linux/fs/nfsd/nfs4state.c

5760 lines
147 KiB
C
Raw Normal View History

/*
* Copyright (c) 2001 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <kandros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/file.h>
#include <linux/fs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/namei.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/ratelimit.h>
#include <linux/sunrpc/svcauth_gss.h>
#include <linux/sunrpc/addr.h>
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
#include <linux/hash.h>
#include "xdr4.h"
#include "xdr4cb.h"
#include "vfs.h"
#include "current_stateid.h"
#include "netns.h"
#define NFSDDBG_FACILITY NFSDDBG_PROC
#define all_ones {{~0,~0},~0}
static const stateid_t one_stateid = {
.si_generation = ~0,
.si_opaque = all_ones,
};
static const stateid_t zero_stateid = {
/* all fields zero */
};
static const stateid_t currentstateid = {
.si_generation = 1,
};
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static u64 current_sessionid = 1;
#define ZERO_STATEID(stateid) (!memcmp((stateid), &zero_stateid, sizeof(stateid_t)))
#define ONE_STATEID(stateid) (!memcmp((stateid), &one_stateid, sizeof(stateid_t)))
#define CURRENT_STATEID(stateid) (!memcmp((stateid), &currentstateid, sizeof(stateid_t)))
/* forward declarations */
static int check_for_locks(struct nfs4_file *filp, struct nfs4_lockowner *lowner);
/* Locking: */
/* Currently used for almost all code touching nfsv4 state: */
static DEFINE_MUTEX(client_mutex);
/*
* Currently used for the del_recall_lru and file hash table. In an
* effort to decrease the scope of the client_mutex, this spinlock may
* eventually cover more:
*/
static DEFINE_SPINLOCK(state_lock);
static struct kmem_cache *openowner_slab;
static struct kmem_cache *lockowner_slab;
static struct kmem_cache *file_slab;
static struct kmem_cache *stateid_slab;
static struct kmem_cache *deleg_slab;
void
nfs4_lock_state(void)
{
mutex_lock(&client_mutex);
}
static void free_session(struct nfsd4_session *);
static bool is_session_dead(struct nfsd4_session *ses)
{
return ses->se_flags & NFS4_SESSION_DEAD;
}
static __be32 mark_session_dead_locked(struct nfsd4_session *ses, int ref_held_by_me)
{
if (atomic_read(&ses->se_ref) > ref_held_by_me)
return nfserr_jukebox;
ses->se_flags |= NFS4_SESSION_DEAD;
return nfs_ok;
}
void
nfs4_unlock_state(void)
{
mutex_unlock(&client_mutex);
}
static bool is_client_expired(struct nfs4_client *clp)
{
return clp->cl_time == 0;
}
static __be32 mark_client_expired_locked(struct nfs4_client *clp)
{
if (atomic_read(&clp->cl_refcount))
return nfserr_jukebox;
clp->cl_time = 0;
return nfs_ok;
}
static __be32 mark_client_expired(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
__be32 ret;
spin_lock(&nn->client_lock);
ret = mark_client_expired_locked(clp);
spin_unlock(&nn->client_lock);
return ret;
}
static __be32 get_client_locked(struct nfs4_client *clp)
{
if (is_client_expired(clp))
return nfserr_expired;
atomic_inc(&clp->cl_refcount);
return nfs_ok;
}
/* must be called under the client_lock */
static inline void
renew_client_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
if (is_client_expired(clp)) {
WARN_ON(1);
printk("%s: client (clientid %08x/%08x) already expired\n",
__func__,
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
return;
}
dprintk("renewing client (clientid %08x/%08x)\n",
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
list_move_tail(&clp->cl_lru, &nn->client_lru);
clp->cl_time = get_seconds();
}
static inline void
renew_client(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
spin_lock(&nn->client_lock);
renew_client_locked(clp);
spin_unlock(&nn->client_lock);
}
static void put_client_renew_locked(struct nfs4_client *clp)
{
if (!atomic_dec_and_test(&clp->cl_refcount))
return;
if (!is_client_expired(clp))
renew_client_locked(clp);
}
static void put_client_renew(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
if (!atomic_dec_and_lock(&clp->cl_refcount, &nn->client_lock))
return;
if (!is_client_expired(clp))
renew_client_locked(clp);
spin_unlock(&nn->client_lock);
}
static __be32 nfsd4_get_session_locked(struct nfsd4_session *ses)
{
__be32 status;
if (is_session_dead(ses))
return nfserr_badsession;
