data, clp->cl_nii_name.len);
seq_printf(m, "\nImplementation time: [%ld, %ld]\n",
clp->cl_nii_time.tv_sec, clp->cl_nii_time.tv_nsec);
}
drop_client(clp);
return 0;
}
static int client_info_open(struct inode *inode, struct file *file)
{
return single_open(file, client_info_show, inode);
}
static const struct file_operations client_info_fops = {
.open = client_info_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void *states_start(struct seq_file *s, loff_t *pos)
__acquires(&clp->cl_lock)
{
struct nfs4_client *clp = s->private;
unsigned long id = *pos;
void *ret;
spin_lock(&clp->cl_lock);
ret = idr_get_next_ul(&clp->cl_stateids, &id);
*pos = id;
return ret;
}
static void *states_next(struct seq_file *s, void *v, loff_t *pos)
{
struct nfs4_client *clp = s->private;
unsigned long id = *pos;
void *ret;
id = *pos;
id++;
ret = idr_get_next_ul(&clp->cl_stateids, &id);
*pos = id;
return ret;
}
static void states_stop(struct seq_file *s, void *v)
__releases(&clp->cl_lock)
{
struct nfs4_client *clp = s->private;
spin_unlock(&clp->cl_lock);
}
static void nfs4_show_superblock(struct seq_file *s, struct nfsd_file *f)
{
struct inode *inode = f->nf_inode;
seq_printf(s, "superblock: \"%02x:%02x:%ld\"",
MAJOR(inode->i_sb->s_dev),
MINOR(inode->i_sb->s_dev),
inode->i_ino);
}
static void nfs4_show_owner(struct seq_file *s, struct nfs4_stateowner *oo)
{
seq_printf(s, "owner: ");
seq_quote_mem(s, oo->so_owner.data, oo->so_owner.len);
}
static int nfs4_show_open(struct seq_file *s, struct nfs4_stid *st)
{
struct nfs4_ol_stateid *ols;
struct nfs4_file *nf;
struct nfsd_file *file;
struct nfs4_stateowner *oo;
unsigned int access, deny;
if (st->sc_type != NFS4_OPEN_STID && st->sc_type != NFS4_LOCK_STID)
return 0; /* XXX: or SEQ_SKIP? */
ols = openlockstateid(st);
oo = ols->st_stateowner;
nf = st->sc_file;
file = find_any_file(nf);
seq_printf(s, "- 0x%16phN: { type: open, ", &st->sc_stateid);
access = bmap_to_share_mode(ols->st_access_bmap);
deny = bmap_to_share_mode(ols->st_deny_bmap);
seq_printf(s, "access: %s%s, ",
access & NFS4_SHARE_ACCESS_READ ? "r" : "-",
access & NFS4_SHARE_ACCESS_WRITE ? "w" : "-");
seq_printf(s, "deny: %s%s, ",
deny & NFS4_SHARE_ACCESS_READ ? "r" : "-",
deny & NFS4_SHARE_ACCESS_WRITE ? "w" : "-");
nfs4_show_superblock(s, file);
seq_printf(s, ", ");
nfs4_show_owner(s, oo);
seq_printf(s, " }\n");
nfsd_file_put(file);
return 0;
}
static int nfs4_show_lock(struct seq_file *s, struct nfs4_stid *st)
{
struct nfs4_ol_stateid *ols;
struct nfs4_file *nf;
struct nfsd_file *file;
struct nfs4_stateowner *oo;
ols = openlockstateid(st);
oo = ols->st_stateowner;
nf = st->sc_file;
file = find_any_file(nf);
seq_printf(s, "- 0x%16phN: { type: lock, ", &st->sc_stateid);
/*
* Note: a lock stateid isn't really the same thing as a lock,
* it's the locking state held by one owner on a file, and there
* may be multiple (or no) lock ranges associated with it.
* (Same for the matter is true of open stateids.)
*/
nfs4_show_superblock(s, file);
/* XXX: open stateid? */
seq_printf(s, ", ");
nfs4_show_owner(s, oo);
seq_printf(s, " }\n");
nfsd_file_put(file);
return 0;
}
static int nfs4_show_deleg(struct seq_file *s, struct nfs4_stid *st)
{
struct nfs4_delegation *ds;
struct nfs4_file *nf;
struct nfsd_file *file;
ds = delegstateid(st);
nf = st->sc_file;
file = nf->fi_deleg_file;
seq_printf(s, "- 0x%16phN: { type: deleg, ", &st->sc_stateid);
/* Kinda dead code as long as we only support read delegs: */
seq_printf(s, "access: %s, ",
ds->dl_type == NFS4_OPEN_DELEGATE_READ ? "r" : "w");
/* XXX: lease time, whether it's being recalled. */
nfs4_show_superblock(s, file);
seq_printf(s, " }\n");
return 0;
}
static int nfs4_show_layout(struct seq_file *s, struct nfs4_stid *st)
{
struct nfs4_layout_stateid *ls;
struct nfsd_file *file;
ls = container_of(st, struct nfs4_layout_stateid, ls_stid);
file = ls->ls_file;
seq_printf(s, "- 0x%16phN: { type: layout, ", &st->sc_stateid);
/* XXX: What else would be useful? */
nfs4_show_superblock(s, file);
seq_printf(s, " }\n");
return 0;
}
static int states_show(struct seq_file *s, void *v)
{
struct nfs4_stid *st = v;
switch (st->sc_type) {
case NFS4_OPEN_STID:
return nfs4_show_open(s, st);
case NFS4_LOCK_STID:
return nfs4_show_lock(s, st);
case NFS4_DELEG_STID:
return nfs4_show_deleg(s, st);
case NFS4_LAYOUT_STID:
return nfs4_show_layout(s, st);
default:
return 0; /* XXX: or SEQ_SKIP? */
}
/* XXX: copy stateids? */
}
static struct seq_operations states_seq_ops = {
.start = states_start,
.next = states_next,
.stop = states_stop,
.show = states_show
};
static int client_states_open(struct inode *inode, struct file *file)
{
struct seq_file *s;
struct nfs4_client *clp;
int ret;
clp = get_nfsdfs_clp(inode);
if (!clp)
return -ENXIO;
ret = seq_open(file, &states_seq_ops);
if (ret)
return ret;
s = file->private_data;
s->private = clp;
return 0;
}
static int client_opens_release(struct inode *inode, struct file *file)
{
struct seq_file *m = file->private_data;
struct nfs4_client *clp = m->private;
/* XXX: alternatively, we could get/drop in seq start/stop */
drop_client(clp);
return 0;
}
static const struct file_operations client_states_fops = {
.open = client_states_open,
.read = seq_read,
.llseek = seq_lseek,
.release = client_opens_release,
};
/*
* Normally we refuse to destroy clients that are in use, but here the
* administrator is telling us to just do it. We also want to wait
* so the caller has a guarantee that the client's locks are gone by
* the time the write returns:
*/
static void force_expire_client(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
bool already_expired;
spin_lock(&clp->cl_lock);
clp->cl_time = 0;
spin_unlock(&clp->cl_lock);
wait_event(expiry_wq, atomic_read(&clp->cl_rpc_users) == 0);
spin_lock(&nn->client_lock);
already_expired = list_empty(&clp->cl_lru);
if (!already_expired)
unhash_client_locked(clp);
spin_unlock(&nn->client_lock);
if (!already_expired)
expire_client(clp);
else
wait_event(expiry_wq, clp->cl_nfsd_dentry == NULL);
}
static ssize_t client_ctl_write(struct file *file, const char __user *buf,
size_t size, loff_t *pos)
{
char *data;
struct nfs4_client *clp;
data = simple_transaction_get(file, buf, size);
if (IS_ERR(data))
return PTR_ERR(data);
if (size != 7 || 0 != memcmp(data, "expire\n", 7))
return -EINVAL;
clp = get_nfsdfs_clp(file_inode(file));
if (!clp)
return -ENXIO;
force_expire_client(clp);
drop_client(clp);
return 7;
}
static const struct file_operations client_ctl_fops = {
.write = client_ctl_write,
.release = simple_transaction_release,
};
static const struct tree_descr client_files[] = {
[0] = {"info", &client_info_fops, S_IRUSR},
[1] = {"states", &client_states_fops, S_IRUSR},
[2] = {"ctl", &client_ctl_fops, S_IRUSR|S_IWUSR},
[3] = {""},
};
static struct nfs4_client *create_client(struct xdr_netobj name,
struct svc_rqst *rqstp, nfs4_verifier *verf)
{
struct nfs4_client *clp;
struct sockaddr *sa = svc_addr(rqstp);
int ret;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
clp = alloc_client(name);
if (clp == NULL)
return NULL;
ret = copy_cred(&clp->cl_cred, &rqstp->rq_cred);
if (ret) {
free_client(clp);
return NULL;
}
gen_clid(clp, nn);
kref_init(&clp->cl_nfsdfs.cl_ref);
nfsd4_init_cb(&clp->cl_cb_null, clp, NULL, NFSPROC4_CLNT_CB_NULL);
clp->cl_time = get_seconds();
clear_bit(0, &clp->cl_cb_slot_busy);
copy_verf(clp, verf);
memcpy(&clp->cl_addr, sa, sizeof(struct sockaddr_storage));
clp->cl_cb_session = NULL;
clp->net = net;
clp->cl_nfsd_dentry = nfsd_client_mkdir(nn, &clp->cl_nfsdfs,
clp->cl_clientid.cl_id - nn->clientid_base,
client_files);
if (!clp->cl_nfsd_dentry) {
free_client(clp);
return NULL;
}
return clp;
}
static void
add_clp_to_name_tree(struct nfs4_client *new_clp, struct rb_root *root)
{
struct rb_node **new = &(root->rb_node), *parent = NULL;
struct nfs4_client *clp;
while (*new) {
clp = rb_entry(*new, struct nfs4_client, cl_namenode);
parent = *new;
if (compare_blob(&clp->cl_name, &new_clp->cl_name) > 0)
new = &((*new)->rb_left);
else
new = &((*new)->rb_right);
}
rb_link_node(&new_clp->cl_namenode, parent, new);
rb_insert_color(&new_clp->cl_namenode, root);
}
static struct nfs4_client *
find_clp_in_name_tree(struct xdr_netobj *name, struct rb_root *root)
{
int cmp;
struct rb_node *node = root->rb_node;
struct nfs4_client *clp;
while (node) {
clp = rb_entry(node, struct nfs4_client, cl_namenode);
cmp = compare_blob(&clp->cl_name, name);
if (cmp > 0)
node = node->rb_left;
else if (cmp < 0)
node = node->rb_right;
else
return clp;
}
return NULL;
}
static void
add_to_unconfirmed(struct nfs4_client *clp)
{
unsigned int idhashval;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
clear_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags);
add_clp_to_name_tree(clp, &nn->unconf_name_tree);
idhashval = clientid_hashval(clp->cl_clientid.cl_id);
list_add(&clp->cl_idhash, &nn->unconf_id_hashtbl[idhashval]);
renew_client_locked(clp);
}
static void
move_to_confirmed(struct nfs4_client *clp)
{
unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id);
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
dprintk("NFSD: move_to_confirm nfs4_client %p\n", clp);
list_move(&clp->cl_idhash, &nn->conf_id_hashtbl[idhashval]);
rb_erase(&clp->cl_namenode, &nn->unconf_name_tree);
add_clp_to_name_tree(clp, &nn->conf_name_tree);
set_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags);
renew_client_locked(clp);
}
static struct nfs4_client *
find_client_in_id_table(struct list_head *tbl, clientid_t *clid, bool sessions)
{
struct nfs4_client *clp;
unsigned int idhashval = clientid_hashval(clid->cl_id);
list_for_each_entry(clp, &tbl[idhashval], cl_idhash) {
if (same_clid(&clp->cl_clientid, clid)) {
if ((bool)clp->cl_minorversion != sessions)
return NULL;
renew_client_locked(clp);
return clp;
}
}
return NULL;
}
static struct nfs4_client *
find_confirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn)
{
struct list_head *tbl = nn->conf_id_hashtbl;
lockdep_assert_held(&nn->client_lock);
return find_client_in_id_table(tbl, clid, sessions);
}
static struct nfs4_client *
find_unconfirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn)
{
struct list_head *tbl = nn->unconf_id_hashtbl;
lockdep_assert_held(&nn->client_lock);
return find_client_in_id_table(tbl, clid, sessions);
}
static bool clp_used_exchangeid(struct nfs4_client *clp)
{
return clp->cl_exchange_flags != 0;
}
static struct nfs4_client *
find_confirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn)
{
lockdep_assert_held(&nn->client_lock);
return find_clp_in_name_tree(name, &nn->conf_name_tree);
}
static struct nfs4_client *
find_unconfirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn)
{
lockdep_assert_held(&nn->client_lock);
return find_clp_in_name_tree(name, &nn->unconf_name_tree);
}
static void
gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se, struct svc_rqst *rqstp)
{
struct nfs4_cb_conn *conn = &clp->cl_cb_conn;
struct sockaddr *sa = svc_addr(rqstp);
u32 scopeid = rpc_get_scope_id(sa);
unsigned short expected_family;
/* Currently, we only support tcp and tcp6 for the callback channel */
if (se->se_callback_netid_len == 3 &&
!memcmp(se->se_callback_netid_val, "tcp", 3))
expected_family = AF_INET;
else if (se->se_callback_netid_len == 4 &&
!memcmp(se->se_callback_netid_val, "tcp6", 4))
expected_family = AF_INET6;
else
goto out_err;
conn->cb_addrlen = rpc_uaddr2sockaddr(clp->net, se->se_callback_addr_val,
se->se_callback_addr_len,
(struct sockaddr *)&conn->cb_addr,
sizeof(conn->cb_addr));
if (!conn->cb_addrlen || conn->cb_addr.ss_family != expected_family)
goto out_err;
if (conn->cb_addr.ss_family == AF_INET6)
((struct sockaddr_in6 *)&conn->cb_addr)->sin6_scope_id = scopeid;
conn->cb_prog = se->se_callback_prog;
conn->cb_ident = se->se_callback_ident;
memcpy(&conn->cb_saddr, &rqstp->rq_daddr, rqstp->rq_daddrlen);
return;
out_err:
conn->cb_addr.ss_family = AF_UNSPEC;
conn->cb_addrlen = 0;
dprintk("NFSD: this client (clientid %08x/%08x) "
"will not receive delegations\n",
clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id);
return;
}
/*
* Cache a reply. nfsd4_check_resp_size() has bounded the cache size.
*/
static void
nfsd4_store_cache_entry(struct nfsd4_compoundres *resp)
{
struct xdr_buf *buf = resp->xdr.buf;
struct nfsd4_slot *slot = resp->cstate.slot;
unsigned int base;
dprintk("--> %s slot %p\n", __func__, slot);
nfsd4: fix cached replies to solo SEQUENCE compounds Currently our handling of 4.1+ requests without "cachethis" set is confusing and not quite correct. Suppose a client sends a compound consisting of only a single SEQUENCE op, and it matches the seqid in a session slot (so it's a retry), but the previous request with that seqid did not have "cachethis" set. The obvious thing to do might be to return NFS4ERR_RETRY_UNCACHED_REP, but the protocol only allows that to be returned on the op following the SEQUENCE, and there is no such op in this case. The protocol permits us to cache replies even if the client didn't ask us to. And it's easy to do so in the case of solo SEQUENCE compounds. So, when we get a solo SEQUENCE, we can either return the previously cached reply or NFSERR_SEQ_FALSE_RETRY if we notice it differs in some way from the original call. Currently, we're returning a corrupt reply in the case a solo SEQUENCE matches a previous compound with more ops. This actually matters because the Linux client recently started doing this as a way to recover from lost replies to idempotent operations in the case the process doing the original reply was killed: in that case it's difficult to keep the original arguments around to do a real retry, and the client no longer cares what the result is anyway, but it would like to make sure that the slot's sequence id has been incremented, and the solo SEQUENCE assures that: if the server never got the original reply, it will increment the sequence id. If it did get the original reply, it won't increment, and nothing else that about the reply really matters much. But we can at least attempt to return valid xdr! Tested-by: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-10-18 20:17:18 +00:00
slot->sl_flags |= NFSD4_SLOT_INITIALIZED;
slot->sl_opcnt = resp->opcnt;
slot->sl_status = resp->cstate.status;
free_svc_cred(&slot->sl_cred);
copy_cred(&slot->sl_cred, &resp->rqstp->rq_cred);
nfsd4: fix cached replies to solo SEQUENCE compounds Currently our handling of 4.1+ requests without "cachethis" set is confusing and not quite correct. Suppose a client sends a compound consisting of only a single SEQUENCE op, and it matches the seqid in a session slot (so it's a retry), but the previous request with that seqid did not have "cachethis" set. The obvious thing to do might be to return NFS4ERR_RETRY_UNCACHED_REP, but the protocol only allows that to be returned on the op following the SEQUENCE, and there is no such op in this case. The protocol permits us to cache replies even if the client didn't ask us to. And it's easy to do so in the case of solo SEQUENCE compounds. So, when we get a solo SEQUENCE, we can either return the previously cached reply or NFSERR_SEQ_FALSE_RETRY if we notice it differs in some way from the original call. Currently, we're returning a corrupt reply in the case a solo SEQUENCE matches a previous compound with more ops. This actually matters because the Linux client recently started doing this as a way to recover from lost replies to idempotent operations in the case the process doing the original reply was killed: in that case it's difficult to keep the original arguments around to do a real retry, and the client no longer cares what the result is anyway, but it would like to make sure that the slot's sequence id has been incremented, and the solo SEQUENCE assures that: if the server never got the original reply, it will increment the sequence id. If it did get the original reply, it won't increment, and nothing else that about the reply really matters much. But we can at least attempt to return valid xdr! Tested-by: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-10-18 20:17:18 +00:00
if (!nfsd4_cache_this(resp)) {
slot->sl_flags &= ~NFSD4_SLOT_CACHED;
return;
}
nfsd4: fix cached replies to solo SEQUENCE compounds Currently our handling of 4.1+ requests without "cachethis" set is confusing and not quite correct. Suppose a client sends a compound consisting of only a single SEQUENCE op, and it matches the seqid in a session slot (so it's a retry), but the previous request with that seqid did not have "cachethis" set. The obvious thing to do might be to return NFS4ERR_RETRY_UNCACHED_REP, but the protocol only allows that to be returned on the op following the SEQUENCE, and there is no such op in this case. The protocol permits us to cache replies even if the client didn't ask us to. And it's easy to do so in the case of solo SEQUENCE compounds. So, when we get a solo SEQUENCE, we can either return the previously cached reply or NFSERR_SEQ_FALSE_RETRY if we notice it differs in some way from the original call. Currently, we're returning a corrupt reply in the case a solo SEQUENCE matches a previous compound with more ops. This actually matters because the Linux client recently started doing this as a way to recover from lost replies to idempotent operations in the case the process doing the original reply was killed: in that case it's difficult to keep the original arguments around to do a real retry, and the client no longer cares what the result is anyway, but it would like to make sure that the slot's sequence id has been incremented, and the solo SEQUENCE assures that: if the server never got the original reply, it will increment the sequence id. If it did get the original reply, it won't increment, and nothing else that about the reply really matters much. But we can at least attempt to return valid xdr! Tested-by: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-10-18 20:17:18 +00:00
slot->sl_flags |= NFSD4_SLOT_CACHED;
base = resp->cstate.data_offset;
slot->sl_datalen = buf->len - base;
if (read_bytes_from_xdr_buf(buf, base, slot->sl_data, slot->sl_datalen))
WARN(1, "%s: sessions DRC could not cache compound\n",
__func__);
return;
}
/*
* Encode the replay sequence operation from the slot values.
* If cachethis is FALSE encode the uncached rep error on the next
* operation which sets resp->p and increments resp->opcnt for
* nfs4svc_encode_compoundres.
*
*/
static __be32
nfsd4_enc_sequence_replay(struct nfsd4_compoundargs *args,
struct nfsd4_compoundres *resp)
{
struct nfsd4_op *op;
struct nfsd4_slot *slot = resp->cstate.slot;
/* Encode the replayed sequence operation */
op = &args->ops[resp->opcnt - 1];
nfsd4_encode_operation(resp, op);
nfsd4: fix cached replies to solo SEQUENCE compounds Currently our handling of 4.1+ requests without "cachethis" set is confusing and not quite correct. Suppose a client sends a compound consisting of only a single SEQUENCE op, and it matches the seqid in a session slot (so it's a retry), but the previous request with that seqid did not have "cachethis" set. The obvious thing to do might be to return NFS4ERR_RETRY_UNCACHED_REP, but the protocol only allows that to be returned on the op following the SEQUENCE, and there is no such op in this case. The protocol permits us to cache replies even if the client didn't ask us to. And it's easy to do so in the case of solo SEQUENCE compounds. So, when we get a solo SEQUENCE, we can either return the previously cached reply or NFSERR_SEQ_FALSE_RETRY if we notice it differs in some way from the original call. Currently, we're returning a corrupt reply in the case a solo SEQUENCE matches a previous compound with more ops. This actually matters because the Linux client recently started doing this as a way to recover from lost replies to idempotent operations in the case the process doing the original reply was killed: in that case it's difficult to keep the original arguments around to do a real retry, and the client no longer cares what the result is anyway, but it would like to make sure that the slot's sequence id has been incremented, and the solo SEQUENCE assures that: if the server never got the original reply, it will increment the sequence id. If it did get the original reply, it won't increment, and nothing else that about the reply really matters much. But we can at least attempt to return valid xdr! Tested-by: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-10-18 20:17:18 +00:00
if (slot->sl_flags & NFSD4_SLOT_CACHED)
return op->status;
if (args->opcnt == 1) {
/*
* The original operation wasn't a solo sequence--we
* always cache those--so this retry must not match the
* original:
*/
op->status = nfserr_seq_false_retry;
} else {
op = &args->ops[resp->opcnt++];
op->status = nfserr_retry_uncached_rep;
nfsd4_encode_operation(resp, op);
}
return op->status;
}
/*
* The sequence operation is not cached because we can use the slot and
* session values.
*/
static __be32
nfsd4_replay_cache_entry(struct nfsd4_compoundres *resp,
struct nfsd4_sequence *seq)
{
struct nfsd4_slot *slot = resp->cstate.slot;
struct xdr_stream *xdr = &resp->xdr;
__be32 *p;
__be32 status;
dprintk("--> %s slot %p\n", __func__, slot);
status = nfsd4_enc_sequence_replay(resp->rqstp->rq_argp, resp);
if (status)
return status;
p = xdr_reserve_space(xdr, slot->sl_datalen);
if (!p) {
WARN_ON_ONCE(1);
return nfserr_serverfault;
}
xdr_encode_opaque_fixed(p, slot->sl_data, slot->sl_datalen);
xdr_commit_encode(xdr);
resp->opcnt = slot->sl_opcnt;
return slot->sl_status;
}
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
/*
* Set the exchange_id flags returned by the server.
*/
static void
nfsd4_set_ex_flags(struct nfs4_client *new, struct nfsd4_exchange_id *clid)
{
nfsd: implement pNFS operations Add support for the GETDEVICEINFO, LAYOUTGET, LAYOUTCOMMIT and LAYOUTRETURN NFSv4.1 operations, as well as backing code to manage outstanding layouts and devices. Layout management is very straight forward, with a nfs4_layout_stateid structure that extends nfs4_stid to manage layout stateids as the top-level structure. It is linked into the nfs4_file and nfs4_client structures like the other stateids, and contains a linked list of layouts that hang of the stateid. The actual layout operations are implemented in layout drivers that are not part of this commit, but will be added later. The worst part of this commit is the management of the pNFS device IDs, which suffers from a specification that is not sanely implementable due to the fact that the device-IDs are global and not bound to an export, and have a small enough size so that we can't store the fsid portion of a file handle, and must never be reused. As we still do need perform all export authentication and validation checks on a device ID passed to GETDEVICEINFO we are caught between a rock and a hard place. To work around this issue we add a new hash that maps from a 64-bit integer to a fsid so that we can look up the export to authenticate against it, a 32-bit integer as a generation that we can bump when changing the device, and a currently unused 32-bit integer that could be used in the future to handle more than a single device per export. Entries in this hash table are never deleted as we can't reuse the ids anyway, and would have a severe lifetime problem anyway as Linux export structures are temporary structures that can go away under load. Parts of the XDR data, structures and marshaling/unmarshaling code, as well as many concepts are derived from the old pNFS server implementation from Andy Adamson, Benny Halevy, Dean Hildebrand, Marc Eshel, Fred Isaman, Mike Sager, Ricardo Labiaga and many others. Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-05-05 11:11:59 +00:00
#ifdef CONFIG_NFSD_PNFS
new->cl_exchange_flags |= EXCHGID4_FLAG_USE_PNFS_MDS;
#else
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
new->cl_exchange_flags |= EXCHGID4_FLAG_USE_NON_PNFS;
nfsd: implement pNFS operations Add support for the GETDEVICEINFO, LAYOUTGET, LAYOUTCOMMIT and LAYOUTRETURN NFSv4.1 operations, as well as backing code to manage outstanding layouts and devices. Layout management is very straight forward, with a nfs4_layout_stateid structure that extends nfs4_stid to manage layout stateids as the top-level structure. It is linked into the nfs4_file and nfs4_client structures like the other stateids, and contains a linked list of layouts that hang of the stateid. The actual layout operations are implemented in layout drivers that are not part of this commit, but will be added later. The worst part of this commit is the management of the pNFS device IDs, which suffers from a specification that is not sanely implementable due to the fact that the device-IDs are global and not bound to an export, and have a small enough size so that we can't store the fsid portion of a file handle, and must never be reused. As we still do need perform all export authentication and validation checks on a device ID passed to GETDEVICEINFO we are caught between a rock and a hard place. To work around this issue we add a new hash that maps from a 64-bit integer to a fsid so that we can look up the export to authenticate against it, a 32-bit integer as a generation that we can bump when changing the device, and a currently unused 32-bit integer that could be used in the future to handle more than a single device per export. Entries in this hash table are never deleted as we can't reuse the ids anyway, and would have a severe lifetime problem anyway as Linux export structures are temporary structures that can go away under load. Parts of the XDR data, structures and marshaling/unmarshaling code, as well as many concepts are derived from the old pNFS server implementation from Andy Adamson, Benny Halevy, Dean Hildebrand, Marc Eshel, Fred Isaman, Mike Sager, Ricardo Labiaga and many others. Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-05-05 11:11:59 +00:00
#endif
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
/* Referrals are supported, Migration is not. */
new->cl_exchange_flags |= EXCHGID4_FLAG_SUPP_MOVED_REFER;
/* set the wire flags to return to client. */
clid->flags = new->cl_exchange_flags;
}
static bool client_has_openowners(struct nfs4_client *clp)
{
struct nfs4_openowner *oo;
list_for_each_entry(oo, &clp->cl_openowners, oo_perclient) {
if (!list_empty(&oo->oo_owner.so_stateids))
return true;
}
return false;
}
static bool client_has_state(struct nfs4_client *clp)
{
return client_has_openowners(clp)
#ifdef CONFIG_NFSD_PNFS
|| !list_empty(&clp->cl_lo_states)
#endif
|| !list_empty(&clp->cl_delegations)
|| !list_empty(&clp->cl_sessions)
|| !list_empty(&clp->async_copies);
}
static __be32 copy_impl_id(struct nfs4_client *clp,
struct nfsd4_exchange_id *exid)
{
if (!exid->nii_domain.data)
return 0;
xdr_netobj_dup(&clp->cl_nii_domain, &exid->nii_domain, GFP_KERNEL);
if (!clp->cl_nii_domain.data)
return nfserr_jukebox;
xdr_netobj_dup(&clp->cl_nii_name, &exid->nii_name, GFP_KERNEL);
if (!clp->cl_nii_name.data)
return nfserr_jukebox;
clp->cl_nii_time.tv_sec = exid->nii_time.tv_sec;
clp->cl_nii_time.tv_nsec = exid->nii_time.tv_nsec;
return 0;
}
__be32
nfsd4_exchange_id(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_exchange_id *exid = &u->exchange_id;
struct nfs4_client *conf, *new;
struct nfs4_client *unconf = NULL;
__be32 status;
char addr_str[INET6_ADDRSTRLEN];
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
nfs4_verifier verf = exid->verifier;
struct sockaddr *sa = svc_addr(rqstp);
bool update = exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
rpc_ntop(sa, addr_str, sizeof(addr_str));
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
dprintk("%s rqstp=%p exid=%p clname.len=%u clname.data=%p "
"ip_addr=%s flags %x, spa_how %d\n",
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
__func__, rqstp, exid, exid->clname.len, exid->clname.data,
addr_str, exid->flags, exid->spa_how);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
if (exid->flags & ~EXCHGID4_FLAG_MASK_A)
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
return nfserr_inval;
new = create_client(exid->clname, rqstp, &verf);
if (new == NULL)
return nfserr_jukebox;
status = copy_impl_id(new, exid);
if (status)
goto out_nolock;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
switch (exid->spa_how) {
case SP4_MACH_CRED:
exid->spo_must_enforce[0] = 0;
exid->spo_must_enforce[1] = (
1 << (OP_BIND_CONN_TO_SESSION - 32) |
1 << (OP_EXCHANGE_ID - 32) |
1 << (OP_CREATE_SESSION - 32) |
1 << (OP_DESTROY_SESSION - 32) |
1 << (OP_DESTROY_CLIENTID - 32));
exid->spo_must_allow[0] &= (1 << (OP_CLOSE) |
1 << (OP_OPEN_DOWNGRADE) |
1 << (OP_LOCKU) |
1 << (OP_DELEGRETURN));
exid->spo_must_allow[1] &= (
1 << (OP_TEST_STATEID - 32) |
1 << (OP_FREE_STATEID - 32));
if (!svc_rqst_integrity_protected(rqstp)) {
status = nfserr_inval;
goto out_nolock;
}
/*
* Sometimes userspace doesn't give us a principal.
* Which is a bug, really. Anyway, we can't enforce
* MACH_CRED in that case, better to give up now:
*/
if (!new->cl_cred.cr_principal &&
!new->cl_cred.cr_raw_principal) {
status = nfserr_serverfault;
goto out_nolock;
}
new->cl_mach_cred = true;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
case SP4_NONE:
break;
default: /* checked by xdr code */
WARN_ON_ONCE(1);
fs: mark expected switch fall-throughs In preparation to enabling -Wimplicit-fallthrough, mark switch cases where we are expecting to fall through. This patch fixes the following warnings: fs/affs/affs.h:124:38: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/configfs/dir.c:1692:11: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/configfs/dir.c:1694:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ceph/file.c:249:3: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext4/hash.c:233:15: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext4/hash.c:246:15: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext2/inode.c:1237:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext2/inode.c:1244:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext4/indirect.c:1182:6: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext4/indirect.c:1188:6: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext4/indirect.c:1432:6: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ext4/indirect.c:1440:6: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/f2fs/node.c:618:8: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/f2fs/node.c:620:8: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/btrfs/ref-verify.c:522:15: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/gfs2/bmap.c:711:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/gfs2/bmap.c:722:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/jffs2/fs.c:339:6: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/nfsd/nfs4proc.c:429:12: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ufs/util.h:62:6: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/ufs/util.h:43:6: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/fcntl.c:770:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/seq_file.c:319:10: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/libfs.c:148:11: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/libfs.c:150:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/signalfd.c:178:7: warning: this statement may fall through [-Wimplicit-fallthrough=] fs/locks.c:1473:16: warning: this statement may fall through [-Wimplicit-fallthrough=] Warning level 3 was used: -Wimplicit-fallthrough=3 This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2019-01-23 08:48:28 +00:00
/* fall through */
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
case SP4_SSV:
status = nfserr_encr_alg_unsupp;
goto out_nolock;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
}
/* Cases below refer to rfc 5661 section 18.35.4: */
spin_lock(&nn->client_lock);
conf = find_confirmed_client_by_name(&exid->clname, nn);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
if (conf) {
bool creds_match = same_creds(&conf->cl_cred, &rqstp->rq_cred);
bool verfs_match = same_verf(&verf, &conf->cl_verifier);
if (update) {
if (!clp_used_exchangeid(conf)) { /* buggy client */
status = nfserr_inval;
goto out;
}
if (!nfsd4_mach_creds_match(conf, rqstp)) {
status = nfserr_wrong_cred;
goto out;
}
if (!creds_match) { /* case 9 */
status = nfserr_perm;
goto out;
}
if (!verfs_match) { /* case 8 */
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
status = nfserr_not_same;
goto out;
}
/* case 6 */
exid->flags |= EXCHGID4_FLAG_CONFIRMED_R;
goto out_copy;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
}
if (!creds_match) { /* case 3 */
if (client_has_state(conf)) {
status = nfserr_clid_inuse;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
goto out;
}
goto out_new;
}
if (verfs_match) { /* case 2 */
conf->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R;
goto out_copy;
}
/* case 5, client reboot */
conf = NULL;
goto out_new;
}
if (update) { /* case 7 */
status = nfserr_noent;
goto out;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
}
unconf = find_unconfirmed_client_by_name(&exid->clname, nn);
if (unconf) /* case 4, possible retry or client restart */
unhash_client_locked(unconf);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
/* case 1 (normal case) */
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
out_new:
if (conf) {
status = mark_client_expired_locked(conf);
if (status)
goto out;
}
new->cl_minorversion = cstate->minorversion;
new->cl_spo_must_allow.u.words[0] = exid->spo_must_allow[0];
new->cl_spo_must_allow.u.words[1] = exid->spo_must_allow[1];
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
add_to_unconfirmed(new);
swap(new, conf);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
out_copy:
exid->clientid.cl_boot = conf->cl_clientid.cl_boot;
exid->clientid.cl_id = conf->cl_clientid.cl_id;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
exid->seqid = conf->cl_cs_slot.sl_seqid + 1;
nfsd4_set_ex_flags(conf, exid);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
dprintk("nfsd4_exchange_id seqid %d flags %x\n",
conf->cl_cs_slot.sl_seqid, conf->cl_exchange_flags);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
status = nfs_ok;
out:
spin_unlock(&nn->client_lock);
out_nolock:
if (new)
expire_client(new);
if (unconf)
expire_client(unconf);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
return status;
}
static __be32
check_slot_seqid(u32 seqid, u32 slot_seqid, int slot_inuse)
{
dprintk("%s enter. seqid %d slot_seqid %d\n", __func__, seqid,
slot_seqid);
/* The slot is in use, and no response has been sent. */
if (slot_inuse) {
if (seqid == slot_seqid)
return nfserr_jukebox;
else
return nfserr_seq_misordered;
}
/* Note unsigned 32-bit arithmetic handles wraparound: */
if (likely(seqid == slot_seqid + 1))
return nfs_ok;
if (seqid == slot_seqid)
return nfserr_replay_cache;
return nfserr_seq_misordered;
}
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
/*
* Cache the create session result into the create session single DRC
* slot cache by saving the xdr structure. sl_seqid has been set.
* Do this for solo or embedded create session operations.
*/
static void
nfsd4_cache_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot, __be32 nfserr)
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
{
slot->sl_status = nfserr;
memcpy(&slot->sl_cr_ses, cr_ses, sizeof(*cr_ses));
}
static __be32
nfsd4_replay_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot)
{
memcpy(cr_ses, &slot->sl_cr_ses, sizeof(*cr_ses));
return slot->sl_status;
}
#define NFSD_MIN_REQ_HDR_SEQ_SZ ((\
2 * 2 + /* credential,verifier: AUTH_NULL, length 0 */ \
1 + /* MIN tag is length with zero, only length */ \
3 + /* version, opcount, opcode */ \
XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \
/* seqid, slotID, slotID, cache */ \
4 ) * sizeof(__be32))
#define NFSD_MIN_RESP_HDR_SEQ_SZ ((\
2 + /* verifier: AUTH_NULL, length 0 */\
1 + /* status */ \
1 + /* MIN tag is length with zero, only length */ \
3 + /* opcount, opcode, opstatus*/ \
XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \
/* seqid, slotID, slotID, slotID, status */ \
5 ) * sizeof(__be32))
static __be32 check_forechannel_attrs(struct nfsd4_channel_attrs *ca, struct nfsd_net *nn)
{
u32 maxrpc = nn->nfsd_serv->sv_max_mesg;
if (ca->maxreq_sz < NFSD_MIN_REQ_HDR_SEQ_SZ)
return nfserr_toosmall;
if (ca->maxresp_sz < NFSD_MIN_RESP_HDR_SEQ_SZ)
return nfserr_toosmall;
ca->headerpadsz = 0;
ca->maxreq_sz = min_t(u32, ca->maxreq_sz, maxrpc);
ca->maxresp_sz = min_t(u32, ca->maxresp_sz, maxrpc);
ca->maxops = min_t(u32, ca->maxops, NFSD_MAX_OPS_PER_COMPOUND);
ca->maxresp_cached = min_t(u32, ca->maxresp_cached,
NFSD_SLOT_CACHE_SIZE + NFSD_MIN_HDR_SEQ_SZ);
ca->maxreqs = min_t(u32, ca->maxreqs, NFSD_MAX_SLOTS_PER_SESSION);
/*
* Note decreasing slot size below client's request may make it
* difficult for client to function correctly, whereas
* decreasing the number of slots will (just?) affect
* performance. When short on memory we therefore prefer to
* decrease number of slots instead of their size. Clients that
* request larger slots than they need will get poor results:
* Note that we always allow at least one slot, because our
* accounting is soft and provides no guarantees either way.
*/
ca->maxreqs = nfsd4_get_drc_mem(ca, nn);
return nfs_ok;
}
/*
* Server's NFSv4.1 backchannel support is AUTH_SYS-only for now.
* These are based on similar macros in linux/sunrpc/msg_prot.h .
*/
#define RPC_MAX_HEADER_WITH_AUTH_SYS \
(RPC_CALLHDRSIZE + 2 * (2 + UNX_CALLSLACK))
#define RPC_MAX_REPHEADER_WITH_AUTH_SYS \
(RPC_REPHDRSIZE + (2 + NUL_REPLYSLACK))
#define NFSD_CB_MAX_REQ_SZ ((NFS4_enc_cb_recall_sz + \
RPC_MAX_HEADER_WITH_AUTH_SYS) * sizeof(__be32))
#define NFSD_CB_MAX_RESP_SZ ((NFS4_dec_cb_recall_sz + \
RPC_MAX_REPHEADER_WITH_AUTH_SYS) * \
sizeof(__be32))
static __be32 check_backchannel_attrs(struct nfsd4_channel_attrs *ca)
{
ca->headerpadsz = 0;
if (ca->maxreq_sz < NFSD_CB_MAX_REQ_SZ)
return nfserr_toosmall;
if (ca->maxresp_sz < NFSD_CB_MAX_RESP_SZ)
return nfserr_toosmall;
ca->maxresp_cached = 0;
if (ca->maxops < 2)
return nfserr_toosmall;
return nfs_ok;
}
static __be32 nfsd4_check_cb_sec(struct nfsd4_cb_sec *cbs)
{
switch (cbs->flavor) {
case RPC_AUTH_NULL:
case RPC_AUTH_UNIX:
return nfs_ok;
default:
/*
* GSS case: the spec doesn't allow us to return this
* error. But it also doesn't allow us not to support
* GSS.
* I'd rather this fail hard than return some error the
* client might think it can already handle:
*/
return nfserr_encr_alg_unsupp;
}
}
__be32
nfsd4_create_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, union nfsd4_op_u *u)
{
struct nfsd4_create_session *cr_ses = &u->create_session;
struct sockaddr *sa = svc_addr(rqstp);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
struct nfs4_client *conf, *unconf;
struct nfs4_client *old = NULL;
struct nfsd4_session *new;
struct nfsd4_conn *conn;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
struct nfsd4_clid_slot *cs_slot = NULL;
__be32 status = 0;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
if (cr_ses->flags & ~SESSION4_FLAG_MASK_A)
return nfserr_inval;
status = nfsd4_check_cb_sec(&cr_ses->cb_sec);
if (status)
return status;
status = check_forechannel_attrs(&cr_ses->fore_channel, nn);
if (status)
return status;
status = check_backchannel_attrs(&cr_ses->back_channel);
if (status)
goto out_release_drc_mem;
status = nfserr_jukebox;
new = alloc_session(&cr_ses->fore_channel, &cr_ses->back_channel);
if (!new)
goto out_release_drc_mem;
conn = alloc_conn_from_crses(rqstp, cr_ses);
if (!conn)
goto out_free_session;
spin_lock(&nn->client_lock);
unconf = find_unconfirmed_client(&cr_ses->clientid, true, nn);
conf = find_confirmed_client(&cr_ses->clientid, true, nn);
WARN_ON_ONCE(conf && unconf);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
if (conf) {
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(conf, rqstp))
goto out_free_conn;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
cs_slot = &conf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status) {
if (status == nfserr_replay_cache)
status = nfsd4_replay_create_session(cr_ses, cs_slot);
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
} else if (unconf) {
if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred) ||
!rpc_cmp_addr(sa, (struct sockaddr *) &unconf->cl_addr)) {
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
status = nfserr_clid_inuse;
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(unconf, rqstp))
goto out_free_conn;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
cs_slot = &unconf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status) {
/* an unconfirmed replay returns misordered */
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
status = nfserr_seq_misordered;
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
old = find_confirmed_client_by_name(&unconf->cl_name, nn);
if (old) {
status = mark_client_expired_locked(old);
if (status) {
old = NULL;
goto out_free_conn;
}
}
move_to_confirmed(unconf);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
conf = unconf;
} else {
status = nfserr_stale_clientid;
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
status = nfs_ok;
/* Persistent sessions are not supported */
cr_ses->flags &= ~SESSION4_PERSIST;
/* Upshifting from TCP to RDMA is not supported */
cr_ses->flags &= ~SESSION4_RDMA;
init_session(rqstp, new, conf, cr_ses);
nfsd4_get_session_locked(new);
memcpy(cr_ses->sessionid.data, new->se_sessionid.data,
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
NFS4_MAX_SESSIONID_LEN);
cs_slot->sl_seqid++;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
cr_ses->seqid = cs_slot->sl_seqid;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
/* cache solo and embedded create sessions under the client_lock */
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
nfsd4_cache_create_session(cr_ses, cs_slot, status);
spin_unlock(&nn->client_lock);
/* init connection and backchannel */
nfsd4_init_conn(rqstp, conn, new);
nfsd4_put_session(new);
if (old)
expire_client(old);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
return status;
out_free_conn:
spin_unlock(&nn->client_lock);
free_conn(conn);
if (old)
expire_client(old);
out_free_session:
__free_session(new);
out_release_drc_mem:
nfsd4_put_drc_mem(&cr_ses->fore_channel);
return status;
}
static __be32 nfsd4_map_bcts_dir(u32 *dir)
{
switch (*dir) {
case NFS4_CDFC4_FORE:
case NFS4_CDFC4_BACK:
return nfs_ok;
case NFS4_CDFC4_FORE_OR_BOTH:
case NFS4_CDFC4_BACK_OR_BOTH:
*dir = NFS4_CDFC4_BOTH;
return nfs_ok;
};
return nfserr_inval;
}
__be32 nfsd4_backchannel_ctl(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_backchannel_ctl *bc = &u->backchannel_ctl;
struct nfsd4_session *session = cstate->session;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
__be32 status;
status = nfsd4_check_cb_sec(&bc->bc_cb_sec);
if (status)
return status;
spin_lock(&nn->client_lock);
session->se_cb_prog = bc->bc_cb_program;
session->se_cb_sec = bc->bc_cb_sec;
spin_unlock(&nn->client_lock);
nfsd4_probe_callback(session->se_client);
return nfs_ok;
}
__be32 nfsd4_bind_conn_to_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_bind_conn_to_session *bcts = &u->bind_conn_to_session;
__be32 status;
struct nfsd4_conn *conn;
struct nfsd4_session *session;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
if (!nfsd4_last_compound_op(rqstp))
return nfserr_not_only_op;
spin_lock(&nn->client_lock);
session = find_in_sessionid_hashtbl(&bcts->sessionid, net, &status);
spin_unlock(&nn->client_lock);
if (!session)
goto out_no_session;
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(session->se_client, rqstp))
goto out;
status = nfsd4_map_bcts_dir(&bcts->dir);
if (status)
goto out;
conn = alloc_conn(rqstp, bcts->dir);
status = nfserr_jukebox;
if (!conn)
goto out;
nfsd4_init_conn(rqstp, conn, session);
status = nfs_ok;
out:
nfsd4_put_session(session);
out_no_session:
return status;
}
static bool nfsd4_compound_in_session(struct nfsd4_compound_state *cstate, struct nfs4_sessionid *sid)
{
if (!cstate->session)
return false;
return !memcmp(sid, &cstate->session->se_sessionid, sizeof(*sid));
}
__be32
nfsd4_destroy_session(struct svc_rqst *r, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfs4_sessionid *sessionid = &u->destroy_session.sessionid;
struct nfsd4_session *ses;
__be32 status;
int ref_held_by_me = 0;
struct net *net = SVC_NET(r);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
status = nfserr_not_only_op;
if (nfsd4_compound_in_session(cstate, sessionid)) {
if (!nfsd4_last_compound_op(r))
goto out;
ref_held_by_me++;
}
dump_sessionid(__func__, sessionid);
spin_lock(&nn->client_lock);
ses = find_in_sessionid_hashtbl(sessionid, net, &status);
if (!ses)
goto out_client_lock;
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(ses->se_client, r))
goto out_put_session;
status = mark_session_dead_locked(ses, 1 + ref_held_by_me);
if (status)
goto out_put_session;
unhash_session(ses);
spin_unlock(&nn->client_lock);
nfsd4_probe_callback_sync(ses->se_client);
spin_lock(&nn->client_lock);
status = nfs_ok;
out_put_session:
nfsd4_put_session_locked(ses);
out_client_lock:
spin_unlock(&nn->client_lock);
out:
return status;
}
static struct nfsd4_conn *__nfsd4_find_conn(struct svc_xprt *xpt, struct nfsd4_session *s)
{
struct nfsd4_conn *c;
list_for_each_entry(c, &s->se_conns, cn_persession) {
if (c->cn_xprt == xpt) {
return c;
}
}
return NULL;
}
static __be32 nfsd4_sequence_check_conn(struct nfsd4_conn *new, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_conn *c;
__be32 status = nfs_ok;
int ret;
spin_lock(&clp->cl_lock);
c = __nfsd4_find_conn(new->cn_xprt, ses);
if (c)
goto out_free;
status = nfserr_conn_not_bound_to_session;
if (clp->cl_mach_cred)
goto out_free;
__nfsd4_hash_conn(new, ses);
spin_unlock(&clp->cl_lock);
ret = nfsd4_register_conn(new);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&new->cn_xpt_user);
return nfs_ok;
out_free:
spin_unlock(&clp->cl_lock);
free_conn(new);
return status;
}
static bool nfsd4_session_too_many_ops(struct svc_rqst *rqstp, struct nfsd4_session *session)
{
struct nfsd4_compoundargs *args = rqstp->rq_argp;
return args->opcnt > session->se_fchannel.maxops;
}
static bool nfsd4_request_too_big(struct svc_rqst *rqstp,
struct nfsd4_session *session)
{
struct xdr_buf *xb = &rqstp->rq_arg;
return xb->len > session->se_fchannel.maxreq_sz;
}
static bool replay_matches_cache(struct svc_rqst *rqstp,
struct nfsd4_sequence *seq, struct nfsd4_slot *slot)
{
struct nfsd4_compoundargs *argp = rqstp->rq_argp;
if ((bool)(slot->sl_flags & NFSD4_SLOT_CACHETHIS) !=
(bool)seq->cachethis)
return false;
/*
* If there's an error then the reply can have fewer ops than
* the call.