status = get_client_locked(ses->se_client);
if (status)
return status;
atomic_inc(&ses->se_ref);
return nfs_ok;
}
static void nfsd4_put_session_locked(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
if (atomic_dec_and_test(&ses->se_ref) && is_session_dead(ses))
free_session(ses);
put_client_renew_locked(clp);
}
static void nfsd4_put_session(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
spin_lock(&nn->client_lock);
nfsd4_put_session_locked(ses);
spin_unlock(&nn->client_lock);
}
static inline u32
opaque_hashval(const void *ptr, int nbytes)
{
unsigned char *cptr = (unsigned char *) ptr;
u32 x = 0;
while (nbytes--) {
x *= 37;
x += *cptr++;
}
return x;
}
static void nfsd4_free_file(struct nfs4_file *f)
{
kmem_cache_free(file_slab, f);
}
static inline void
put_nfs4_file(struct nfs4_file *fi)
{
might_lock(&state_lock);
if (atomic_dec_and_lock(&fi->fi_ref, &state_lock)) {
hlist_del(&fi->fi_hash);
spin_unlock(&state_lock);
iput(fi->fi_inode);
nfsd4_free_file(fi);
}
}
static inline void
get_nfs4_file(struct nfs4_file *fi)
{
atomic_inc(&fi->fi_ref);
}
static struct file *
__nfs4_get_fd(struct nfs4_file *f, int oflag)
{
if (f->fi_fds[oflag])
return get_file(f->fi_fds[oflag]);
return NULL;
}
static struct file *
find_writeable_file_locked(struct nfs4_file *f)
{
struct file *ret;
lockdep_assert_held(&f->fi_lock);
ret = __nfs4_get_fd(f, O_WRONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDWR);
return ret;
}
static struct file *
find_writeable_file(struct nfs4_file *f)
{
struct file *ret;
spin_lock(&f->fi_lock);
ret = find_writeable_file_locked(f);
spin_unlock(&f->fi_lock);
return ret;
}
static struct file *find_readable_file_locked(struct nfs4_file *f)
{
struct file *ret;
lockdep_assert_held(&f->fi_lock);
ret = __nfs4_get_fd(f, O_RDONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDWR);
return ret;
}
static struct file *
find_readable_file(struct nfs4_file *f)
{
struct file *ret;
spin_lock(&f->fi_lock);
ret = find_readable_file_locked(f);
spin_unlock(&f->fi_lock);
return ret;
}
static struct file *
find_any_file(struct nfs4_file *f)
{
struct file *ret;
spin_lock(&f->fi_lock);
ret = __nfs4_get_fd(f, O_RDWR);
if (!ret) {
ret = __nfs4_get_fd(f, O_WRONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDONLY);
}
spin_unlock(&f->fi_lock);
return ret;
}
static int num_delegations;
unsigned long max_delegations;
/*
* Open owner state (share locks)
*/
/* hash tables for lock and open owners */
#define OWNER_HASH_BITS 8
#define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS)
#define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1)
static unsigned int ownerstr_hashval(u32 clientid, struct xdr_netobj *ownername)
{
unsigned int ret;
ret = opaque_hashval(ownername->data, ownername->len);
ret += clientid;
return ret & OWNER_HASH_MASK;
}
/* hash table for nfs4_file */
#define FILE_HASH_BITS 8
#define FILE_HASH_SIZE (1 << FILE_HASH_BITS)
static unsigned int nfsd_fh_hashval(struct knfsd_fh *fh)
{
return jhash2(fh->fh_base.fh_pad, XDR_QUADLEN(fh->fh_size), 0);
}
static unsigned int file_hashval(struct knfsd_fh *fh)
{
return nfsd_fh_hashval(fh) & (FILE_HASH_SIZE - 1);
}
static bool nfsd_fh_match(struct knfsd_fh *fh1, struct knfsd_fh *fh2)
{
return fh1->fh_size == fh2->fh_size &&
!memcmp(fh1->fh_base.fh_pad,
fh2->fh_base.fh_pad,
fh1->fh_size);
}
static struct hlist_head file_hashtbl[FILE_HASH_SIZE];
static void
__nfs4_file_get_access(struct nfs4_file *fp, u32 access)
{
lockdep_assert_held(&fp->fi_lock);
if (access & NFS4_SHARE_ACCESS_WRITE)
atomic_inc(&fp->fi_access[O_WRONLY]);
if (access & NFS4_SHARE_ACCESS_READ)
atomic_inc(&fp->fi_access[O_RDONLY]);
}
static __be32
nfs4_file_get_access(struct nfs4_file *fp, u32 access)
{
lockdep_assert_held(&fp->fi_lock);
/* Does this access mode make sense? */
if (access & ~NFS4_SHARE_ACCESS_BOTH)
return nfserr_inval;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/* Does it conflict with a deny mode already set? */
if ((access & fp->fi_share_deny) != 0)
return nfserr_share_denied;
__nfs4_file_get_access(fp, access);
return nfs_ok;
}
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
static __be32 nfs4_file_check_deny(struct nfs4_file *fp, u32 deny)
{