*/
if (slot->sl_opcnt < argp->opcnt && !slot->sl_status)
return false;
/*
* But if we cached a reply with *more* ops than the call you're
* sending us now, then this new call is clearly not really a
* replay of the old one:
*/
if (slot->sl_opcnt > argp->opcnt)
return false;
/* This is the only check explicitly called by spec: */
if (!same_creds(&rqstp->rq_cred, &slot->sl_cred))
return false;
/*
* There may be more comparisons we could actually do, but the
* spec doesn't require us to catch every case where the calls
* don't match (that would require caching the call as well as
* the reply), so we don't bother.
*/
return true;
}
__be32
nfsd4_sequence(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_sequence *seq = &u->sequence;
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct xdr_stream *xdr = &resp->xdr;
struct nfsd4_session *session;
struct nfs4_client *clp;
struct nfsd4_slot *slot;
struct nfsd4_conn *conn;
__be32 status;
int buflen;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
if (resp->opcnt != 1)
return nfserr_sequence_pos;
/*
* Will be either used or freed by nfsd4_sequence_check_conn
* below.
*/
conn = alloc_conn(rqstp, NFS4_CDFC4_FORE);
if (!conn)
return nfserr_jukebox;
spin_lock(&nn->client_lock);
session = find_in_sessionid_hashtbl(&seq->sessionid, net, &status);
if (!session)
goto out_no_session;
clp = session->se_client;
status = nfserr_too_many_ops;
if (nfsd4_session_too_many_ops(rqstp, session))
goto out_put_session;
status = nfserr_req_too_big;
if (nfsd4_request_too_big(rqstp, session))
goto out_put_session;
status = nfserr_badslot;
if (seq->slotid >= session->se_fchannel.maxreqs)
goto out_put_session;
slot = session->se_slots[seq->slotid];
dprintk("%s: slotid %d\n", __func__, seq->slotid);
/* We do not negotiate the number of slots yet, so set the
* maxslots to the session maxreqs which is used to encode
* sr_highest_slotid and the sr_target_slot id to maxslots */
seq->maxslots = session->se_fchannel.maxreqs;
status = check_slot_seqid(seq->seqid, slot->sl_seqid,
slot->sl_flags & NFSD4_SLOT_INUSE);
if (status == nfserr_replay_cache) {
status = nfserr_seq_misordered;
if (!(slot->sl_flags & NFSD4_SLOT_INITIALIZED))
goto out_put_session;
status = nfserr_seq_false_retry;
if (!replay_matches_cache(rqstp, seq, slot))
goto out_put_session;
cstate->slot = slot;
cstate->session = session;
cstate->clp = clp;
/* Return the cached reply status and set cstate->status
* for nfsd4_proc_compound processing */
status = nfsd4_replay_cache_entry(resp, seq);
cstate->status = nfserr_replay_cache;
goto out;
}
if (status)
goto out_put_session;
status = nfsd4_sequence_check_conn(conn, session);
conn = NULL;
if (status)
goto out_put_session;
buflen = (seq->cachethis) ?
session->se_fchannel.maxresp_cached :
session->se_fchannel.maxresp_sz;
status = (seq->cachethis) ? nfserr_rep_too_big_to_cache :
nfserr_rep_too_big;
if (xdr_restrict_buflen(xdr, buflen - rqstp->rq_auth_slack))
goto out_put_session;
svc_reserve(rqstp, buflen);
status = nfs_ok;
/* Success! bump slot seqid */
slot->sl_seqid = seq->seqid;
slot->sl_flags |= NFSD4_SLOT_INUSE;
if (seq->cachethis)
slot->sl_flags |= NFSD4_SLOT_CACHETHIS;
else
slot->sl_flags &= ~NFSD4_SLOT_CACHETHIS;
cstate->slot = slot;
cstate->session = session;
cstate->clp = clp;
out:
switch (clp->cl_cb_state) {
case NFSD4_CB_DOWN:
seq->status_flags = SEQ4_STATUS_CB_PATH_DOWN;
break;
case NFSD4_CB_FAULT:
seq->status_flags = SEQ4_STATUS_BACKCHANNEL_FAULT;
break;
default:
seq->status_flags = 0;
}
if (!list_empty(&clp->cl_revoked))
seq->status_flags |= SEQ4_STATUS_RECALLABLE_STATE_REVOKED;
out_no_session:
if (conn)
free_conn(conn);
spin_unlock(&nn->client_lock);
return status;
out_put_session:
nfsd4_put_session_locked(session);
goto out_no_session;
}
void
nfsd4_sequence_done(struct nfsd4_compoundres *resp)
{
struct nfsd4_compound_state *cs = &resp->cstate;
if (nfsd4_has_session(cs)) {
if (cs->status != nfserr_replay_cache) {
nfsd4_store_cache_entry(resp);
cs->slot->sl_flags &= ~NFSD4_SLOT_INUSE;
}
/* Drop session reference that was taken in nfsd4_sequence() */
nfsd4_put_session(cs->session);
} else if (cs->clp)
put_client_renew(cs->clp);
}
__be32
nfsd4_destroy_clientid(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_destroy_clientid *dc = &u->destroy_clientid;
struct nfs4_client *conf, *unconf;
struct nfs4_client *clp = NULL;
__be32 status = 0;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
spin_lock(&nn->client_lock);
unconf = find_unconfirmed_client(&dc->clientid, true, nn);
conf = find_confirmed_client(&dc->clientid, true, nn);
WARN_ON_ONCE(conf && unconf);
if (conf) {
if (client_has_state(conf)) {
status = nfserr_clientid_busy;
goto out;
}
status = mark_client_expired_locked(conf);
if (status)
goto out;
clp = conf;
} else if (unconf)
clp = unconf;
else {
status = nfserr_stale_clientid;
goto out;
}
if (!nfsd4_mach_creds_match(clp, rqstp)) {
clp = NULL;
status = nfserr_wrong_cred;
goto out;
}
unhash_client_locked(clp);
out:
spin_unlock(&nn->client_lock);
if (clp)
expire_client(clp);
return status;
}
__be32
nfsd4_reclaim_complete(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, union nfsd4_op_u *u)
{
struct nfsd4_reclaim_complete *rc = &u->reclaim_complete;
__be32 status = 0;
if (rc->rca_one_fs) {
if (!cstate->current_fh.fh_dentry)
return nfserr_nofilehandle;
/*
* We don't take advantage of the rca_one_fs case.
* That's OK, it's optional, we can safely ignore it.
*/
return nfs_ok;
}
status = nfserr_complete_already;
if (test_and_set_bit(NFSD4_CLIENT_RECLAIM_COMPLETE,
&cstate->session->se_client->cl_flags))
goto out;
status = nfserr_stale_clientid;
if (is_client_expired(cstate->session->se_client))
/*
* The following error isn't really legal.
* But we only get here if the client just explicitly
* destroyed the client. Surely it no longer cares what
* error it gets back on an operation for the dead
* client.
*/
goto out;
status = nfs_ok;
nfsd4_client_record_create(cstate->session->se_client);
inc_reclaim_complete(cstate->session->se_client);
out:
return status;
}
__be32
nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_setclientid *setclid = &u->setclientid;
struct xdr_netobj clname = setclid->se_name;
nfs4_verifier clverifier = setclid->se_verf;
struct nfs4_client *conf, *new;
struct nfs4_client *unconf = NULL;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
new = create_client(clname, rqstp, &clverifier);
if (new == NULL)
return nfserr_jukebox;
/* Cases below refer to rfc 3530 section 14.2.33: */
spin_lock(&nn->client_lock);
conf = find_confirmed_client_by_name(&clname, nn);
if (conf && client_has_state(conf)) {
/* case 0: */
status = nfserr_clid_inuse;
if (clp_used_exchangeid(conf))
goto out;
if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) {
char addr_str[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *) &conf->cl_addr, addr_str,
sizeof(addr_str));
dprintk("NFSD: setclientid: string in use by client "
"at %s\n", addr_str);
goto out;
}
}
unconf = find_unconfirmed_client_by_name(&clname, nn);
if (unconf)
unhash_client_locked(unconf);
if (conf && same_verf(&conf->cl_verifier, &clverifier)) {
/* case 1: probable callback update */
copy_clid(new, conf);
gen_confirm(new, nn);
} else /* case 4 (new client) or cases 2, 3 (client reboot): */
;
new->cl_minorversion = 0;
gen_callback(new, setclid, rqstp);
add_to_unconfirmed(new);
setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot;
setclid->se_clientid.cl_id = new->cl_clientid.cl_id;
memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data));
new = NULL;
status = nfs_ok;
out:
spin_unlock(&nn->client_lock);
if (new)
free_client(new);
if (unconf)
expire_client(unconf);
return status;
}
__be32
nfsd4_setclientid_confirm(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_setclientid_confirm *setclientid_confirm =
&u->setclientid_confirm;
struct nfs4_client *conf, *unconf;
struct nfs4_client *old = NULL;
nfs4_verifier confirm = setclientid_confirm->sc_confirm;
clientid_t * clid = &setclientid_confirm->sc_clientid;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if (STALE_CLIENTID(clid, nn))
return nfserr_stale_clientid;
spin_lock(&nn->client_lock);
conf = find_confirmed_client(clid, false, nn);
unconf = find_unconfirmed_client(clid, false, nn);
/*
* We try hard to give out unique clientid's, so if we get an
* attempt to confirm the same clientid with a different cred,
* the client may be buggy; this should never happen.
*
* Nevertheless, RFC 7530 recommends INUSE for this case:
*/
status = nfserr_clid_inuse;
if (unconf && !same_creds(&unconf->cl_cred, &rqstp->rq_cred))
goto out;
if (conf && !same_creds(&conf->cl_cred, &rqstp->rq_cred))
goto out;
/* cases below refer to rfc 3530 section 14.2.34: */
if (!unconf || !same_verf(&confirm, &unconf->cl_confirm)) {
if (conf && same_verf(&confirm, &conf->cl_confirm)) {
/* case 2: probable retransmit */
status = nfs_ok;
} else /* case 4: client hasn't noticed we rebooted yet? */
status = nfserr_stale_clientid;
goto out;
}
status = nfs_ok;
if (conf) { /* case 1: callback update */
old = unconf;
unhash_client_locked(old);
nfsd4_change_callback(conf, &unconf->cl_cb_conn);
} else { /* case 3: normal case; new or rebooted client */
old = find_confirmed_client_by_name(&unconf->cl_name, nn);
if (old) {
status = nfserr_clid_inuse;
if (client_has_state(old)
&& !same_creds(&unconf->cl_cred,
&old->cl_cred))
goto out;
status = mark_client_expired_locked(old);
if (status) {
old = NULL;
goto out;
}
}
move_to_confirmed(unconf);
conf = unconf;
}
get_client_locked(conf);
spin_unlock(&nn->client_lock);
nfsd4_probe_callback(conf);
spin_lock(&nn->client_lock);
put_client_renew_locked(conf);
out:
spin_unlock(&nn->client_lock);
if (old)
expire_client(old);
return status;
}
static struct nfs4_file *nfsd4_alloc_file(void)
{
return kmem_cache_alloc(file_slab, GFP_KERNEL);
}
/* OPEN Share state helper functions */
static void nfsd4_init_file(struct knfsd_fh *fh, unsigned int hashval,
struct nfs4_file *fp)
{
lockdep_assert_held(&state_lock);
refcount_set(&fp->fi_ref, 1);
spin_lock_init(&fp->fi_lock);
INIT_LIST_HEAD(&fp->fi_stateids);
INIT_LIST_HEAD(&fp->fi_delegations);
INIT_LIST_HEAD(&fp->fi_clnt_odstate);
fh_copy_shallow(&fp->fi_fhandle, fh);
fp->fi_deleg_file = NULL;
fp->fi_had_conflict = false;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
fp->fi_share_deny = 0;
memset(fp->fi_fds, 0, sizeof(fp->fi_fds));
memset(fp->fi_access, 0, sizeof(fp->fi_access));
nfsd: implement pNFS operations Add support for the GETDEVICEINFO, LAYOUTGET, LAYOUTCOMMIT and LAYOUTRETURN NFSv4.1 operations, as well as backing code to manage outstanding layouts and devices. Layout management is very straight forward, with a nfs4_layout_stateid structure that extends nfs4_stid to manage layout stateids as the top-level structure. It is linked into the nfs4_file and nfs4_client structures like the other stateids, and contains a linked list of layouts that hang of the stateid. The actual layout operations are implemented in layout drivers that are not part of this commit, but will be added later. The worst part of this commit is the management of the pNFS device IDs, which suffers from a specification that is not sanely implementable due to the fact that the device-IDs are global and not bound to an export, and have a small enough size so that we can't store the fsid portion of a file handle, and must never be reused. As we still do need perform all export authentication and validation checks on a device ID passed to GETDEVICEINFO we are caught between a rock and a hard place. To work around this issue we add a new hash that maps from a 64-bit integer to a fsid so that we can look up the export to authenticate against it, a 32-bit integer as a generation that we can bump when changing the device, and a currently unused 32-bit integer that could be used in the future to handle more than a single device per export. Entries in this hash table are never deleted as we can't reuse the ids anyway, and would have a severe lifetime problem anyway as Linux export structures are temporary structures that can go away under load. Parts of the XDR data, structures and marshaling/unmarshaling code, as well as many concepts are derived from the old pNFS server implementation from Andy Adamson, Benny Halevy, Dean Hildebrand, Marc Eshel, Fred Isaman, Mike Sager, Ricardo Labiaga and many others. Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-05-05 11:11:59 +00:00
#ifdef CONFIG_NFSD_PNFS
INIT_LIST_HEAD(&fp->fi_lo_states);
atomic_set(&fp->fi_lo_recalls, 0);
nfsd: implement pNFS operations Add support for the GETDEVICEINFO, LAYOUTGET, LAYOUTCOMMIT and LAYOUTRETURN NFSv4.1 operations, as well as backing code to manage outstanding layouts and devices. Layout management is very straight forward, with a nfs4_layout_stateid structure that extends nfs4_stid to manage layout stateids as the top-level structure. It is linked into the nfs4_file and nfs4_client structures like the other stateids, and contains a linked list of layouts that hang of the stateid. The actual layout operations are implemented in layout drivers that are not part of this commit, but will be added later. The worst part of this commit is the management of the pNFS device IDs, which suffers from a specification that is not sanely implementable due to the fact that the device-IDs are global and not bound to an export, and have a small enough size so that we can't store the fsid portion of a file handle, and must never be reused. As we still do need perform all export authentication and validation checks on a device ID passed to GETDEVICEINFO we are caught between a rock and a hard place. To work around this issue we add a new hash that maps from a 64-bit integer to a fsid so that we can look up the export to authenticate against it, a 32-bit integer as a generation that we can bump when changing the device, and a currently unused 32-bit integer that could be used in the future to handle more than a single device per export. Entries in this hash table are never deleted as we can't reuse the ids anyway, and would have a severe lifetime problem anyway as Linux export structures are temporary structures that can go away under load. Parts of the XDR data, structures and marshaling/unmarshaling code, as well as many concepts are derived from the old pNFS server implementation from Andy Adamson, Benny Halevy, Dean Hildebrand, Marc Eshel, Fred Isaman, Mike Sager, Ricardo Labiaga and many others. Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-05-05 11:11:59 +00:00
#endif
hlist_add_head_rcu(&fp->fi_hash, &file_hashtbl[hashval]);
}
void
nfsd4_free_slabs(void)
{
kmem_cache_destroy(client_slab);
kmem_cache_destroy(openowner_slab);
kmem_cache_destroy(lockowner_slab);
kmem_cache_destroy(file_slab);
kmem_cache_destroy(stateid_slab);
kmem_cache_destroy(deleg_slab);
kmem_cache_destroy(odstate_slab);
}
int
nfsd4_init_slabs(void)
{
client_slab = kmem_cache_create("nfsd4_clients",
sizeof(struct nfs4_client), 0, 0, NULL);
if (client_slab == NULL)
goto out;
openowner_slab = kmem_cache_create("nfsd4_openowners",
sizeof(struct nfs4_openowner), 0, 0, NULL);
if (openowner_slab == NULL)
goto out_free_client_slab;
lockowner_slab = kmem_cache_create("nfsd4_lockowners",
sizeof(struct nfs4_lockowner), 0, 0, NULL);
if (lockowner_slab == NULL)
goto out_free_openowner_slab;
file_slab = kmem_cache_create("nfsd4_files",
sizeof(struct nfs4_file), 0, 0, NULL);
if (file_slab == NULL)
goto out_free_lockowner_slab;
stateid_slab = kmem_cache_create("nfsd4_stateids",
sizeof(struct nfs4_ol_stateid), 0, 0, NULL);
if (stateid_slab == NULL)
goto out_free_file_slab;
deleg_slab = kmem_cache_create("nfsd4_delegations",
sizeof(struct nfs4_delegation), 0, 0, NULL);
if (deleg_slab == NULL)
goto out_free_stateid_slab;
odstate_slab = kmem_cache_create("nfsd4_odstate",
sizeof(struct nfs4_clnt_odstate), 0, 0, NULL);
if (odstate_slab == NULL)
goto out_free_deleg_slab;
return 0;
out_free_deleg_slab:
kmem_cache_destroy(deleg_slab);
out_free_stateid_slab:
kmem_cache_destroy(stateid_slab);
out_free_file_slab:
kmem_cache_destroy(file_slab);
out_free_lockowner_slab:
kmem_cache_destroy(lockowner_slab);
out_free_openowner_slab:
kmem_cache_destroy(openowner_slab);
out_free_client_slab:
kmem_cache_destroy(client_slab);
out:
dprintk("nfsd4: out of memory while initializing nfsv4\n");
return -ENOMEM;
}
static void init_nfs4_replay(struct nfs4_replay *rp)
{
rp->rp_status = nfserr_serverfault;
rp->rp_buflen = 0;
rp->rp_buf = rp->rp_ibuf;
mutex_init(&rp->rp_mutex);
}
static void nfsd4_cstate_assign_replay(struct nfsd4_compound_state *cstate,
struct nfs4_stateowner *so)
{
if (!nfsd4_has_session(cstate)) {
mutex_lock(&so->so_replay.rp_mutex);
cstate->replay_owner = nfs4_get_stateowner(so);
}
}
void nfsd4_cstate_clear_replay(struct nfsd4_compound_state *cstate)
{
struct nfs4_stateowner *so = cstate->replay_owner;
if (so != NULL) {
cstate->replay_owner = NULL;
mutex_unlock(&so->so_replay.rp_mutex);
nfs4_put_stateowner(so);
}
}
static inline void *alloc_stateowner(struct kmem_cache *slab, struct xdr_netobj *owner, struct nfs4_client *clp)
{
struct nfs4_stateowner *sop;
sop = kmem_cache_alloc(slab, GFP_KERNEL);
if (!sop)
return NULL;
xdr_netobj_dup(&sop->so_owner, owner, GFP_KERNEL);
if (!sop->so_owner.data) {
kmem_cache_free(slab, sop);
return NULL;
}
INIT_LIST_HEAD(&sop->so_stateids);
sop->so_client = clp;
init_nfs4_replay(&sop->so_replay);
atomic_set(&sop->so_count, 1);
return sop;
}
static void hash_openowner(struct nfs4_openowner *oo, struct nfs4_client *clp, unsigned int strhashval)
{
lockdep_assert_held(&clp->cl_lock);
list_add(&oo->oo_owner.so_strhash,
&clp->cl_ownerstr_hashtbl[strhashval]);
list_add(&oo->oo_perclient, &clp->cl_openowners);
}
static void nfs4_unhash_openowner(struct nfs4_stateowner *so)
{
unhash_openowner_locked(openowner(so));
}
static void nfs4_free_openowner(struct nfs4_stateowner *so)
{
struct nfs4_openowner *oo = openowner(so);
kmem_cache_free(openowner_slab, oo);
}
static const struct nfs4_stateowner_operations openowner_ops = {
.so_unhash = nfs4_unhash_openowner,
.so_free = nfs4_free_openowner,
};
static struct nfs4_ol_stateid *
nfsd4_find_existing_open(struct nfs4_file *fp, struct nfsd4_open *open)
{
struct nfs4_ol_stateid *local, *ret = NULL;
struct nfs4_openowner *oo = open->op_openowner;
lockdep_assert_held(&fp->fi_lock);
list_for_each_entry(local, &fp->fi_stateids, st_perfile) {
/* ignore lock owners */
if (local->st_stateowner->so_is_open_owner == 0)
continue;
if (local->st_stateowner != &oo->oo_owner)
continue;
if (local->st_stid.sc_type == NFS4_OPEN_STID) {
ret = local;
refcount_inc(&ret->st_stid.sc_count);
break;
}
}
return ret;
}
static __be32
nfsd4_verify_open_stid(struct nfs4_stid *s)
{
__be32 ret = nfs_ok;
switch (s->sc_type) {
default:
break;
case 0:
case NFS4_CLOSED_STID:
case NFS4_CLOSED_DELEG_STID:
ret = nfserr_bad_stateid;
break;
case NFS4_REVOKED_DELEG_STID:
ret = nfserr_deleg_revoked;
}
return ret;
}
/* Lock the stateid st_mutex, and deal with races with CLOSE */
static __be32
nfsd4_lock_ol_stateid(struct nfs4_ol_stateid *stp)
{
__be32 ret;
mutex_lock_nested(&stp->st_mutex, LOCK_STATEID_MUTEX);
ret = nfsd4_verify_open_stid(&stp->st_stid);
if (ret != nfs_ok)
mutex_unlock(&stp->st_mutex);
return ret;
}
static struct nfs4_ol_stateid *
nfsd4_find_and_lock_existing_open(struct nfs4_file *fp, struct nfsd4_open *open)
{
struct nfs4_ol_stateid *stp;
for (;;) {
spin_lock(&fp->fi_lock);
stp = nfsd4_find_existing_open(fp, open);
spin_unlock(&fp->fi_lock);
if (!stp || nfsd4_lock_ol_stateid(stp) == nfs_ok)
break;
nfs4_put_stid(&stp->st_stid);
}
return stp;
}
static struct nfs4_openowner *
alloc_init_open_stateowner(unsigned int strhashval, struct nfsd4_open *open,
struct nfsd4_compound_state *cstate)
{
struct nfs4_client *clp = cstate->clp;
struct nfs4_openowner *oo, *ret;
oo = alloc_stateowner(openowner_slab, &open->op_owner, clp);
if (!oo)
return NULL;
oo->oo_owner.so_ops = &openowner_ops;
oo->oo_owner.so_is_open_owner = 1;
oo->oo_owner.so_seqid = open->op_seqid;
oo->oo_flags = 0;
if (nfsd4_has_session(cstate))
oo->oo_flags |= NFS4_OO_CONFIRMED;
oo->oo_time = 0;
oo->oo_last_closed_stid = NULL;
INIT_LIST_HEAD(&oo->oo_close_lru);
spin_lock(&clp->cl_lock);
ret = find_openstateowner_str_locked(strhashval, open, clp);
if (ret == NULL) {
hash_openowner(oo, clp, strhashval);
ret = oo;
} else
nfs4_free_stateowner(&oo->oo_owner);
spin_unlock(&clp->cl_lock);
return ret;
}
static struct nfs4_ol_stateid *
init_open_stateid(struct nfs4_file *fp, struct nfsd4_open *open)
{
struct nfs4_openowner *oo = open->op_openowner;
struct nfs4_ol_stateid *retstp = NULL;
struct nfs4_ol_stateid *stp;
stp = open->op_stp;
/* We are moving these outside of the spinlocks to avoid the warnings */
mutex_init(&stp->st_mutex);
mutex_lock_nested(&stp->st_mutex, OPEN_STATEID_MUTEX);
retry:
spin_lock(&oo->oo_owner.so_client->cl_lock);
spin_lock(&fp->fi_lock);
retstp = nfsd4_find_existing_open(fp, open);
if (retstp)
goto out_unlock;
open->op_stp = NULL;
refcount_inc(&stp->st_stid.sc_count);
stp->st_stid.sc_type = NFS4_OPEN_STID;
INIT_LIST_HEAD(&stp->st_locks);
stp->st_stateowner = nfs4_get_stateowner(&oo->oo_owner);
get_nfs4_file(fp);
stp->st_stid.sc_file = fp;
stp->st_access_bmap = 0;
stp->st_deny_bmap = 0;
stp->st_openstp = NULL;
list_add(&stp->st_perstateowner, &oo->oo_owner.so_stateids);
list_add(&stp->st_perfile, &fp->fi_stateids);
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&oo->oo_owner.so_client->cl_lock);
if (retstp) {
/* Handle races with CLOSE */
if (nfsd4_lock_ol_stateid(retstp) != nfs_ok) {
nfs4_put_stid(&retstp->st_stid);
goto retry;
}
/* To keep mutex tracking happy */
mutex_unlock(&stp->st_mutex);
stp = retstp;
}
return stp;
}
/*
* In the 4.0 case we need to keep the owners around a little while to handle
* CLOSE replay. We still do need to release any file access that is held by
* them before returning however.
*/
static void
move_to_close_lru(struct nfs4_ol_stateid *s, struct net *net)
{
struct nfs4_ol_stateid *last;
struct nfs4_openowner *oo = openowner(s->st_stateowner);
struct nfsd_net *nn = net_generic(s->st_stid.sc_client->net,
nfsd_net_id);
dprintk("NFSD: move_to_close_lru nfs4_openowner %p\n", oo);
/*
* We know that we hold one reference via nfsd4_close, and another
* "persistent" reference for the client. If the refcount is higher
* than 2, then there are still calls in progress that are using this
* stateid. We can't put the sc_file reference until they are finished.
* Wait for the refcount to drop to 2. Since it has been unhashed,
* there should be no danger of the refcount going back up again at
* this point.
*/
wait_event(close_wq, refcount_read(&s->st_stid.sc_count) == 2);
release_all_access(s);
if (s->st_stid.sc_file) {
put_nfs4_file(s->st_stid.sc_file);
s->st_stid.sc_file = NULL;
}
spin_lock(&nn->client_lock);
last = oo->oo_last_closed_stid;
oo->oo_last_closed_stid = s;
list_move_tail(&oo->oo_close_lru, &nn->close_lru);
oo->oo_time = get_seconds();
spin_unlock(&nn->client_lock);
if (last)
nfs4_put_stid(&last->st_stid);
}
/* search file_hashtbl[] for file */
static struct nfs4_file *
find_file_locked(struct knfsd_fh *fh, unsigned int hashval)
{
struct nfs4_file *fp;
hlist_for_each_entry_rcu(fp, &file_hashtbl[hashval], fi_hash) {
if (fh_match(&fp->fi_fhandle, fh)) {
if (refcount_inc_not_zero(&fp->fi_ref))
return fp;
}
}
return NULL;
}
struct nfs4_file *
find_file(struct knfsd_fh *fh)
{
struct nfs4_file *fp;
unsigned int hashval = file_hashval(fh);
rcu_read_lock();
fp = find_file_locked(fh, hashval);
rcu_read_unlock();
return fp;
}
static struct nfs4_file *
find_or_add_file(struct nfs4_file *new, struct knfsd_fh *fh)
{
struct nfs4_file *fp;
unsigned int hashval = file_hashval(fh);
rcu_read_lock();
fp = find_file_locked(fh, hashval);
rcu_read_unlock();
if (fp)
return fp;
spin_lock(&state_lock);
fp = find_file_locked(fh, hashval);
if (likely(fp == NULL)) {
nfsd4_init_file(fh, hashval, new);
fp = new;
}
spin_unlock(&state_lock);
return fp;
}
/*
* Called to check deny when READ with all zero stateid or
* WRITE with all zero or all one stateid
*/
static __be32
nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type)
{
struct nfs4_file *fp;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
__be32 ret = nfs_ok;
fp = find_file(&current_fh->fh_handle);
if (!fp)
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
return ret;
/* Check for conflicting share reservations */
spin_lock(&fp->fi_lock);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
if (fp->fi_share_deny & deny_type)
ret = nfserr_locked;
spin_unlock(&fp->fi_lock);
put_nfs4_file(fp);
return ret;
}
static void nfsd4_cb_recall_prepare(struct nfsd4_callback *cb)
{
struct nfs4_delegation *dp = cb_to_delegation(cb);
struct nfsd_net *nn = net_generic(dp->dl_stid.sc_client->net,
nfsd_net_id);
block_delegations(&dp->dl_stid.sc_file->fi_fhandle);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
/*
* We can't do this in nfsd_break_deleg_cb because it is
* already holding inode->i_lock.
*
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
* If the dl_time != 0, then we know that it has already been
* queued for a lease break. Don't queue it again.
*/
spin_lock(&state_lock);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
if (dp->dl_time == 0) {
dp->dl_time = get_seconds();
list_add_tail(&dp->dl_recall_lru, &nn->del_recall_lru);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
}
spin_unlock(&state_lock);
}
static int nfsd4_cb_recall_done(struct nfsd4_callback *cb,
struct rpc_task *task)
{
struct nfs4_delegation *dp = cb_to_delegation(cb);
if (dp->dl_stid.sc_type == NFS4_CLOSED_DELEG_STID)
return 1;
switch (task->tk_status) {
case 0:
return 1;
case -NFS4ERR_DELAY:
rpc_delay(task, 2 * HZ);
return 0;
case -EBADHANDLE:
case -NFS4ERR_BAD_STATEID:
/*
* Race: client probably got cb_recall before open reply
* granting delegation.
*/
if (dp->dl_retries--) {
rpc_delay(task, 2 * HZ);
return 0;
}
/*FALLTHRU*/
default:
return 1;
}
}
static void nfsd4_cb_recall_release(struct nfsd4_callback *cb)
{
struct nfs4_delegation *dp = cb_to_delegation(cb);
nfs4_put_stid(&dp->dl_stid);
}
static const struct nfsd4_callback_ops nfsd4_cb_recall_ops = {
.prepare = nfsd4_cb_recall_prepare,
.done = nfsd4_cb_recall_done,
.release = nfsd4_cb_recall_release,
};
static void nfsd_break_one_deleg(struct nfs4_delegation *dp)
{
/*
* We're assuming the state code never drops its reference
* without first removing the lease. Since we're in this lease
* callback (and since the lease code is serialized by the
* i_lock) we know the server hasn't removed the lease yet, and
* we know it's safe to take a reference.
*/
refcount_inc(&dp->dl_stid.sc_count);
nfsd4_run_cb(&dp->dl_recall);
}
/* Called from break_lease() with i_lock held. */
static bool
nfsd_break_deleg_cb(struct file_lock *fl)
{
bool ret = false;
struct nfs4_delegation *dp = (struct nfs4_delegation *)fl->fl_owner;
struct nfs4_file *fp = dp->dl_stid.sc_file;
/*
* We don't want the locks code to timeout the lease for us;
* we'll remove it ourself if a delegation isn't returned
* in time:
*/
fl->fl_break_time = 0;
spin_lock(&fp->fi_lock);
fp->fi_had_conflict = true;
nfsd_break_one_deleg(dp);
spin_unlock(&fp->fi_lock);
return ret;
}
static int
nfsd_change_deleg_cb(struct file_lock *onlist, int arg,
struct list_head *dispose)
{
if (arg & F_UNLCK)
return lease_modify(onlist, arg, dispose);
else
return -EAGAIN;
}
static const struct lock_manager_operations nfsd_lease_mng_ops = {
.lm_break = nfsd_break_deleg_cb,
.lm_change = nfsd_change_deleg_cb,
};
static __be32 nfsd4_check_seqid(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so, u32 seqid)
{
if (nfsd4_has_session(cstate))
return nfs_ok;
if (seqid == so->so_seqid - 1)
return nfserr_replay_me;
if (seqid == so->so_seqid)
return nfs_ok;
return nfserr_bad_seqid;
}
static __be32 lookup_clientid(clientid_t *clid,
struct nfsd4_compound_state *cstate,
struct nfsd_net *nn)
{
struct nfs4_client *found;
if (cstate->clp) {
found = cstate->clp;
if (!same_clid(&found->cl_clientid, clid))
return nfserr_stale_clientid;
return nfs_ok;
}
if (STALE_CLIENTID(clid, nn))
return nfserr_stale_clientid;
/*
* For v4.1+ we get the client in the SEQUENCE op. If we don't have one
* cached already then we know this is for is for v4.0 and "sessions"
* will be false.
*/
WARN_ON_ONCE(cstate->session);
spin_lock(&nn->client_lock);
found = find_confirmed_client(clid, false, nn);
if (!found) {
spin_unlock(&nn->client_lock);
return nfserr_expired;
}
atomic_inc(&found->cl_rpc_users);
spin_unlock(&nn->client_lock);
/* Cache the nfs4_client in cstate! */
cstate->clp = found;
return nfs_ok;
}
__be32
nfsd4_process_open1(struct nfsd4_compound_state *cstate,
struct nfsd4_open *open, struct nfsd_net *nn)
{
clientid_t *clientid = &open->op_clientid;
struct nfs4_client *clp = NULL;
unsigned int strhashval;
struct nfs4_openowner *oo = NULL;
__be32 status;
if (STALE_CLIENTID(&open->op_clientid, nn))
return nfserr_stale_clientid;
/*
* In case we need it later, after we've already created the
* file and don't want to risk a further failure:
*/
open->op_file = nfsd4_alloc_file();
if (open->op_file == NULL)
return nfserr_jukebox;
status = lookup_clientid(clientid, cstate, nn);
if (status)
return status;
clp = cstate->clp;
strhashval = ownerstr_hashval(&open->op_owner);
oo = find_openstateowner_str(strhashval, open, clp);
open->op_openowner = oo;
if (!oo) {
goto new_owner;
}
if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) {
/* Replace unconfirmed owners without checking for replay. */
release_openowner(oo);
open->op_openowner = NULL;
goto new_owner;
}
status = nfsd4_check_seqid(cstate, &oo->oo_owner, open->op_seqid);
if (status)
return status;
goto alloc_stateid;
new_owner:
oo = alloc_init_open_stateowner(strhashval, open, cstate);
if (oo == NULL)
return nfserr_jukebox;
open->op_openowner = oo;
alloc_stateid:
open->op_stp = nfs4_alloc_open_stateid(clp);
if (!open->op_stp)
return nfserr_jukebox;
if (nfsd4_has_session(cstate) &&
(cstate->current_fh.fh_export->ex_flags & NFSEXP_PNFS)) {
open->op_odstate = alloc_clnt_odstate(clp);
if (!open->op_odstate)
return nfserr_jukebox;
}
return nfs_ok;
}
static inline __be32
nfs4_check_delegmode(struct nfs4_delegation *dp, int flags)
{
if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ))
return nfserr_openmode;
else
return nfs_ok;
}
static int share_access_to_flags(u32 share_access)
{
return share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE;
}
static struct nfs4_delegation *find_deleg_stateid(struct nfs4_client *cl, stateid_t *s)
{
struct nfs4_stid *ret;
ret = find_stateid_by_type(cl, s,
NFS4_DELEG_STID|NFS4_REVOKED_DELEG_STID);
if (!ret)
return NULL;
return delegstateid(ret);
}
static bool nfsd4_is_deleg_cur(struct nfsd4_open *open)
{
return open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR ||
open->op_claim_type == NFS4_OPEN_CLAIM_DELEG_CUR_FH;
}
static __be32
nfs4_check_deleg(struct nfs4_client *cl, struct nfsd4_open *open,
struct nfs4_delegation **dp)
{
int flags;
__be32 status = nfserr_bad_stateid;
struct nfs4_delegation *deleg;
deleg = find_deleg_stateid(cl, &open->op_delegate_stateid);
if (deleg == NULL)
goto out;
if (deleg->dl_stid.sc_type == NFS4_REVOKED_DELEG_STID) {
nfs4_put_stid(&deleg->dl_stid);
if (cl->cl_minorversion)
status = nfserr_deleg_revoked;
goto out;
}
flags = share_access_to_flags(open->op_share_access);
status = nfs4_check_delegmode(deleg, flags);
if (status) {
nfs4_put_stid(&deleg->dl_stid);
goto out;
}
*dp = deleg;
out:
if (!nfsd4_is_deleg_cur(open))
return nfs_ok;
if (status)
return status;
open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED;
return nfs_ok;
}
static inline int nfs4_access_to_access(u32 nfs4_access)
{
int flags = 0;
if (nfs4_access & NFS4_SHARE_ACCESS_READ)
flags |= NFSD_MAY_READ;
if (nfs4_access & NFS4_SHARE_ACCESS_WRITE)
flags |= NFSD_MAY_WRITE;
return flags;
}
static inline __be32
nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh,
struct nfsd4_open *open)
{
struct iattr iattr = {
.ia_valid = ATTR_SIZE,
.ia_size = 0,
};
if (!open->op_truncate)
return 0;
if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE))
return nfserr_inval;
return nfsd_setattr(rqstp, fh, &iattr, 0, (time_t)0);
}
static __be32 nfs4_get_vfs_file(struct svc_rqst *rqstp, struct nfs4_file *fp,
struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp,
struct nfsd4_open *open)
{
struct nfsd_file *nf = NULL;
__be32 status;
int oflag = nfs4_access_to_omode(open->op_share_access);
int access = nfs4_access_to_access(open->op_share_access);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
unsigned char old_access_bmap, old_deny_bmap;
spin_lock(&fp->fi_lock);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/*
* Are we trying to set a deny mode that would conflict with
* current access?
*/
status = nfs4_file_check_deny(fp, open->op_share_deny);
if (status != nfs_ok) {
spin_unlock(&fp->fi_lock);
goto out;
}
/* set access to the file */
status = nfs4_file_get_access(fp, open->op_share_access);
if (status != nfs_ok) {
spin_unlock(&fp->fi_lock);
goto out;
}
/* Set access bits in stateid */
old_access_bmap = stp->st_access_bmap;
set_access(open->op_share_access, stp);
/* Set new deny mask */
old_deny_bmap = stp->st_deny_bmap;
set_deny(open->op_share_deny, stp);
fp->fi_share_deny |= (open->op_share_deny & NFS4_SHARE_DENY_BOTH);
if (!fp->fi_fds[oflag]) {
spin_unlock(&fp->fi_lock);
status = nfsd_file_acquire(rqstp, cur_fh, access, &nf);
if (status)
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
goto out_put_access;
spin_lock(&fp->fi_lock);
if (!fp->fi_fds[oflag]) {
fp->fi_fds[oflag] = nf;
nf = NULL;
}
}
spin_unlock(&fp->fi_lock);
if (nf)
nfsd_file_put(nf);
status = nfsd4_truncate(rqstp, cur_fh, open);
if (status)
goto out_put_access;
out:
return status;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
out_put_access:
stp->st_access_bmap = old_access_bmap;
nfs4_file_put_access(fp, open->op_share_access);
reset_union_bmap_deny(bmap_to_share_mode(old_deny_bmap), stp);
goto out;
}
static __be32
nfs4_upgrade_open(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open)
{
__be32 status;
unsigned char old_deny_bmap = stp->st_deny_bmap;
if (!test_access(open->op_share_access, stp))
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
return nfs4_get_vfs_file(rqstp, fp, cur_fh, stp, open);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/* test and set deny mode */
spin_lock(&fp->fi_lock);
status = nfs4_file_check_deny(fp, open->op_share_deny);
if (status == nfs_ok) {
set_deny(open->op_share_deny, stp);
fp->fi_share_deny |=
(open->op_share_deny & NFS4_SHARE_DENY_BOTH);
}
spin_unlock(&fp->fi_lock);
if (status != nfs_ok)
return status;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
status = nfsd4_truncate(rqstp, cur_fh, open);
if (status != nfs_ok)
reset_union_bmap_deny(old_deny_bmap, stp);
return status;
}
/* Should we give out recallable state?: */
static bool nfsd4_cb_channel_good(struct nfs4_client *clp)
{
if (clp->cl_cb_state == NFSD4_CB_UP)
return true;
/*
* In the sessions case, since we don't have to establish a
* separate connection for callbacks, we assume it's OK
* until we hear otherwise:
*/
return clp->cl_minorversion && clp->cl_cb_state == NFSD4_CB_UNKNOWN;
}
static struct file_lock *nfs4_alloc_init_lease(struct nfs4_delegation *dp,
int flag)
{
struct file_lock *fl;
fl = locks_alloc_lock();
if (!fl)
return NULL;
fl->fl_lmops = &nfsd_lease_mng_ops;
fl->fl_flags = FL_DELEG;
fl->fl_type = flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK;
fl->fl_end = OFFSET_MAX;
fl->fl_owner = (fl_owner_t)dp;
fl->fl_pid = current->tgid;
fl->fl_file = dp->dl_stid.sc_file->fi_deleg_file->nf_file;
return fl;
}
static struct nfs4_delegation *
nfs4_set_delegation(struct nfs4_client *clp, struct svc_fh *fh,
struct nfs4_file *fp, struct nfs4_clnt_odstate *odstate)
{
int status = 0;
struct nfs4_delegation *dp;
struct nfsd_file *nf;
struct file_lock *fl;
/*
* The fi_had_conflict and nfs_get_existing_delegation checks
* here are just optimizations; we'll need to recheck them at
* the end:
*/
if (fp->fi_had_conflict)
return ERR_PTR(-EAGAIN);
nf = find_readable_file(fp);
if (!nf) {
/* We should always have a readable file here */
WARN_ON_ONCE(1);
return ERR_PTR(-EBADF);
}
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
spin_lock(&state_lock);
spin_lock(&fp->fi_lock);
if (nfs4_delegation_exists(clp, fp))
status = -EAGAIN;
else if (!fp->fi_deleg_file) {
fp->fi_deleg_file = nf;
/* increment early to prevent fi_deleg_file from being
* cleared */
fp->fi_delegees = 1;
nf = NULL;
} else
fp->fi_delegees++;
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
if (nf)
nfsd_file_put(nf);
nfsd: eliminate sending duplicate and repeated delegations We've observed the nfsd server in a state where there are multiple delegations on the same nfs4_file for the same client. The nfs client does attempt to DELEGRETURN these when they are presented to it - but apparently under some (unknown) circumstances the client does not manage to return all of them. This leads to the eventual attempt to CB_RECALL more than one delegation with the same nfs filehandle to the same client. The first recall will succeed, but the next recall will fail with NFS4ERR_BADHANDLE. This leads to the server having delegations on cl_revoked that the client has no way to FREE or DELEGRETURN, with resulting inability to recover. The state manager on the server will continually assert SEQ4_STATUS_RECALLABLE_STATE_REVOKED, and the state manager on the client will be looping unable to satisfy the server. List discussion also reports a race between OPEN and DELEGRETURN that will be avoided by only sending the delegation once to the client. This is also logically in accordance with RFC5561 9.1.1 and 10.2. So, let's: 1.) Not hand out duplicate delegations. 2.) Only send them to the client once. RFC 5561: 9.1.1: "Delegations and layouts, on the other hand, are not associated with a specific owner but are associated with the client as a whole (identified by a client ID)." 10.2: "...the stateid for a delegation is associated with a client ID and may be used on behalf of all the open-owners for the given client. A delegation is made to the client as a whole and not to any specific process or thread of control within it." Reported-by: Eric Meddaugh <etmsys@rit.edu> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-10-15 16:07:28 +00:00
if (status)
return ERR_PTR(status);
status = -ENOMEM;
dp = alloc_init_deleg(clp, fp, fh, odstate);
if (!dp)
goto out_delegees;
fl = nfs4_alloc_init_lease(dp, NFS4_OPEN_DELEGATE_READ);
if (!fl)
goto out_clnt_odstate;
status = vfs_setlease(fp->fi_deleg_file->nf_file, fl->fl_type, &fl, NULL);
if (fl)
locks_free_lock(fl);
if (status)
goto out_clnt_odstate;
spin_lock(&state_lock);
spin_lock(&fp->fi_lock);
if (fp->fi_had_conflict)
status = -EAGAIN;
else
status = hash_delegation_locked(dp, fp);
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
if (status)
goto out_unlock;
return dp;
out_unlock:
vfs_setlease(fp->fi_deleg_file->nf_file, F_UNLCK, NULL, (void **)&dp);
out_clnt_odstate:
put_clnt_odstate(dp->dl_clnt_odstate);
nfs4_put_stid(&dp->dl_stid);
out_delegees:
put_deleg_file(fp);
return ERR_PTR(status);
}
static void nfsd4_open_deleg_none_ext(struct nfsd4_open *open, int status)
{
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
if (status == -EAGAIN)
open->op_why_no_deleg = WND4_CONTENTION;
else {
open->op_why_no_deleg = WND4_RESOURCE;
switch (open->op_deleg_want) {
case NFS4_SHARE_WANT_READ_DELEG:
case NFS4_SHARE_WANT_WRITE_DELEG:
case NFS4_SHARE_WANT_ANY_DELEG:
break;
case NFS4_SHARE_WANT_CANCEL:
open->op_why_no_deleg = WND4_CANCELLED;
break;
case NFS4_SHARE_WANT_NO_DELEG:
WARN_ON_ONCE(1);
}
}
}
/*
* Attempt to hand out a delegation.
*
* Note we don't support write delegations, and won't until the vfs has
* proper support for them.
*/
static void
nfs4_open_delegation(struct svc_fh *fh, struct nfsd4_open *open,
struct nfs4_ol_stateid *stp)
{
struct nfs4_delegation *dp;
struct nfs4_openowner *oo = openowner(stp->st_stateowner);
struct nfs4_client *clp = stp->st_stid.sc_client;
int cb_up;
int status = 0;
cb_up = nfsd4_cb_channel_good(oo->oo_owner.so_client);
open->op_recall = 0;
switch (open->op_claim_type) {
case NFS4_OPEN_CLAIM_PREVIOUS:
if (!cb_up)
open->op_recall = 1;
if (open->op_delegate_type != NFS4_OPEN_DELEGATE_READ)
goto out_no_deleg;
break;
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
/*
* Let's not give out any delegations till everyone's
* had the chance to reclaim theirs, *and* until
* NLM locks have all been reclaimed:
*/
if (locks_in_grace(clp->net))
goto out_no_deleg;
if (!cb_up || !(oo->oo_flags & NFS4_OO_CONFIRMED))
goto out_no_deleg;
/*
* Also, if the file was opened for write or
* create, there's a good chance the client's
* about to write to it, resulting in an
* immediate recall (since we don't support
* write delegations):
*/
if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE)
goto out_no_deleg;
if (open->op_create == NFS4_OPEN_CREATE)
goto out_no_deleg;
break;
default:
goto out_no_deleg;
}
dp = nfs4_set_delegation(clp, fh, stp->st_stid.sc_file, stp->st_clnt_odstate);
if (IS_ERR(dp))
goto out_no_deleg;
memcpy(&open->op_delegate_stateid, &dp->dl_stid.sc_stateid, sizeof(dp->dl_stid.sc_stateid));
dprintk("NFSD: delegation stateid=" STATEID_FMT "\n",
STATEID_VAL(&dp->dl_stid.sc_stateid));
open->op_delegate_type = NFS4_OPEN_DELEGATE_READ;
nfs4_put_stid(&dp->dl_stid);
return;
out_no_deleg:
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE;
if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS &&
open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE) {
dprintk("NFSD: WARNING: refusing delegation reclaim\n");
open->op_recall = 1;
}
/* 4.1 client asking for a delegation? */
if (open->op_deleg_want)
nfsd4_open_deleg_none_ext(open, status);
return;
}
static void nfsd4_deleg_xgrade_none_ext(struct nfsd4_open *open,
struct nfs4_delegation *dp)
{
if (open->op_deleg_want == NFS4_SHARE_WANT_READ_DELEG &&
dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_SUPP_DOWNGRADE;
} else if (open->op_deleg_want == NFS4_SHARE_WANT_WRITE_DELEG &&
dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_SUPP_UPGRADE;
}
/* Otherwise the client must be confused wanting a delegation
* it already has, therefore we don't return
* NFS4_OPEN_DELEGATE_NONE_EXT and reason.
*/
}
__be32
nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open)
{
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct nfs4_client *cl = open->op_openowner->oo_owner.so_client;
struct nfs4_file *fp = NULL;
struct nfs4_ol_stateid *stp = NULL;
struct nfs4_delegation *dp = NULL;
__be32 status;
bool new_stp = false;
/*
* Lookup file; if found, lookup stateid and check open request,
* and check for delegations in the process of being recalled.
* If not found, create the nfs4_file struct
*/
fp = find_or_add_file(open->op_file, &current_fh->fh_handle);
if (fp != open->op_file) {
status = nfs4_check_deleg(cl, open, &dp);
if (status)
goto out;
stp = nfsd4_find_and_lock_existing_open(fp, open);
} else {
open->op_file = NULL;
status = nfserr_bad_stateid;
if (nfsd4_is_deleg_cur(open))
goto out;
}
if (!stp) {
stp = init_open_stateid(fp, open);
if (!open->op_stp)
new_stp = true;
}
/*
* OPEN the file, or upgrade an existing OPEN.
* If truncate fails, the OPEN fails.
*
* stp is already locked.
*/
if (!new_stp) {
/* Stateid was found, this is an OPEN upgrade */
status = nfs4_upgrade_open(rqstp, fp, current_fh, stp, open);
if (status) {
mutex_unlock(&stp->st_mutex);
goto out;
}
} else {
status = nfs4_get_vfs_file(rqstp, fp, current_fh, stp, open);
if (status) {
stp->st_stid.sc_type = NFS4_CLOSED_STID;
release_open_stateid(stp);
mutex_unlock(&stp->st_mutex);
goto out;
}
stp->st_clnt_odstate = find_or_hash_clnt_odstate(fp,
open->op_odstate);
if (stp->st_clnt_odstate == open->op_odstate)
open->op_odstate = NULL;
}
nfs4_inc_and_copy_stateid(&open->op_stateid, &stp->st_stid);
mutex_unlock(&stp->st_mutex);
if (nfsd4_has_session(&resp->cstate)) {
if (open->op_deleg_want & NFS4_SHARE_WANT_NO_DELEG) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_WANTED;
goto nodeleg;
}
}
/*
* Attempt to hand out a delegation. No error return, because the
* OPEN succeeds even if we fail.
*/
nfs4_open_delegation(current_fh, open, stp);
nodeleg:
status = nfs_ok;
dprintk("%s: stateid=" STATEID_FMT "\n", __func__,
STATEID_VAL(&stp->st_stid.sc_stateid));
out:
/* 4.1 client trying to upgrade/downgrade delegation? */
if (open->op_delegate_type == NFS4_OPEN_DELEGATE_NONE && dp &&
open->op_deleg_want)
nfsd4_deleg_xgrade_none_ext(open, dp);
if (fp)
put_nfs4_file(fp);
if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS)
open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED;
/*
* To finish the open response, we just need to set the rflags.
*/
open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX;
if (nfsd4_has_session(&resp->cstate))
open->op_rflags |= NFS4_OPEN_RESULT_MAY_NOTIFY_LOCK;
else if (!(open->op_openowner->oo_flags & NFS4_OO_CONFIRMED))
open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM;
if (dp)
nfs4_put_stid(&dp->dl_stid);
if (stp)
nfs4_put_stid(&stp->st_stid);
return status;
}
void nfsd4_cleanup_open_state(struct nfsd4_compound_state *cstate,
struct nfsd4_open *open)
{
if (open->op_openowner) {
struct nfs4_stateowner *so = &open->op_openowner->oo_owner;
nfsd4_cstate_assign_replay(cstate, so);
nfs4_put_stateowner(so);
}
if (open->op_file)
kmem_cache_free(file_slab, open->op_file);
if (open->op_stp)
nfs4_put_stid(&open->op_stp->st_stid);
if (open->op_odstate)
kmem_cache_free(odstate_slab, open->op_odstate);
}
__be32
nfsd4_renew(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
clientid_t *clid = &u->renew;
struct nfs4_client *clp;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("process_renew(%08x/%08x): starting\n",
clid->cl_boot, clid->cl_id);
status = lookup_clientid(clid, cstate, nn);
if (status)
goto out;
clp = cstate->clp;
status = nfserr_cb_path_down;
if (!list_empty(&clp->cl_delegations)
&& clp->cl_cb_state != NFSD4_CB_UP)
goto out;
status = nfs_ok;
out:
return status;
}
void
nfsd4_end_grace(struct nfsd_net *nn)
{
/* do nothing if grace period already ended */
if (nn->grace_ended)
return;
nn->grace_ended = true;
/*
* If the server goes down again right now, an NFSv4
* client will still be allowed to reclaim after it comes back up,
* even if it hasn't yet had a chance to reclaim state this time.
*
*/
nfsd4_record_grace_done(nn);
/*
* At this point, NFSv4 clients can still reclaim. But if the
* server crashes, any that have not yet reclaimed will be out
* of luck on the next boot.
*
* (NFSv4.1+ clients are considered to have reclaimed once they
* call RECLAIM_COMPLETE. NFSv4.0 clients are considered to
* have reclaimed after their first OPEN.)
*/
locks_end_grace(&nn->nfsd4_manager);
/*
* At this point, and once lockd and/or any other containers
* exit their grace period, further reclaims will fail and
* regular locking can resume.
*/
}
/*
* If we've waited a lease period but there are still clients trying to
* reclaim, wait a little longer to give them a chance to finish.
*/
static bool clients_still_reclaiming(struct nfsd_net *nn)
{
unsigned long now = get_seconds();
unsigned long double_grace_period_end = nn->boot_time +
2 * nn->nfsd4_lease;
if (nn->track_reclaim_completes &&
atomic_read(&nn->nr_reclaim_complete) ==
nn->reclaim_str_hashtbl_size)
return false;
if (!nn->somebody_reclaimed)
return false;
nn->somebody_reclaimed = false;
/*
* If we've given them *two* lease times to reclaim, and they're
* still not done, give up:
*/
if (time_after(now, double_grace_period_end))
return false;
return true;
}
static time_t
nfs4_laundromat(struct nfsd_net *nn)
{
struct nfs4_client *clp;
struct nfs4_openowner *oo;
struct nfs4_delegation *dp;
struct nfs4_ol_stateid *stp;
struct nfsd4_blocked_lock *nbl;
struct list_head *pos, *next, reaplist;
time_t cutoff = get_seconds() - nn->nfsd4_lease;
time_t t, new_timeo = nn->nfsd4_lease;
dprintk("NFSD: laundromat service - starting\n");
if (clients_still_reclaiming(nn)) {
new_timeo = 0;
goto out;
}
dprintk("NFSD: end of grace period\n");
nfsd4_end_grace(nn);
INIT_LIST_HEAD(&reaplist);
spin_lock(&nn->client_lock);
list_for_each_safe(pos, next, &nn->client_lru) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
if (time_after((unsigned long)clp->cl_time, (unsigned long)cutoff)) {
t = clp->cl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
if (mark_client_expired_locked(clp)) {
dprintk("NFSD: client in use (clientid %08x)\n",
clp->cl_clientid.cl_id);
continue;
}
list_add(&clp->cl_lru, &reaplist);
}
spin_unlock(&nn->client_lock);
list_for_each_safe(pos, next, &reaplist) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
dprintk("NFSD: purging unused client (clientid %08x)\n",
clp->cl_clientid.cl_id);
list_del_init(&clp->cl_lru);
expire_client(clp);
}
spin_lock(&state_lock);
list_for_each_safe(pos, next, &nn->del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
if (time_after((unsigned long)dp->dl_time, (unsigned long)cutoff)) {
t = dp->dl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
while (!list_empty(&reaplist)) {
dp = list_first_entry(&reaplist, struct nfs4_delegation,
dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
revoke_delegation(dp);
}
spin_lock(&nn->client_lock);
while (!list_empty(&nn->close_lru)) {
oo = list_first_entry(&nn->close_lru, struct nfs4_openowner,
oo_close_lru);
if (time_after((unsigned long)oo->oo_time,
(unsigned long)cutoff)) {
t = oo->oo_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
list_del_init(&oo->oo_close_lru);
stp = oo->oo_last_closed_stid;
oo->oo_last_closed_stid = NULL;
spin_unlock(&nn->client_lock);
nfs4_put_stid(&stp->st_stid);
spin_lock(&nn->client_lock);
}
spin_unlock(&nn->client_lock);
/*
* It's possible for a client to try and acquire an already held lock
* that is being held for a long time, and then lose interest in it.
* So, we clean out any un-revisited request after a lease period
* under the assumption that the client is no longer interested.
*
* RFC5661, sec. 9.6 states that the client must not rely on getting
* notifications and must continue to poll for locks, even when the
* server supports them. Thus this shouldn't lead to clients blocking
* indefinitely once the lock does become free.
*/
BUG_ON(!list_empty(&reaplist));
spin_lock(&nn->blocked_locks_lock);
while (!list_empty(&nn->blocked_locks_lru)) {
nbl = list_first_entry(&nn->blocked_locks_lru,
struct nfsd4_blocked_lock, nbl_lru);
if (time_after((unsigned long)nbl->nbl_time,
(unsigned long)cutoff)) {
t = nbl->nbl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
list_move(&nbl->nbl_lru, &reaplist);
list_del_init(&nbl->nbl_list);
}
spin_unlock(&nn->blocked_locks_lock);
while (!list_empty(&reaplist)) {
nbl = list_first_entry(&reaplist,
struct nfsd4_blocked_lock, nbl_lru);
list_del_init(&nbl->nbl_lru);
free_blocked_lock(nbl);
}
out:
new_timeo = max_t(time_t, new_timeo, NFSD_LAUNDROMAT_MINTIMEOUT);
return new_timeo;
}
static struct workqueue_struct *laundry_wq;
static void laundromat_main(struct work_struct *);
static void
laundromat_main(struct work_struct *laundry)
{
time_t t;
struct delayed_work *dwork = to_delayed_work(laundry);
struct nfsd_net *nn = container_of(dwork, struct nfsd_net,
laundromat_work);
t = nfs4_laundromat(nn);
dprintk("NFSD: laundromat_main - sleeping for %ld seconds\n", t);
queue_delayed_work(laundry_wq, &nn->laundromat_work, t*HZ);
}
static inline __be32 nfs4_check_fh(struct svc_fh *fhp, struct nfs4_stid *stp)
{
if (!fh_match(&fhp->fh_handle, &stp->sc_file->fi_fhandle))
return nfserr_bad_stateid;
return nfs_ok;
}
static inline int
access_permit_read(struct nfs4_ol_stateid *stp)
{
return test_access(NFS4_SHARE_ACCESS_READ, stp) ||
test_access(NFS4_SHARE_ACCESS_BOTH, stp) ||
test_access(NFS4_SHARE_ACCESS_WRITE, stp);
}
static inline int
access_permit_write(struct nfs4_ol_stateid *stp)
{
return test_access(NFS4_SHARE_ACCESS_WRITE, stp) ||
test_access(NFS4_SHARE_ACCESS_BOTH, stp);
}
static
__be32 nfs4_check_openmode(struct nfs4_ol_stateid *stp, int flags)
{
__be32 status = nfserr_openmode;
/* For lock stateid's, we test the parent open, not the lock: */
if (stp->st_openstp)
stp = stp->st_openstp;
if ((flags & WR_STATE) && !access_permit_write(stp))
goto out;
if ((flags & RD_STATE) && !access_permit_read(stp))
goto out;
status = nfs_ok;
out:
return status;
}
static inline __be32
check_special_stateids(struct net *net, svc_fh *current_fh, stateid_t *stateid, int flags)
{
if (ONE_STATEID(stateid) && (flags & RD_STATE))
return nfs_ok;
else if (opens_in_grace(net)) {
/* Answer in remaining cases depends on existence of
* conflicting state; so we must wait out the grace period. */
return nfserr_grace;
} else if (flags & WR_STATE)
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_WRITE);
else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_READ);
}
/*
* Allow READ/WRITE during grace period on recovered state only for files
* that are not able to provide mandatory locking.
*/
static inline int
grace_disallows_io(struct net *net, struct inode *inode)
{
return opens_in_grace(net) && mandatory_lock(inode);
}
static __be32 check_stateid_generation(stateid_t *in, stateid_t *ref, bool has_session)
{
/*
* When sessions are used the stateid generation number is ignored
* when it is zero.
*/
if (has_session && in->si_generation == 0)
return nfs_ok;
if (in->si_generation == ref->si_generation)
return nfs_ok;
/* If the client sends us a stateid from the future, it's buggy: */
if (nfsd4_stateid_generation_after(in, ref))
return nfserr_bad_stateid;
/*
* However, we could see a stateid from the past, even from a
* non-buggy client. For example, if the client sends a lock
* while some IO is outstanding, the lock may bump si_generation
* while the IO is still in flight. The client could avoid that
* situation by waiting for responses on all the IO requests,
* but better performance may result in retrying IO that
* receives an old_stateid error if requests are rarely
* reordered in flight:
*/
return nfserr_old_stateid;
}
static __be32 nfsd4_stid_check_stateid_generation(stateid_t *in, struct nfs4_stid *s, bool has_session)
{
__be32 ret;
spin_lock(&s->sc_lock);
ret = nfsd4_verify_open_stid(s);
if (ret == nfs_ok)
ret = check_stateid_generation(in, &s->sc_stateid, has_session);
spin_unlock(&s->sc_lock);
return ret;
}
static __be32 nfsd4_check_openowner_confirmed(struct nfs4_ol_stateid *ols)
{
if (ols->st_stateowner->so_is_open_owner &&
!(openowner(ols->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED))
return nfserr_bad_stateid;
return nfs_ok;
}
static __be32 nfsd4_validate_stateid(struct nfs4_client *cl, stateid_t *stateid)
{
struct nfs4_stid *s;
__be32 status = nfserr_bad_stateid;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid) ||
CLOSE_STATEID(stateid))
return status;
/* Client debugging aid. */
if (!same_clid(&stateid->si_opaque.so_clid, &cl->cl_clientid)) {
char addr_str[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *)&cl->cl_addr, addr_str,
sizeof(addr_str));
pr_warn_ratelimited("NFSD: client %s testing state ID "
"with incorrect client ID\n", addr_str);
return status;
}
spin_lock(&cl->cl_lock);
s = find_stateid_locked(cl, stateid);
if (!s)
goto out_unlock;
status = nfsd4_stid_check_stateid_generation(stateid, s, 1);
if (status)
goto out_unlock;
switch (s->sc_type) {
case NFS4_DELEG_STID:
status = nfs_ok;
break;
case NFS4_REVOKED_DELEG_STID:
status = nfserr_deleg_revoked;
break;
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
status = nfsd4_check_openowner_confirmed(openlockstateid(s));
break;
default:
printk("unknown stateid type %x\n", s->sc_type);
/* Fallthrough */
case NFS4_CLOSED_STID:
case NFS4_CLOSED_DELEG_STID:
status = nfserr_bad_stateid;
}
out_unlock:
spin_unlock(&cl->cl_lock);
return status;
}
__be32
nfsd4_lookup_stateid(struct nfsd4_compound_state *cstate,
stateid_t *stateid, unsigned char typemask,
struct nfs4_stid **s, struct nfsd_net *nn)
{
__be32 status;
bool return_revoked = false;
/*
* only return revoked delegations if explicitly asked.
* otherwise we report revoked or bad_stateid status.
*/
if (typemask & NFS4_REVOKED_DELEG_STID)
return_revoked = true;
else if (typemask & NFS4_DELEG_STID)
typemask |= NFS4_REVOKED_DELEG_STID;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid) ||
CLOSE_STATEID(stateid))
return nfserr_bad_stateid;
status = lookup_clientid(&stateid->si_opaque.so_clid, cstate, nn);
if (status == nfserr_stale_clientid) {
if (cstate->session)
return nfserr_bad_stateid;
return nfserr_stale_stateid;
}
if (status)
return status;
*s = find_stateid_by_type(cstate->clp, stateid, typemask);
if (!*s)
return nfserr_bad_stateid;
if (((*s)->sc_type == NFS4_REVOKED_DELEG_STID) && !return_revoked) {
nfs4_put_stid(*s);
if (cstate->minorversion)
return nfserr_deleg_revoked;
return nfserr_bad_stateid;
}
return nfs_ok;
}
static struct nfsd_file *
nfs4_find_file(struct nfs4_stid *s, int flags)
{
if (!s)
return NULL;
switch (s->sc_type) {
case NFS4_DELEG_STID:
if (WARN_ON_ONCE(!s->sc_file->fi_deleg_file))
return NULL;
return nfsd_file_get(s->sc_file->fi_deleg_file);
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
if (flags & RD_STATE)
return find_readable_file(s->sc_file);
else
return find_writeable_file(s->sc_file);
break;
}
return NULL;
}
static __be32
nfs4_check_olstateid(struct nfs4_ol_stateid *ols, int flags)
{
__be32 status;
status = nfsd4_check_openowner_confirmed(ols);
if (status)
return status;
return nfs4_check_openmode(ols, flags);
}
static __be32
nfs4_check_file(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfs4_stid *s,
struct nfsd_file **nfp, int flags)
{
int acc = (flags & RD_STATE) ? NFSD_MAY_READ : NFSD_MAY_WRITE;
struct nfsd_file *nf;
__be32 status;
nf = nfs4_find_file(s, flags);
if (nf) {
status = nfsd_permission(rqstp, fhp->fh_export, fhp->fh_dentry,
acc | NFSD_MAY_OWNER_OVERRIDE);
if (status) {
nfsd_file_put(nf);
goto out;
}
} else {
status = nfsd_file_acquire(rqstp, fhp, acc, &nf);
if (status)
return status;
}
*nfp = nf;
out:
return status;
}
/*
* Checks for stateid operations
*/
__be32
nfs4_preprocess_stateid_op(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, struct svc_fh *fhp,
stateid_t *stateid, int flags, struct nfsd_file **nfp)
{
struct inode *ino = d_inode(fhp->fh_dentry);
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfs4_stid *s = NULL;
__be32 status;
if (nfp)
*nfp = NULL;
if (grace_disallows_io(net, ino))
return nfserr_grace;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) {
status = check_special_stateids(net, fhp, stateid, flags);
goto done;
}
status = nfsd4_lookup_stateid(cstate, stateid,
NFS4_DELEG_STID|NFS4_OPEN_STID|NFS4_LOCK_STID,
&s, nn);
if (status)
return status;
status = nfsd4_stid_check_stateid_generation(stateid, s,
nfsd4_has_session(cstate));
if (status)
goto out;
switch (s->sc_type) {
case NFS4_DELEG_STID:
status = nfs4_check_delegmode(delegstateid(s), flags);
break;
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
status = nfs4_check_olstateid(openlockstateid(s), flags);
break;
default:
status = nfserr_bad_stateid;
break;
}
if (status)
goto out;
status = nfs4_check_fh(fhp, s);
done:
if (status == nfs_ok && nfp)
status = nfs4_check_file(rqstp, fhp, s, nfp, flags);
out:
if (s)
nfs4_put_stid(s);
return status;
}
/*
* Test if the stateid is valid
*/
__be32
nfsd4_test_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_test_stateid *test_stateid = &u->test_stateid;
struct nfsd4_test_stateid_id *stateid;
struct nfs4_client *cl = cstate->session->se_client;
list_for_each_entry(stateid, &test_stateid->ts_stateid_list, ts_id_list)
stateid->ts_id_status =
nfsd4_validate_stateid(cl, &stateid->ts_id_stateid);
return nfs_ok;
}
static __be32
nfsd4_free_lock_stateid(stateid_t *stateid, struct nfs4_stid *s)
{
struct nfs4_ol_stateid *stp = openlockstateid(s);
__be32 ret;
ret = nfsd4_lock_ol_stateid(stp);
if (ret)
goto out_put_stid;
ret = check_stateid_generation(stateid, &s->sc_stateid, 1);
if (ret)
goto out;
ret = nfserr_locks_held;
if (check_for_locks(stp->st_stid.sc_file,
lockowner(stp->st_stateowner)))
goto out;
release_lock_stateid(stp);
ret = nfs_ok;
out:
mutex_unlock(&stp->st_mutex);
out_put_stid:
nfs4_put_stid(s);
return ret;
}
__be32
nfsd4_free_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_free_stateid *free_stateid = &u->free_stateid;
stateid_t *stateid = &free_stateid->fr_stateid;
struct nfs4_stid *s;
struct nfs4_delegation *dp;
struct nfs4_client *cl = cstate->session->se_client;
__be32 ret = nfserr_bad_stateid;
spin_lock(&cl->cl_lock);
s = find_stateid_locked(cl, stateid);
if (!s)
goto out_unlock;
spin_lock(&s->sc_lock);
switch (s->sc_type) {
case NFS4_DELEG_STID:
ret = nfserr_locks_held;
break;
case NFS4_OPEN_STID:
ret = check_stateid_generation(stateid, &s->sc_stateid, 1);
if (ret)
break;
ret = nfserr_locks_held;
break;
case NFS4_LOCK_STID:
spin_unlock(&s->sc_lock);
refcount_inc(&s->sc_count);
spin_unlock(&cl->cl_lock);
ret = nfsd4_free_lock_stateid(stateid, s);
goto out;
case NFS4_REVOKED_DELEG_STID:
spin_unlock(&s->sc_lock);
dp = delegstateid(s);
list_del_init(&dp->dl_recall_lru);
spin_unlock(&cl->cl_lock);
nfs4_put_stid(s);
ret = nfs_ok;
goto out;
/* Default falls through and returns nfserr_bad_stateid */
}
spin_unlock(&s->sc_lock);
out_unlock:
spin_unlock(&cl->cl_lock);
out:
return ret;
}
static inline int
setlkflg (int type)
{
return (type == NFS4_READW_LT || type == NFS4_READ_LT) ?
RD_STATE : WR_STATE;
}
static __be32 nfs4_seqid_op_checks(struct nfsd4_compound_state *cstate, stateid_t *stateid, u32 seqid, struct nfs4_ol_stateid *stp)
{
struct svc_fh *current_fh = &cstate->current_fh;
struct nfs4_stateowner *sop = stp->st_stateowner;
__be32 status;
status = nfsd4_check_seqid(cstate, sop, seqid);
if (status)
return status;
status = nfsd4_lock_ol_stateid(stp);
if (status != nfs_ok)
return status;
status = check_stateid_generation(stateid, &stp->st_stid.sc_stateid, nfsd4_has_session(cstate));
if (status == nfs_ok)
status = nfs4_check_fh(current_fh, &stp->st_stid);
if (status != nfs_ok)
mutex_unlock(&stp->st_mutex);
return status;
}
/*
* Checks for sequence id mutating operations.
*/
static __be32
nfs4_preprocess_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid,
stateid_t *stateid, char typemask,
struct nfs4_ol_stateid **stpp,
struct nfsd_net *nn)
{
__be32 status;
struct nfs4_stid *s;
struct nfs4_ol_stateid *stp = NULL;
dprintk("NFSD: %s: seqid=%d stateid = " STATEID_FMT "\n", __func__,
seqid, STATEID_VAL(stateid));
*stpp = NULL;
status = nfsd4_lookup_stateid(cstate, stateid, typemask, &s, nn);
if (status)
return status;
stp = openlockstateid(s);
nfsd4_cstate_assign_replay(cstate, stp->st_stateowner);
status = nfs4_seqid_op_checks(cstate, stateid, seqid, stp);
if (!status)
*stpp = stp;
else
nfs4_put_stid(&stp->st_stid);
return status;
}
static __be32 nfs4_preprocess_confirmed_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid,
stateid_t *stateid, struct nfs4_ol_stateid **stpp, struct nfsd_net *nn)
{
__be32 status;
struct nfs4_openowner *oo;
struct nfs4_ol_stateid *stp;
status = nfs4_preprocess_seqid_op(cstate, seqid, stateid,
NFS4_OPEN_STID, &stp, nn);
if (status)
return status;
oo = openowner(stp->st_stateowner);
if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) {
mutex_unlock(&stp->st_mutex);
nfs4_put_stid(&stp->st_stid);
return nfserr_bad_stateid;
}
*stpp = stp;
return nfs_ok;
}
__be32
nfsd4_open_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_open_confirm *oc = &u->open_confirm;
__be32 status;
struct nfs4_openowner *oo;
struct nfs4_ol_stateid *stp;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_open_confirm on file %pd\n",
cstate->current_fh.fh_dentry);
status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0);
if (status)
return status;
status = nfs4_preprocess_seqid_op(cstate,
oc->oc_seqid, &oc->oc_req_stateid,
NFS4_OPEN_STID, &stp, nn);
if (status)
goto out;
oo = openowner(stp->st_stateowner);
status = nfserr_bad_stateid;
if (oo->oo_flags & NFS4_OO_CONFIRMED) {
mutex_unlock(&stp->st_mutex);
goto put_stateid;
}
oo->oo_flags |= NFS4_OO_CONFIRMED;
nfs4_inc_and_copy_stateid(&oc->oc_resp_stateid, &stp->st_stid);
mutex_unlock(&stp->st_mutex);
dprintk("NFSD: %s: success, seqid=%d stateid=" STATEID_FMT "\n",
__func__, oc->oc_seqid, STATEID_VAL(&stp->st_stid.sc_stateid));
nfsd4_client_record_create(oo->oo_owner.so_client);
status = nfs_ok;
put_stateid:
nfs4_put_stid(&stp->st_stid);
out:
nfsd4_bump_seqid(cstate, status);
return status;
}
static inline void nfs4_stateid_downgrade_bit(struct nfs4_ol_stateid *stp, u32 access)
{
if (!test_access(access, stp))
return;
nfs4_file_put_access(stp->st_stid.sc_file, access);
clear_access(access, stp);
}
static inline void nfs4_stateid_downgrade(struct nfs4_ol_stateid *stp, u32 to_access)
{
switch (to_access) {
case NFS4_SHARE_ACCESS_READ:
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_WRITE);
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH);
break;
case NFS4_SHARE_ACCESS_WRITE:
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_READ);
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH);
break;
case NFS4_SHARE_ACCESS_BOTH:
break;
default:
WARN_ON_ONCE(1);
}
}
__be32
nfsd4_open_downgrade(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, union nfsd4_op_u *u)
{
struct nfsd4_open_downgrade *od = &u->open_downgrade;
__be32 status;
struct nfs4_ol_stateid *stp;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_open_downgrade on file %pd\n",
cstate->current_fh.fh_dentry);
/* We don't yet support WANT bits: */
if (od->od_deleg_want)
dprintk("NFSD: %s: od_deleg_want=0x%x ignored\n", __func__,
od->od_deleg_want);
status = nfs4_preprocess_confirmed_seqid_op(cstate, od->od_seqid,
&od->od_stateid, &stp, nn);
if (status)
goto out;
status = nfserr_inval;
if (!test_access(od->od_share_access, stp)) {
dprintk("NFSD: access not a subset of current bitmap: 0x%hhx, input access=%08x\n",
stp->st_access_bmap, od->od_share_access);
goto put_stateid;
}
if (!test_deny(od->od_share_deny, stp)) {
dprintk("NFSD: deny not a subset of current bitmap: 0x%hhx, input deny=%08x\n",
stp->st_deny_bmap, od->od_share_deny);
goto put_stateid;
}
nfs4_stateid_downgrade(stp, od->od_share_access);
reset_union_bmap_deny(od->od_share_deny, stp);
nfs4_inc_and_copy_stateid(&od->od_stateid, &stp->st_stid);
status = nfs_ok;
put_stateid:
mutex_unlock(&stp->st_mutex);
nfs4_put_stid(&stp->st_stid);
out:
nfsd4_bump_seqid(cstate, status);
return status;
}
static void nfsd4_close_open_stateid(struct nfs4_ol_stateid *s)
{
struct nfs4_client *clp = s->st_stid.sc_client;
bool unhashed;
LIST_HEAD(reaplist);
spin_lock(&clp->cl_lock);
unhashed = unhash_open_stateid(s, &reaplist);
if (clp->cl_minorversion) {
if (unhashed)
put_ol_stateid_locked(s, &reaplist);
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
} else {
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
if (unhashed)
move_to_close_lru(s, clp->net);
}
}
/*
* nfs4_unlock_state() called after encode
*/
__be32
nfsd4_close(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_close *close = &u->close;
__be32 status;
struct nfs4_ol_stateid *stp;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dprintk("NFSD: nfsd4_close on file %pd\n",
cstate->current_fh.fh_dentry);
status = nfs4_preprocess_seqid_op(cstate, close->cl_seqid,
&close->cl_stateid,
NFS4_OPEN_STID|NFS4_CLOSED_STID,
&stp, nn);
nfsd4_bump_seqid(cstate, status);
if (status)
goto out;
stp->st_stid.sc_type = NFS4_CLOSED_STID;
/*
* Technically we don't _really_ have to increment or copy it, since
* it should just be gone after this operation and we clobber the
* copied value below, but we continue to do so here just to ensure
* that racing ops see that there was a state change.
*/
nfs4_inc_and_copy_stateid(&close->cl_stateid, &stp->st_stid);
nfsd4_close_open_stateid(stp);
mutex_unlock(&stp->st_mutex);
/* v4.1+ suggests that we send a special stateid in here, since the
* clients should just ignore this anyway. Since this is not useful
* for v4.0 clients either, we set it to the special close_stateid
* universally.
*
* See RFC5661 section 18.2.4, and RFC7530 section 16.2.5
*/
memcpy(&close->cl_stateid, &close_stateid, sizeof(close->cl_stateid));
/* put reference from nfs4_preprocess_seqid_op */
nfs4_put_stid(&stp->st_stid);
out:
return status;
}
__be32
nfsd4_delegreturn(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_delegreturn *dr = &u->delegreturn;
struct nfs4_delegation *dp;
stateid_t *stateid = &dr->dr_stateid;
struct nfs4_stid *s;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0)))
return status;
status = nfsd4_lookup_stateid(cstate, stateid, NFS4_DELEG_STID, &s, nn);
if (status)
goto out;
dp = delegstateid(s);
status = nfsd4_stid_check_stateid_generation(stateid, &dp->dl_stid, nfsd4_has_session(cstate));
if (status)
goto put_stateid;
destroy_delegation(dp);
put_stateid:
nfs4_put_stid(&dp->dl_stid);
out:
return status;
}
static inline u64
end_offset(u64 start, u64 len)
{
u64 end;
end = start + len;
return end >= start ? end: NFS4_MAX_UINT64;
}
/* last octet in a range */
static inline u64
last_byte_offset(u64 start, u64 len)
{
u64 end;
WARN_ON_ONCE(!len);
end = start + len;
return end > start ? end - 1: NFS4_MAX_UINT64;
}
/*
* TODO: Linux file offsets are _signed_ 64-bit quantities, which means that
* we can't properly handle lock requests that go beyond the (2^63 - 1)-th
* byte, because of sign extension problems. Since NFSv4 calls for 64-bit
* locking, this prevents us from being completely protocol-compliant. The
* real solution to this problem is to start using unsigned file offsets in
* the VFS, but this is a very deep change!
*/
static inline void
nfs4_transform_lock_offset(struct file_lock *lock)
{
if (lock->fl_start < 0)
lock->fl_start = OFFSET_MAX;
if (lock->fl_end < 0)
lock->fl_end = OFFSET_MAX;
}
static fl_owner_t
nfsd4_fl_get_owner(fl_owner_t owner)
{
struct nfs4_lockowner *lo = (struct nfs4_lockowner *)owner;
nfs4_get_stateowner(&lo->lo_owner);
return owner;
}
static void
nfsd4_fl_put_owner(fl_owner_t owner)
{
struct nfs4_lockowner *lo = (struct nfs4_lockowner *)owner;
if (lo)
nfs4_put_stateowner(&lo->lo_owner);
}
static void
nfsd4_lm_notify(struct file_lock *fl)
{
struct nfs4_lockowner *lo = (struct nfs4_lockowner *)fl->fl_owner;
struct net *net = lo->lo_owner.so_client->net;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd4_blocked_lock *nbl = container_of(fl,
struct nfsd4_blocked_lock, nbl_lock);
bool queue = false;
/* An empty list means that something else is going to be using it */
spin_lock(&nn->blocked_locks_lock);
if (!list_empty(&nbl->nbl_list)) {
list_del_init(&nbl->nbl_list);
list_del_init(&nbl->nbl_lru);
queue = true;
}
spin_unlock(&nn->blocked_locks_lock);
if (queue)
nfsd4_run_cb(&nbl->nbl_cb);
}
static const struct lock_manager_operations nfsd_posix_mng_ops = {
.lm_notify = nfsd4_lm_notify,
.lm_get_owner = nfsd4_fl_get_owner,
.lm_put_owner = nfsd4_fl_put_owner,
};
static inline void
nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny)
{
struct nfs4_lockowner *lo;
if (fl->fl_lmops == &nfsd_posix_mng_ops) {
lo = (struct nfs4_lockowner *) fl->fl_owner;
xdr_netobj_dup(&deny->ld_owner, &lo->lo_owner.so_owner,
GFP_KERNEL);
if (!deny->ld_owner.data)
/* We just don't care that much */
goto nevermind;
deny->ld_clientid = lo->lo_owner.so_client->cl_clientid;
} else {
nevermind:
deny->ld_owner.len = 0;
deny->ld_owner.data = NULL;
deny->ld_clientid.cl_boot = 0;
deny->ld_clientid.cl_id = 0;
}
deny->ld_start = fl->fl_start;
deny->ld_length = NFS4_MAX_UINT64;
if (fl->fl_end != NFS4_MAX_UINT64)
deny->ld_length = fl->fl_end - fl->fl_start + 1;
deny->ld_type = NFS4_READ_LT;
if (fl->fl_type != F_RDLCK)
deny->ld_type = NFS4_WRITE_LT;
}
static struct nfs4_lockowner *
find_lockowner_str_locked(struct nfs4_client *clp, struct xdr_netobj *owner)
{
unsigned int strhashval = ownerstr_hashval(owner);
struct nfs4_stateowner *so;
lockdep_assert_held(&clp->cl_lock);
list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[strhashval],
so_strhash) {
if (so->so_is_open_owner)
continue;
if (same_owner_str(so, owner))
return lockowner(nfs4_get_stateowner(so));
}
return NULL;
}
static struct nfs4_lockowner *
find_lockowner_str(struct nfs4_client *clp, struct xdr_netobj *owner)
{
struct nfs4_lockowner *lo;
spin_lock(&clp->cl_lock);
lo = find_lockowner_str_locked(clp, owner);
spin_unlock(&clp->cl_lock);
return lo;
}
static void nfs4_unhash_lockowner(struct nfs4_stateowner *sop)
{
unhash_lockowner_locked(lockowner(sop));
}
static void nfs4_free_lockowner(struct nfs4_stateowner *sop)
{
struct nfs4_lockowner *lo = lockowner(sop);
kmem_cache_free(lockowner_slab, lo);
}
static const struct nfs4_stateowner_operations lockowner_ops = {
.so_unhash = nfs4_unhash_lockowner,
.so_free = nfs4_free_lockowner,
};
/*
* Alloc a lock owner structure.
* Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has
* occurred.
*
* strhashval = ownerstr_hashval
*/
static struct nfs4_lockowner *
alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp,
struct nfs4_ol_stateid *open_stp,
struct nfsd4_lock *lock)
{
struct nfs4_lockowner *lo, *ret;
lo = alloc_stateowner(lockowner_slab, &lock->lk_new_owner, clp);
if (!lo)
return NULL;
INIT_LIST_HEAD(&lo->lo_blocked);
INIT_LIST_HEAD(&lo->lo_owner.so_stateids);
lo->lo_owner.so_is_open_owner = 0;
lo->lo_owner.so_seqid = lock->lk_new_lock_seqid;
lo->lo_owner.so_ops = &lockowner_ops;
spin_lock(&clp->cl_lock);
ret = find_lockowner_str_locked(clp, &lock->lk_new_owner);
if (ret == NULL) {
list_add(&lo->lo_owner.so_strhash,
&clp->cl_ownerstr_hashtbl[strhashval]);
ret = lo;
} else
nfs4_free_stateowner(&lo->lo_owner);
spin_unlock(&clp->cl_lock);
return ret;
}
static struct nfs4_ol_stateid *
find_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fp)
{
struct nfs4_ol_stateid *lst;
struct nfs4_client *clp = lo->lo_owner.so_client;
lockdep_assert_held(&clp->cl_lock);
list_for_each_entry(lst, &lo->lo_owner.so_stateids, st_perstateowner) {
if (lst->st_stid.sc_type != NFS4_LOCK_STID)
continue;
if (lst->st_stid.sc_file == fp) {
refcount_inc(&lst->st_stid.sc_count);
return lst;
}
}
return NULL;
}
static struct nfs4_ol_stateid *
init_lock_stateid(struct nfs4_ol_stateid *stp, struct nfs4_lockowner *lo,
struct nfs4_file *fp, struct inode *inode,
struct nfs4_ol_stateid *open_stp)
{
struct nfs4_client *clp = lo->lo_owner.so_client;
struct nfs4_ol_stateid *retstp;
mutex_init(&stp->st_mutex);
mutex_lock_nested(&stp->st_mutex, OPEN_STATEID_MUTEX);
retry:
spin_lock(&clp->cl_lock);
spin_lock(&fp->fi_lock);
retstp = find_lock_stateid(lo, fp);
if (retstp)
goto out_unlock;
refcount_inc(&stp->st_stid.sc_count);
stp->st_stid.sc_type = NFS4_LOCK_STID;
stp->st_stateowner = nfs4_get_stateowner(&lo->lo_owner);
get_nfs4_file(fp);
stp->st_stid.sc_file = fp;
stp->st_access_bmap = 0;
stp->st_deny_bmap = open_stp->st_deny_bmap;
stp->st_openstp = open_stp;
list_add(&stp->st_locks, &open_stp->st_locks);
list_add(&stp->st_perstateowner, &lo->lo_owner.so_stateids);
list_add(&stp->st_perfile, &fp->fi_stateids);
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&clp->cl_lock);
if (retstp) {
if (nfsd4_lock_ol_stateid(retstp) != nfs_ok) {
nfs4_put_stid(&retstp->st_stid);
goto retry;
}
/* To keep mutex tracking happy */
mutex_unlock(&stp->st_mutex);
stp = retstp;
}
return stp;
}
static struct nfs4_ol_stateid *
find_or_create_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fi,
struct inode *inode, struct nfs4_ol_stateid *ost,
bool *new)
{
struct nfs4_stid *ns = NULL;
struct nfs4_ol_stateid *lst;
struct nfs4_openowner *oo = openowner(ost->st_stateowner);
struct nfs4_client *clp = oo->oo_owner.so_client;
*new = false;
spin_lock(&clp->cl_lock);
lst = find_lock_stateid(lo, fi);
spin_unlock(&clp->cl_lock);
if (lst != NULL) {
if (nfsd4_lock_ol_stateid(lst) == nfs_ok)
goto out;
nfs4_put_stid(&lst->st_stid);
}
ns = nfs4_alloc_stid(clp, stateid_slab, nfs4_free_lock_stateid);
if (ns == NULL)
return NULL;
lst = init_lock_stateid(openlockstateid(ns), lo, fi, inode, ost);
if (lst == openlockstateid(ns))
*new = true;
else
nfs4_put_stid(ns);
out:
return lst;
}
static int
check_lock_length(u64 offset, u64 length)
{
return ((length == 0) || ((length != NFS4_MAX_UINT64) &&
(length > ~offset)));
}
static void get_lock_access(struct nfs4_ol_stateid *lock_stp, u32 access)
{
struct nfs4_file *fp = lock_stp->st_stid.sc_file;
lockdep_assert_held(&fp->fi_lock);
if (test_access(access, lock_stp))
return;
__nfs4_file_get_access(fp, access);
set_access(access, lock_stp);
}
static __be32
lookup_or_create_lock_state(struct nfsd4_compound_state *cstate,
struct nfs4_ol_stateid *ost,
struct nfsd4_lock *lock,
struct nfs4_ol_stateid **plst, bool *new)
{
__be32 status;
struct nfs4_file *fi = ost->st_stid.sc_file;
struct nfs4_openowner *oo = openowner(ost->st_stateowner);
struct nfs4_client *cl = oo->oo_owner.so_client;
struct inode *inode = d_inode(cstate->current_fh.fh_dentry);
struct nfs4_lockowner *lo;
struct nfs4_ol_stateid *lst;
unsigned int strhashval;
lo = find_lockowner_str(cl, &lock->lk_new_owner);
if (!lo) {
strhashval = ownerstr_hashval(&lock->lk_new_owner);
lo = alloc_init_lock_stateowner(strhashval, cl, ost, lock);
if (lo == NULL)
return nfserr_jukebox;
} else {
/* with an existing lockowner, seqids must be the same */
status = nfserr_bad_seqid;
if (!cstate->minorversion &&
lock->lk_new_lock_seqid != lo->lo_owner.so_seqid)
goto out;
}
lst = find_or_create_lock_stateid(lo, fi, inode, ost, new);
if (lst == NULL) {
status = nfserr_jukebox;
goto out;
}
status = nfs_ok;
*plst = lst;
out:
nfs4_put_stateowner(&lo->lo_owner);
return status;
}
/*
* LOCK operation
*/
__be32
nfsd4_lock(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_lock *lock = &u->lock;
struct nfs4_openowner *open_sop = NULL;
struct nfs4_lockowner *lock_sop = NULL;
struct nfs4_ol_stateid *lock_stp = NULL;
struct nfs4_ol_stateid *open_stp = NULL;
struct nfs4_file *fp;
struct nfsd_file *nf = NULL;
struct nfsd4_blocked_lock *nbl = NULL;
struct file_lock *file_lock = NULL;
struct file_lock *conflock = NULL;
__be32 status = 0;
int lkflg;
int err;
bool new = false;
unsigned char fl_type;
unsigned int fl_flags = FL_POSIX;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n",
(long long) lock->lk_offset,
(long long) lock->lk_length);
if (check_lock_length(lock->lk_offset, lock->lk_length))
return nfserr_inval;
if ((status = fh_verify(rqstp, &cstate->current_fh,
S_IFREG, NFSD_MAY_LOCK))) {
dprintk("NFSD: nfsd4_lock: permission denied!\n");
return status;
}
if (lock->lk_is_new) {
if (nfsd4_has_session(cstate))
/* See rfc 5661 18.10.3: given clientid is ignored: */
memcpy(&lock->lk_new_clientid,
&cstate->session->se_client->cl_clientid,
sizeof(clientid_t));
status = nfserr_stale_clientid;
if (STALE_CLIENTID(&lock->lk_new_clientid, nn))
goto out;
/* validate and update open stateid and open seqid */
status = nfs4_preprocess_confirmed_seqid_op(cstate,
lock->lk_new_open_seqid,
&lock->lk_new_open_stateid,
&open_stp, nn);
if (status)
goto out;
mutex_unlock(&open_stp->st_mutex);
open_sop = openowner(open_stp->st_stateowner);
status = nfserr_bad_stateid;
if (!same_clid(&open_sop->oo_owner.so_client->cl_clientid,
&lock->lk_new_clientid))
goto out;
status = lookup_or_create_lock_state(cstate, open_stp, lock,
&lock_stp, &new);
} else {
status = nfs4_preprocess_seqid_op(cstate,
lock->lk_old_lock_seqid,
&lock->lk_old_lock_stateid,
NFS4_LOCK_STID, &lock_stp, nn);
}
if (status)
goto out;
lock_sop = lockowner(lock_stp->st_stateowner);
lkflg = setlkflg(lock->lk_type);
status = nfs4_check_openmode(lock_stp, lkflg);
if (status)
goto out;
status = nfserr_grace;
if (locks_in_grace(net) && !lock->lk_reclaim)
goto out;
status = nfserr_no_grace;
if (!locks_in_grace(net) && lock->lk_reclaim)
goto out;
fp = lock_stp->st_stid.sc_file;
switch (lock->lk_type) {
case NFS4_READW_LT:
if (nfsd4_has_session(cstate))
fl_flags |= FL_SLEEP;
/* Fallthrough */
case NFS4_READ_LT:
spin_lock(&fp->fi_lock);
nf = find_readable_file_locked(fp);
if (nf)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_READ);
spin_unlock(&fp->fi_lock);
fl_type = F_RDLCK;
break;
case NFS4_WRITEW_LT:
if (nfsd4_has_session(cstate))
fl_flags |= FL_SLEEP;
/* Fallthrough */
case NFS4_WRITE_LT:
spin_lock(&fp->fi_lock);
nf = find_writeable_file_locked(fp);
if (nf)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_WRITE);
spin_unlock(&fp->fi_lock);
fl_type = F_WRLCK;
break;
default:
status = nfserr_inval;
goto out;
}
if (!nf) {
status = nfserr_openmode;
goto out;
}
nbl = find_or_allocate_block(lock_sop, &fp->fi_fhandle, nn);
if (!nbl) {
dprintk("NFSD: %s: unable to allocate block!\n", __func__);
status = nfserr_jukebox;
goto out;
}
file_lock = &nbl->nbl_lock;
file_lock->fl_type = fl_type;
file_lock->fl_owner = (fl_owner_t)lockowner(nfs4_get_stateowner(&lock_sop->lo_owner));
file_lock->fl_pid = current->tgid;
file_lock->fl_file = nf->nf_file;
file_lock->fl_flags = fl_flags;
file_lock->fl_lmops = &nfsd_posix_mng_ops;
file_lock->fl_start = lock->lk_offset;
file_lock->fl_end = last_byte_offset(lock->lk_offset, lock->lk_length);
nfs4_transform_lock_offset(file_lock);
conflock = locks_alloc_lock();
if (!conflock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto out;
}
if (fl_flags & FL_SLEEP) {
nbl->nbl_time = jiffies;
spin_lock(&nn->blocked_locks_lock);
list_add_tail(&nbl->nbl_list, &lock_sop->lo_blocked);
list_add_tail(&nbl->nbl_lru, &nn->blocked_locks_lru);
spin_unlock(&nn->blocked_locks_lock);
}
err = vfs_lock_file(nf->nf_file, F_SETLK, file_lock, conflock);
switch (err) {
case 0: /* success! */
nfs4_inc_and_copy_stateid(&lock->lk_resp_stateid, &lock_stp->st_stid);
status = 0;
if (lock->lk_reclaim)
nn->somebody_reclaimed = true;
break;
case FILE_LOCK_DEFERRED:
nbl = NULL;
/* Fallthrough */
case -EAGAIN: /* conflock holds conflicting lock */
status = nfserr_denied;
dprintk("NFSD: nfsd4_lock: conflicting lock found!\n");
nfs4_set_lock_denied(conflock, &lock->lk_denied);
break;
case -EDEADLK:
status = nfserr_deadlock;
break;
default:
dprintk("NFSD: nfsd4_lock: vfs_lock_file() failed! status %d\n",err);
status = nfserrno(err);
break;
}
out:
if (nbl) {
/* dequeue it if we queued it before */
if (fl_flags & FL_SLEEP) {
spin_lock(&nn->blocked_locks_lock);
list_del_init(&nbl->nbl_list);
list_del_init(&nbl->nbl_lru);
spin_unlock(&nn->blocked_locks_lock);
}
free_blocked_lock(nbl);
}
if (nf)
nfsd_file_put(nf);
if (lock_stp) {
/* Bump seqid manually if the 4.0 replay owner is openowner */
if (cstate->replay_owner &&
cstate->replay_owner != &lock_sop->lo_owner &&
seqid_mutating_err(ntohl(status)))
lock_sop->lo_owner.so_seqid++;
/*
* If this is a new, never-before-used stateid, and we are
* returning an error, then just go ahead and release it.
*/
if (status && new)
release_lock_stateid(lock_stp);
mutex_unlock(&lock_stp->st_mutex);
nfs4_put_stid(&lock_stp->st_stid);
}
if (open_stp)
nfs4_put_stid(&open_stp->st_stid);
nfsd4_bump_seqid(cstate, status);
if (conflock)
locks_free_lock(conflock);
return status;
}
/*
* The NFSv4 spec allows a client to do a LOCKT without holding an OPEN,
* so we do a temporary open here just to get an open file to pass to
* vfs_test_lock. (Arguably perhaps test_lock should be done with an
* inode operation.)
*/
static __be32 nfsd_test_lock(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file_lock *lock)
{
struct nfsd_file *nf;
__be32 err = nfsd_file_acquire(rqstp, fhp, NFSD_MAY_READ, &nf);
if (!err) {
err = nfserrno(vfs_test_lock(nf->nf_file, lock));
nfsd_file_put(nf);
}
return err;
}
/*
* LOCKT operation
*/
__be32
nfsd4_lockt(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_lockt *lockt = &u->lockt;
struct file_lock *file_lock = NULL;
struct nfs4_lockowner *lo = NULL;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if (locks_in_grace(SVC_NET(rqstp)))
return nfserr_grace;
if (check_lock_length(lockt->lt_offset, lockt->lt_length))
return nfserr_inval;
if (!nfsd4_has_session(cstate)) {
status = lookup_clientid(&lockt->lt_clientid, cstate, nn);
if (status)
goto out;
}
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0)))
goto out;
file_lock = locks_alloc_lock();
if (!file_lock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto out;
}
switch (lockt->lt_type) {
case NFS4_READ_LT:
case NFS4_READW_LT:
file_lock->fl_type = F_RDLCK;
break;
case NFS4_WRITE_LT:
case NFS4_WRITEW_LT:
file_lock->fl_type = F_WRLCK;
break;
default:
dprintk("NFSD: nfs4_lockt: bad lock type!\n");
status = nfserr_inval;
goto out;
}
lo = find_lockowner_str(cstate->clp, &lockt->lt_owner);
if (lo)
file_lock->fl_owner = (fl_owner_t)lo;
file_lock->fl_pid = current->tgid;
file_lock->fl_flags = FL_POSIX;
file_lock->fl_start = lockt->lt_offset;
file_lock->fl_end = last_byte_offset(lockt->lt_offset, lockt->lt_length);
nfs4_transform_lock_offset(file_lock);
status = nfsd_test_lock(rqstp, &cstate->current_fh, file_lock);
if (status)
goto out;
if (file_lock->fl_type != F_UNLCK) {
status = nfserr_denied;
nfs4_set_lock_denied(file_lock, &lockt->lt_denied);
}
out:
if (lo)
nfs4_put_stateowner(&lo->lo_owner);
if (file_lock)
locks_free_lock(file_lock);
return status;
}
__be32
nfsd4_locku(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_locku *locku = &u->locku;
struct nfs4_ol_stateid *stp;
struct nfsd_file *nf = NULL;
struct file_lock *file_lock = NULL;
__be32 status;
int err;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n",
(long long) locku->lu_offset,
(long long) locku->lu_length);
if (check_lock_length(locku->lu_offset, locku->lu_length))
return nfserr_inval;
status = nfs4_preprocess_seqid_op(cstate, locku->lu_seqid,
&locku->lu_stateid, NFS4_LOCK_STID,
&stp, nn);
if (status)
goto out;
nf = find_any_file(stp->st_stid.sc_file);
if (!nf) {
status = nfserr_lock_range;
goto put_stateid;
}
file_lock = locks_alloc_lock();
if (!file_lock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto put_file;
}
file_lock->fl_type = F_UNLCK;
file_lock->fl_owner = (fl_owner_t)lockowner(nfs4_get_stateowner(stp->st_stateowner));
file_lock->fl_pid = current->tgid;
file_lock->fl_file = nf->nf_file;
file_lock->fl_flags = FL_POSIX;
file_lock->fl_lmops = &nfsd_posix_mng_ops;
file_lock->fl_start = locku->lu_offset;
file_lock->fl_end = last_byte_offset(locku->lu_offset,
locku->lu_length);
nfs4_transform_lock_offset(file_lock);
err = vfs_lock_file(nf->nf_file, F_SETLK, file_lock, NULL);
if (err) {
dprintk("NFSD: nfs4_locku: vfs_lock_file failed!\n");
goto out_nfserr;
}
nfs4_inc_and_copy_stateid(&locku->lu_stateid, &stp->st_stid);
put_file:
nfsd_file_put(nf);
put_stateid:
mutex_unlock(&stp->st_mutex);
nfs4_put_stid(&stp->st_stid);
out:
nfsd4_bump_seqid(cstate, status);
if (file_lock)
locks_free_lock(file_lock);
return status;
out_nfserr:
status = nfserrno(err);
goto put_file;
}
/*
* returns
* true: locks held by lockowner
* false: no locks held by lockowner
*/
static bool
check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner)
{
struct file_lock *fl;
int status = false;
struct nfsd_file *nf = find_any_file(fp);
struct inode *inode;
struct file_lock_context *flctx;
if (!nf) {
/* Any valid lock stateid should have some sort of access */
WARN_ON_ONCE(1);
return status;
}
inode = locks_inode(nf->nf_file);
flctx = inode->i_flctx;
if (flctx && !list_empty_careful(&flctx->flc_posix)) {
spin_lock(&flctx->flc_lock);
list_for_each_entry(fl, &flctx->flc_posix, fl_list) {
if (fl->fl_owner == (fl_owner_t)lowner) {
status = true;
break;
}
}
spin_unlock(&flctx->flc_lock);
}
nfsd_file_put(nf);
return status;
}
__be32
nfsd4_release_lockowner(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_release_lockowner *rlockowner = &u->release_lockowner;
clientid_t *clid = &rlockowner->rl_clientid;
struct nfs4_stateowner *sop;
struct nfs4_lockowner *lo = NULL;
struct nfs4_ol_stateid *stp;
struct xdr_netobj *owner = &rlockowner->rl_owner;
unsigned int hashval = ownerstr_hashval(owner);
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
struct nfs4_client *clp;
LIST_HEAD (reaplist);
dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n",
clid->cl_boot, clid->cl_id);
status = lookup_clientid(clid, cstate, nn);
if (status)
return status;
clp = cstate->clp;
/* Find the matching lock stateowner */
spin_lock(&clp->cl_lock);
list_for_each_entry(sop, &clp->cl_ownerstr_hashtbl[hashval],
so_strhash) {
if (sop->so_is_open_owner || !same_owner_str(sop, owner))
continue;
/* see if there are still any locks associated with it */
lo = lockowner(sop);
list_for_each_entry(stp, &sop->so_stateids, st_perstateowner) {
if (check_for_locks(stp->st_stid.sc_file, lo)) {
status = nfserr_locks_held;
spin_unlock(&clp->cl_lock);
return status;
}
}
nfs4_get_stateowner(sop);
break;
}
if (!lo) {
spin_unlock(&clp->cl_lock);
return status;
}
unhash_lockowner_locked(lo);
while (!list_empty(&lo->lo_owner.so_stateids)) {
stp = list_first_entry(&lo->lo_owner.so_stateids,
struct nfs4_ol_stateid,
st_perstateowner);
WARN_ON(!unhash_lock_stateid(stp));
put_ol_stateid_locked(stp, &reaplist);
}
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
remove_blocked_locks(lo);
nfs4_put_stateowner(&lo->lo_owner);
return status;
}
static inline struct nfs4_client_reclaim *
alloc_reclaim(void)
{
return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL);
}
bool
nfs4_has_reclaimed_state(struct xdr_netobj name, struct nfsd_net *nn)
{
struct nfs4_client_reclaim *crp;
crp = nfsd4_find_reclaim_client(name, nn);
return (crp && crp->cr_clp);
}
/*
* failure => all reset bets are off, nfserr_no_grace...
*
* The caller is responsible for freeing name.data if NULL is returned (it
* will be freed in nfs4_remove_reclaim_record in the normal case).
*/
struct nfs4_client_reclaim *
nfs4_client_to_reclaim(struct xdr_netobj name, struct xdr_netobj princhash,
struct nfsd_net *nn)
{
unsigned int strhashval;
struct nfs4_client_reclaim *crp;
dprintk("NFSD nfs4_client_to_reclaim NAME: %.*s\n", name.len, name.data);
crp = alloc_reclaim();
if (crp) {
strhashval = clientstr_hashval(name);
INIT_LIST_HEAD(&crp->cr_strhash);
list_add(&crp->cr_strhash, &nn->reclaim_str_hashtbl[strhashval]);
crp->cr_name.data = name.data;
crp->cr_name.len = name.len;
crp->cr_princhash.data = princhash.data;
crp->cr_princhash.len = princhash.len;
crp->cr_clp = NULL;
nn->reclaim_str_hashtbl_size++;
}
return crp;
}
void
nfs4_remove_reclaim_record(struct nfs4_client_reclaim *crp, struct nfsd_net *nn)
{
list_del(&crp->cr_strhash);
kfree(crp->cr_name.data);
kfree(crp->cr_princhash.data);
kfree(crp);
nn->reclaim_str_hashtbl_size--;
}
void
nfs4_release_reclaim(struct nfsd_net *nn)
{
struct nfs4_client_reclaim *crp = NULL;
int i;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->reclaim_str_hashtbl[i])) {
crp = list_entry(nn->reclaim_str_hashtbl[i].next,
struct nfs4_client_reclaim, cr_strhash);
nfs4_remove_reclaim_record(crp, nn);
}
}
WARN_ON_ONCE(nn->reclaim_str_hashtbl_size);
}
/*
* called from OPEN, CLAIM_PREVIOUS with a new clientid. */
struct nfs4_client_reclaim *
nfsd4_find_reclaim_client(struct xdr_netobj name, struct nfsd_net *nn)
{
unsigned int strhashval;
struct nfs4_client_reclaim *crp = NULL;
dprintk("NFSD: nfs4_find_reclaim_client for name %.*s\n", name.len, name.data);
strhashval = clientstr_hashval(name);
list_for_each_entry(crp, &nn->reclaim_str_hashtbl[strhashval], cr_strhash) {
if (compare_blob(&crp->cr_name, &name) == 0) {
return crp;
}
}
return NULL;
}
/*
* Called from OPEN. Look for clientid in reclaim list.
*/
__be32
nfs4_check_open_reclaim(clientid_t *clid,
struct nfsd4_compound_state *cstate,
struct nfsd_net *nn)
{
__be32 status;
/* find clientid in conf_id_hashtbl */
status = lookup_clientid(clid, cstate, nn);
if (status)
return nfserr_reclaim_bad;
if (test_bit(NFSD4_CLIENT_RECLAIM_COMPLETE, &cstate->clp->cl_flags))
return nfserr_no_grace;
if (nfsd4_client_record_check(cstate->clp))
return nfserr_reclaim_bad;
return nfs_ok;
}
#ifdef CONFIG_NFSD_FAULT_INJECTION
static inline void
put_client(struct nfs4_client *clp)
{
atomic_dec(&clp->cl_rpc_users);
}
static struct nfs4_client *
nfsd_find_client(struct sockaddr_storage *addr, size_t addr_size)
{
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return NULL;
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
if (memcmp(&clp->cl_addr, addr, addr_size) == 0)
return clp;
}
return NULL;
}
u64
nfsd_inject_print_clients(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
char buf[INET6_ADDRSTRLEN];
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf));
pr_info("NFS Client: %s\n", buf);
++count;
}
spin_unlock(&nn->client_lock);
return count;
}
u64
nfsd_inject_forget_client(struct sockaddr_storage *addr, size_t addr_size)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp) {
if (mark_client_expired_locked(clp) == nfs_ok)
++count;
else
clp = NULL;
}
spin_unlock(&nn->client_lock);
if (clp)
expire_client(clp);
return count;
}
u64
nfsd_inject_forget_clients(u64 max)
{
u64 count = 0;
struct nfs4_client *clp, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry_safe(clp, next, &nn->client_lru, cl_lru) {
if (mark_client_expired_locked(clp) == nfs_ok) {
list_add(&clp->cl_lru, &reaplist);
if (max != 0 && ++count >= max)
break;
}
}
spin_unlock(&nn->client_lock);
list_for_each_entry_safe(clp, next, &reaplist, cl_lru)
expire_client(clp);
return count;
}
static void nfsd_print_count(struct nfs4_client *clp, unsigned int count,
const char *type)
{
char buf[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf));
printk(KERN_INFO "NFS Client: %s has %u %s\n", buf, count, type);
}
static void
nfsd_inject_add_lock_to_list(struct nfs4_ol_stateid *lst,
struct list_head *collect)
{
struct nfs4_client *clp = lst->st_stid.sc_client;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!collect)
return;
lockdep_assert_held(&nn->client_lock);
atomic_inc(&clp->cl_rpc_users);
list_add(&lst->st_locks, collect);
}
static u64 nfsd_foreach_client_lock(struct nfs4_client *clp, u64 max,
struct list_head *collect,
bool (*func)(struct nfs4_ol_stateid *))
{
struct nfs4_openowner *oop;
struct nfs4_ol_stateid *stp, *st_next;
struct nfs4_ol_stateid *lst, *lst_next;
u64 count = 0;
spin_lock(&clp->cl_lock);
list_for_each_entry(oop, &clp->cl_openowners, oo_perclient) {
list_for_each_entry_safe(stp, st_next,
&oop->oo_owner.so_stateids, st_perstateowner) {
list_for_each_entry_safe(lst, lst_next,
&stp->st_locks, st_locks) {
if (func) {
if (func(lst))
nfsd_inject_add_lock_to_list(lst,
collect);
}
++count;
/*
* Despite the fact that these functions deal
* with 64-bit integers for "count", we must
* ensure that it doesn't blow up the
* clp->cl_rpc_users. Throw a warning if we
* start to approach INT_MAX here.
*/
WARN_ON_ONCE(count == (INT_MAX / 2));
if (count == max)
goto out;
}
}
}
out:
spin_unlock(&clp->cl_lock);
return count;
}
static u64
nfsd_collect_client_locks(struct nfs4_client *clp, struct list_head *collect,
u64 max)
{
return nfsd_foreach_client_lock(clp, max, collect, unhash_lock_stateid);
}
static u64
nfsd_print_client_locks(struct nfs4_client *clp)
{
u64 count = nfsd_foreach_client_lock(clp, 0, NULL, NULL);
nfsd_print_count(clp, count, "locked files");
return count;
}
u64
nfsd_inject_print_locks(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru)
count += nfsd_print_client_locks(clp);
spin_unlock(&nn->client_lock);
return count;
}
static void
nfsd_reap_locks(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_ol_stateid *stp, *next;
list_for_each_entry_safe(stp, next, reaplist, st_locks) {
list_del_init(&stp->st_locks);
clp = stp->st_stid.sc_client;
nfs4_put_stid(&stp->st_stid);
put_client(clp);
}
}
u64
nfsd_inject_forget_client_locks(struct sockaddr_storage *addr, size_t addr_size)
{
unsigned int count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_collect_client_locks(clp, &reaplist, 0);
spin_unlock(&nn->client_lock);
nfsd_reap_locks(&reaplist);
return count;
}
u64
nfsd_inject_forget_locks(u64 max)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
count += nfsd_collect_client_locks(clp, &reaplist, max - count);
if (max != 0 && count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_reap_locks(&reaplist);
return count;
}
static u64
nfsd_foreach_client_openowner(struct nfs4_client *clp, u64 max,
struct list_head *collect,
void (*func)(struct nfs4_openowner *))
{
struct nfs4_openowner *oop, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
u64 count = 0;
lockdep_assert_held(&nn->client_lock);
spin_lock(&clp->cl_lock);
list_for_each_entry_safe(oop, next, &clp->cl_openowners, oo_perclient) {
if (func) {
func(oop);
if (collect) {
atomic_inc(&clp->cl_rpc_users);
list_add(&oop->oo_perclient, collect);
}
}
++count;
/*
* Despite the fact that these functions deal with
* 64-bit integers for "count", we must ensure that
* it doesn't blow up the clp->cl_rpc_users. Throw a
* warning if we start to approach INT_MAX here.
*/
WARN_ON_ONCE(count == (INT_MAX / 2));
if (count == max)
break;
}
spin_unlock(&clp->cl_lock);
return count;
}
static u64
nfsd_print_client_openowners(struct nfs4_client *clp)
{
u64 count = nfsd_foreach_client_openowner(clp, 0, NULL, NULL);
nfsd_print_count(clp, count, "openowners");
return count;
}
static u64
nfsd_collect_client_openowners(struct nfs4_client *clp,
struct list_head *collect, u64 max)
{
return nfsd_foreach_client_openowner(clp, max, collect,
unhash_openowner_locked);
}
u64
nfsd_inject_print_openowners(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru)
count += nfsd_print_client_openowners(clp);
spin_unlock(&nn->client_lock);
return count;
}
static void
nfsd_reap_openowners(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_openowner *oop, *next;
list_for_each_entry_safe(oop, next, reaplist, oo_perclient) {
list_del_init(&oop->oo_perclient);
clp = oop->oo_owner.so_client;
release_openowner(oop);
put_client(clp);
}
}
u64
nfsd_inject_forget_client_openowners(struct sockaddr_storage *addr,
size_t addr_size)
{
unsigned int count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_collect_client_openowners(clp, &reaplist, 0);
spin_unlock(&nn->client_lock);
nfsd_reap_openowners(&reaplist);
return count;
}
u64
nfsd_inject_forget_openowners(u64 max)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
count += nfsd_collect_client_openowners(clp, &reaplist,
max - count);
if (max != 0 && count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_reap_openowners(&reaplist);
return count;
}
static u64 nfsd_find_all_delegations(struct nfs4_client *clp, u64 max,
struct list_head *victims)
{
struct nfs4_delegation *dp, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
u64 count = 0;
lockdep_assert_held(&nn->client_lock);
spin_lock(&state_lock);
list_for_each_entry_safe(dp, next, &clp->cl_delegations, dl_perclnt) {
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
if (victims) {
/*
* It's not safe to mess with delegations that have a
* non-zero dl_time. They might have already been broken
* and could be processed by the laundromat outside of
* the state_lock. Just leave them be.
*/
if (dp->dl_time != 0)
continue;
atomic_inc(&clp->cl_rpc_users);
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, victims);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
}
++count;
/*
* Despite the fact that these functions deal with
* 64-bit integers for "count", we must ensure that
* it doesn't blow up the clp->cl_rpc_users. Throw a
* warning if we start to approach INT_MAX here.
*/
WARN_ON_ONCE(count == (INT_MAX / 2));
if (count == max)
break;
}
spin_unlock(&state_lock);
return count;
}
static u64
nfsd_print_client_delegations(struct nfs4_client *clp)
{
u64 count = nfsd_find_all_delegations(clp, 0, NULL);
nfsd_print_count(clp, count, "delegations");
return count;
}
u64
nfsd_inject_print_delegations(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru)
count += nfsd_print_client_delegations(clp);
spin_unlock(&nn->client_lock);
return count;
}
static void
nfsd_forget_delegations(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_delegation *dp, *next;
list_for_each_entry_safe(dp, next, reaplist, dl_recall_lru) {
list_del_init(&dp->dl_recall_lru);
clp = dp->dl_stid.sc_client;
revoke_delegation(dp);
put_client(clp);
}
}
u64
nfsd_inject_forget_client_delegations(struct sockaddr_storage *addr,
size_t addr_size)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_find_all_delegations(clp, 0, &reaplist);
spin_unlock(&nn->client_lock);
nfsd_forget_delegations(&reaplist);
return count;
}
u64
nfsd_inject_forget_delegations(u64 max)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
count += nfsd_find_all_delegations(clp, max - count, &reaplist);
if (max != 0 && count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_forget_delegations(&reaplist);
return count;
}
static void
nfsd_recall_delegations(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_delegation *dp, *next;
list_for_each_entry_safe(dp, next, reaplist, dl_recall_lru) {
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
list_del_init(&dp->dl_recall_lru);
clp = dp->dl_stid.sc_client;
/*
* We skipped all entries that had a zero dl_time before,
* so we can now reset the dl_time back to 0. If a delegation
* break comes in now, then it won't make any difference since
* we're recalling it either way.
*/
spin_lock(&state_lock);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
dp->dl_time = 0;
spin_unlock(&state_lock);
nfsd_break_one_deleg(dp);
put_client(clp);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
}
}
u64
nfsd_inject_recall_client_delegations(struct sockaddr_storage *addr,
size_t addr_size)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_find_all_delegations(clp, 0, &reaplist);
spin_unlock(&nn->client_lock);
nfsd_recall_delegations(&reaplist);
return count;
}
u64
nfsd_inject_recall_delegations(u64 max)
{
u64 count = 0;
struct nfs4_client *clp, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry_safe(clp, next, &nn->client_lru, cl_lru) {
count += nfsd_find_all_delegations(clp, max - count, &reaplist);
if (max != 0 && ++count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_recall_delegations(&reaplist);
return count;
}
#endif /* CONFIG_NFSD_FAULT_INJECTION */
/*
* Since the lifetime of a delegation isn't limited to that of an open, a
* client may quite reasonably hang on to a delegation as long as it has
* the inode cached. This becomes an obvious problem the first time a
* client's inode cache approaches the size of the server's total memory.
*
* For now we avoid this problem by imposing a hard limit on the number
* of delegations, which varies according to the server's memory size.
*/
static void
set_max_delegations(void)
{
/*
* Allow at most 4 delegations per megabyte of RAM. Quick
* estimates suggest that in the worst case (where every delegation
* is for a different inode), a delegation could take about 1.5K,
* giving a worst case usage of about 6% of memory.
*/
max_delegations = nr_free_buffer_pages() >> (20 - 2 - PAGE_SHIFT);
}
static int nfs4_state_create_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
int i;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 20:55:00 +00:00
nn->conf_id_hashtbl = kmalloc_array(CLIENT_HASH_SIZE,
sizeof(struct list_head),
GFP_KERNEL);
if (!nn->conf_id_hashtbl)
goto err;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 20:55:00 +00:00
nn->unconf_id_hashtbl = kmalloc_array(CLIENT_HASH_SIZE,
sizeof(struct list_head),
GFP_KERNEL);
if (!nn->unconf_id_hashtbl)
goto err_unconf_id;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 20:55:00 +00:00
nn->sessionid_hashtbl = kmalloc_array(SESSION_HASH_SIZE,
sizeof(struct list_head),
GFP_KERNEL);
if (!nn->sessionid_hashtbl)
goto err_sessionid;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
INIT_LIST_HEAD(&nn->conf_id_hashtbl[i]);
INIT_LIST_HEAD(&nn->unconf_id_hashtbl[i]);
}
for (i = 0; i < SESSION_HASH_SIZE; i++)
INIT_LIST_HEAD(&nn->sessionid_hashtbl[i]);
nn->conf_name_tree = RB_ROOT;
nn->unconf_name_tree = RB_ROOT;
nn->boot_time = get_seconds();
nn->grace_ended = false;
nn->nfsd4_manager.block_opens = true;
INIT_LIST_HEAD(&nn->nfsd4_manager.list);
INIT_LIST_HEAD(&nn->client_lru);
INIT_LIST_HEAD(&nn->close_lru);
INIT_LIST_HEAD(&nn->del_recall_lru);
spin_lock_init(&nn->client_lock);
spin_lock_init(&nn->s2s_cp_lock);
idr_init(&nn->s2s_cp_stateids);
spin_lock_init(&nn->blocked_locks_lock);
INIT_LIST_HEAD(&nn->blocked_locks_lru);
INIT_DELAYED_WORK(&nn->laundromat_work, laundromat_main);
get_net(net);
return 0;
err_sessionid:
kfree(nn->unconf_id_hashtbl);
err_unconf_id:
kfree(nn->conf_id_hashtbl);
err:
return -ENOMEM;
}
static void
nfs4_state_destroy_net(struct net *net)
{
int i;
struct nfs4_client *clp = NULL;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->conf_id_hashtbl[i])) {
clp = list_entry(nn->conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash);
destroy_client(clp);
}
}
WARN_ON(!list_empty(&nn->blocked_locks_lru));
NFSD: Traverse unconfirmed client through hash-table When stopping nfsd, I got BUG messages, and soft lockup messages, The problem is cuased by double rb_erase() in nfs4_state_destroy_net() and destroy_client(). This patch just let nfsd traversing unconfirmed client through hash-table instead of rbtree. [ 2325.021995] BUG: unable to handle kernel NULL pointer dereference at (null) [ 2325.022809] IP: [<ffffffff8133c18c>] rb_erase+0x14c/0x390 [ 2325.022982] PGD 7a91b067 PUD 7a33d067 PMD 0 [ 2325.022982] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 2325.022982] Modules linked in: nfsd(OF) cfg80211 rfkill bridge stp llc snd_intel8x0 snd_ac97_codec ac97_bus auth_rpcgss nfs_acl serio_raw e1000 i2c_piix4 ppdev snd_pcm snd_timer lockd pcspkr joydev parport_pc snd parport i2c_core soundcore microcode sunrpc ata_generic pata_acpi [last unloaded: nfsd] [ 2325.022982] CPU: 1 PID: 2123 Comm: nfsd Tainted: GF O 3.14.0-rc8+ #2 [ 2325.022982] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 [ 2325.022982] task: ffff88007b384800 ti: ffff8800797f6000 task.ti: ffff8800797f6000 [ 2325.022982] RIP: 0010:[<ffffffff8133c18c>] [<ffffffff8133c18c>] rb_erase+0x14c/0x390 [ 2325.022982] RSP: 0018:ffff8800797f7d98 EFLAGS: 00010246 [ 2325.022982] RAX: ffff880079c1f010 RBX: ffff880079f4c828 RCX: 0000000000000000 [ 2325.022982] RDX: 0000000000000000 RSI: ffff880079bcb070 RDI: ffff880079f4c810 [ 2325.022982] RBP: ffff8800797f7d98 R08: 0000000000000000 R09: ffff88007964fc70 [ 2325.022982] R10: 0000000000000000 R11: 0000000000000400 R12: ffff880079f4c800 [ 2325.022982] R13: ffff880079bcb000 R14: ffff8800797f7da8 R15: ffff880079f4c860 [ 2325.022982] FS: 0000000000000000(0000) GS:ffff88007f900000(0000) knlGS:0000000000000000 [ 2325.022982] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2325.022982] CR2: 0000000000000000 CR3: 000000007a3ef000 CR4: 00000000000006e0 [ 2325.022982] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2325.022982] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2325.022982] Stack: [ 2325.022982] ffff8800797f7de0 ffffffffa0191c6e ffff8800797f7da8 ffff8800797f7da8 [ 2325.022982] ffff880079f4c810 ffff880079bcb000 ffffffff81cc26c0 ffff880079c1f010 [ 2325.022982] ffff880079bcb070 ffff8800797f7e28 ffffffffa01977f2 ffff8800797f7df0 [ 2325.022982] Call Trace: [ 2325.022982] [<ffffffffa0191c6e>] destroy_client+0x32e/0x3b0 [nfsd] [ 2325.022982] [<ffffffffa01977f2>] nfs4_state_shutdown_net+0x1a2/0x220 [nfsd] [ 2325.022982] [<ffffffffa01700b8>] nfsd_shutdown_net+0x38/0x70 [nfsd] [ 2325.022982] [<ffffffffa017013e>] nfsd_last_thread+0x4e/0x80 [nfsd] [ 2325.022982] [<ffffffffa001f1eb>] svc_shutdown_net+0x2b/0x30 [sunrpc] [ 2325.022982] [<ffffffffa017064b>] nfsd_destroy+0x5b/0x80 [nfsd] [ 2325.022982] [<ffffffffa0170773>] nfsd+0x103/0x130 [nfsd] [ 2325.022982] [<ffffffffa0170670>] ? nfsd_destroy+0x80/0x80 [nfsd] [ 2325.022982] [<ffffffff810a8232>] kthread+0xd2/0xf0 [ 2325.022982] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 2325.022982] [<ffffffff816c493c>] ret_from_fork+0x7c/0xb0 [ 2325.022982] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 2325.022982] Code: 48 83 e1 fc 48 89 10 0f 84 02 01 00 00 48 3b 41 10 0f 84 08 01 00 00 48 89 51 08 48 89 fa e9 74 ff ff ff 0f 1f 40 00 48 8b 50 10 <f6> 02 01 0f 84 93 00 00 00 48 8b 7a 10 48 85 ff 74 05 f6 07 01 [ 2325.022982] RIP [<ffffffff8133c18c>] rb_erase+0x14c/0x390 [ 2325.022982] RSP <ffff8800797f7d98> [ 2325.022982] CR2: 0000000000000000 [ 2325.022982] ---[ end trace 28c27ed011655e57 ]--- [ 228.064071] BUG: soft lockup - CPU#0 stuck for 22s! [nfsd:558] [ 228.064428] Modules linked in: ip6t_rpfilter ip6t_REJECT cfg80211 xt_conntrack rfkill ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw nfsd(OF) auth_rpcgss nfs_acl lockd snd_intel8x0 snd_ac97_codec ac97_bus joydev snd_pcm snd_timer e1000 sunrpc snd ppdev parport_pc serio_raw pcspkr i2c_piix4 microcode parport soundcore i2c_core ata_generic pata_acpi [ 228.064539] CPU: 0 PID: 558 Comm: nfsd Tainted: GF O 3.14.0-rc8+ #2 [ 228.064539] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 [ 228.064539] task: ffff880076adec00 ti: ffff880074616000 task.ti: ffff880074616000 [ 228.064539] RIP: 0010:[<ffffffff8133ba17>] [<ffffffff8133ba17>] rb_next+0x27/0x50 [ 228.064539] RSP: 0018:ffff880074617de0 EFLAGS: 00000282 [ 228.064539] RAX: ffff880074478010 RBX: ffff88007446f860 RCX: 0000000000000014 [ 228.064539] RDX: ffff880074478010 RSI: 0000000000000000 RDI: ffff880074478010 [ 228.064539] RBP: ffff880074617de0 R08: 0000000000000000 R09: 0000000000000012 [ 228.064539] R10: 0000000000000001 R11: ffffffffffffffec R12: ffffea0001d11a00 [ 228.064539] R13: ffff88007f401400 R14: ffff88007446f800 R15: ffff880074617d50 [ 228.064539] FS: 0000000000000000(0000) GS:ffff88007f800000(0000) knlGS:0000000000000000 [ 228.064539] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 228.064539] CR2: 00007fe9ac6ec000 CR3: 000000007a5d6000 CR4: 00000000000006f0 [ 228.064539] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 228.064539] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 228.064539] Stack: [ 228.064539] ffff880074617e28 ffffffffa01ab7db ffff880074617df0 ffff880074617df0 [ 228.064539] ffff880079273000 ffffffff81cc26c0 ffffffff81cc26c0 0000000000000000 [ 228.064539] 0000000000000000 ffff880074617e48 ffffffffa01840b8 ffffffff81cc26c0 [ 228.064539] Call Trace: [ 228.064539] [<ffffffffa01ab7db>] nfs4_state_shutdown_net+0x18b/0x220 [nfsd] [ 228.064539] [<ffffffffa01840b8>] nfsd_shutdown_net+0x38/0x70 [nfsd] [ 228.064539] [<ffffffffa018413e>] nfsd_last_thread+0x4e/0x80 [nfsd] [ 228.064539] [<ffffffffa00aa1eb>] svc_shutdown_net+0x2b/0x30 [sunrpc] [ 228.064539] [<ffffffffa018464b>] nfsd_destroy+0x5b/0x80 [nfsd] [ 228.064539] [<ffffffffa0184773>] nfsd+0x103/0x130 [nfsd] [ 228.064539] [<ffffffffa0184670>] ? nfsd_destroy+0x80/0x80 [nfsd] [ 228.064539] [<ffffffff810a8232>] kthread+0xd2/0xf0 [ 228.064539] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 228.064539] [<ffffffff816c493c>] ret_from_fork+0x7c/0xb0 [ 228.064539] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 228.064539] Code: 1f 44 00 00 55 48 8b 17 48 89 e5 48 39 d7 74 3b 48 8b 47 08 48 85 c0 75 0e eb 25 66 0f 1f 84 00 00 00 00 00 48 89 d0 48 8b 50 10 <48> 85 d2 75 f4 5d c3 66 90 48 3b 78 08 75 f6 48 8b 10 48 89 c7 Fixes: ac55fdc408039 (nfsd: move the confirmed and unconfirmed hlists...) Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Cc: stable@vger.kernel.org Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-03-26 14:09:30 +00:00
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->unconf_id_hashtbl[i])) {
clp = list_entry(nn->unconf_id_hashtbl[i].next, struct nfs4_client, cl_idhash);
destroy_client(clp);
}
}
kfree(nn->sessionid_hashtbl);
kfree(nn->unconf_id_hashtbl);
kfree(nn->conf_id_hashtbl);
put_net(net);
}
int
nfs4_state_start_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
int ret;
ret = nfs4_state_create_net(net);
if (ret)
return ret;
locks_start_grace(net, &nn->nfsd4_manager);
nfsd4_client_tracking_init(net);
if (nn->track_reclaim_completes && nn->reclaim_str_hashtbl_size == 0)
goto skip_grace;
printk(KERN_INFO "NFSD: starting %ld-second grace period (net %x)\n",
nn->nfsd4_grace, net->ns.inum);
queue_delayed_work(laundry_wq, &nn->laundromat_work, nn->nfsd4_grace * HZ);
return 0;
skip_grace:
printk(KERN_INFO "NFSD: no clients to reclaim, skipping NFSv4 grace period (net %x)\n",
net->ns.inum);
queue_delayed_work(laundry_wq, &nn->laundromat_work, nn->nfsd4_lease * HZ);
nfsd4_end_grace(nn);
return 0;
}
/* initialization to perform when the nfsd service is started: */
int
nfs4_state_start(void)
{
int ret;
laundry_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, "nfsd4");
if (laundry_wq == NULL) {
ret = -ENOMEM;
goto out;
}
ret = nfsd4_create_callback_queue();
if (ret)
goto out_free_laundry;
set_max_delegations();
return 0;
out_free_laundry:
destroy_workqueue(laundry_wq);
out:
return ret;
}
void
nfs4_state_shutdown_net(struct net *net)
{
struct nfs4_delegation *dp = NULL;
struct list_head *pos, *next, reaplist;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
cancel_delayed_work_sync(&nn->laundromat_work);
locks_end_grace(&nn->nfsd4_manager);
INIT_LIST_HEAD(&reaplist);
spin_lock(&state_lock);
list_for_each_safe(pos, next, &nn->del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
list_for_each_safe(pos, next, &reaplist) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
destroy_unhashed_deleg(dp);
}
nfsd4_client_tracking_exit(net);
nfs4_state_destroy_net(net);
}
void
nfs4_state_shutdown(void)
{
destroy_workqueue(laundry_wq);
nfsd4_destroy_callback_queue();
}
static void
get_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid)
{
if (HAS_STATE_ID(cstate, CURRENT_STATE_ID_FLAG) && CURRENT_STATEID(stateid))
memcpy(stateid, &cstate->current_stateid, sizeof(stateid_t));
}
static void
put_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid)
{
if (cstate->minorversion) {
memcpy(&cstate->current_stateid, stateid, sizeof(stateid_t));
SET_STATE_ID(cstate, CURRENT_STATE_ID_FLAG);
}
}
void
clear_current_stateid(struct nfsd4_compound_state *cstate)
{
CLEAR_STATE_ID(cstate, CURRENT_STATE_ID_FLAG);
}
/*
* functions to set current state id
*/
void
nfsd4_set_opendowngradestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->open_downgrade.od_stateid);
}
void
nfsd4_set_openstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->open.op_stateid);
}
void
nfsd4_set_closestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->close.cl_stateid);
}
void
nfsd4_set_lockstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->lock.lk_resp_stateid);
}
/*
* functions to consume current state id
*/
void
nfsd4_get_opendowngradestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->open_downgrade.od_stateid);
}
void
nfsd4_get_delegreturnstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->delegreturn.dr_stateid);
}
void
nfsd4_get_freestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->free_stateid.fr_stateid);
}
void
nfsd4_get_setattrstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->setattr.sa_stateid);
}
void
nfsd4_get_closestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->close.cl_stateid);
}
void
nfsd4_get_lockustateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->locku.lu_stateid);
}
void
nfsd4_get_readstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->read.rd_stateid);
}
void
nfsd4_get_writestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->write.wr_stateid);
}