/* Common case is that there is no deny mode. */
if (deny) {
/* Does this deny mode make sense? */
if (deny & ~NFS4_SHARE_DENY_BOTH)
return nfserr_inval;
if ((deny & NFS4_SHARE_DENY_READ) &&
atomic_read(&fp->fi_access[O_RDONLY]))
return nfserr_share_denied;
if ((deny & NFS4_SHARE_DENY_WRITE) &&
atomic_read(&fp->fi_access[O_WRONLY]))
return nfserr_share_denied;
}
return nfs_ok;
}
static void __nfs4_file_put_access(struct nfs4_file *fp, int oflag)
{
might_lock(&fp->fi_lock);
if (atomic_dec_and_lock(&fp->fi_access[oflag], &fp->fi_lock)) {
struct file *f1 = NULL;
struct file *f2 = NULL;
swap(f1, fp->fi_fds[oflag]);
if (atomic_read(&fp->fi_access[1 - oflag]) == 0)
swap(f2, fp->fi_fds[O_RDWR]);
spin_unlock(&fp->fi_lock);
if (f1)
fput(f1);
if (f2)
fput(f2);
}
}
static void nfs4_file_put_access(struct nfs4_file *fp, u32 access)
{
WARN_ON_ONCE(access & ~NFS4_SHARE_ACCESS_BOTH);
if (access & NFS4_SHARE_ACCESS_WRITE)
__nfs4_file_put_access(fp, O_WRONLY);
if (access & NFS4_SHARE_ACCESS_READ)
__nfs4_file_put_access(fp, O_RDONLY);
}
static struct nfs4_stid *nfs4_alloc_stid(struct nfs4_client *cl, struct
kmem_cache *slab)
{
struct idr *stateids = &cl->cl_stateids;
struct nfs4_stid *stid;
int new_id;
stid = kmem_cache_alloc(slab, GFP_KERNEL);
if (!stid)
return NULL;
new_id = idr_alloc_cyclic(stateids, stid, 0, 0, GFP_KERNEL);
if (new_id < 0)
goto out_free;
stid->sc_client = cl;
stid->sc_type = 0;
stid->sc_stateid.si_opaque.so_id = new_id;
stid->sc_stateid.si_opaque.so_clid = cl->cl_clientid;
/* Will be incremented before return to client: */
stid->sc_stateid.si_generation = 0;
atomic_set(&stid->sc_count, 1);
/*
* It shouldn't be a problem to reuse an opaque stateid value.
* I don't think it is for 4.1. But with 4.0 I worry that, for
* example, a stray write retransmission could be accepted by
* the server when it should have been rejected. Therefore,
* adopt a trick from the sctp code to attempt to maximize the
* amount of time until an id is reused, by ensuring they always
* "increase" (mod INT_MAX):
*/
return stid;
out_free:
kmem_cache_free(slab, stid);
return NULL;
}
static struct nfs4_ol_stateid * nfs4_alloc_stateid(struct nfs4_client *clp)
{
return openlockstateid(nfs4_alloc_stid(clp, stateid_slab));
}
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
/*
* When we recall a delegation, we should be careful not to hand it
* out again straight away.
* To ensure this we keep a pair of bloom filters ('new' and 'old')
* in which the filehandles of recalled delegations are "stored".
* If a filehandle appear in either filter, a delegation is blocked.
* When a delegation is recalled, the filehandle is stored in the "new"
* filter.
* Every 30 seconds we swap the filters and clear the "new" one,
* unless both are empty of course.
*
* Each filter is 256 bits. We hash the filehandle to 32bit and use the
* low 3 bytes as hash-table indices.
*
* 'state_lock', which is always held when block_delegations() is called,
* is used to manage concurrent access. Testing does not need the lock
* except when swapping the two filters.
*/
static struct bloom_pair {
int entries, old_entries;
time_t swap_time;
int new; /* index into 'set' */
DECLARE_BITMAP(set[2], 256);
} blocked_delegations;
static int delegation_blocked(struct knfsd_fh *fh)
{
u32 hash;
struct bloom_pair *bd = &blocked_delegations;
if (bd->entries == 0)
return 0;
if (seconds_since_boot() - bd->swap_time > 30) {
spin_lock(&state_lock);
if (seconds_since_boot() - bd->swap_time > 30) {
bd->entries -= bd->old_entries;
bd->old_entries = bd->entries;
memset(bd->set[bd->new], 0,
sizeof(bd->set[0]));
bd->new = 1-bd->new;
bd->swap_time = seconds_since_boot();
}
spin_unlock(&state_lock);
}
hash = arch_fast_hash(&fh->fh_base, fh->fh_size, 0);
if (test_bit(hash&255, bd->set[0]) &&
test_bit((hash>>8)&255, bd->set[0]) &&
test_bit((hash>>16)&255, bd->set[0]))
return 1;
if (test_bit(hash&255, bd->set[1]) &&
test_bit((hash>>8)&255, bd->set[1]) &&
test_bit((hash>>16)&255, bd->set[1]))
return 1;
return 0;
}
static void block_delegations(struct knfsd_fh *fh)
{
u32 hash;
struct bloom_pair *bd = &blocked_delegations;
lockdep_assert_held(&state_lock);
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
hash = arch_fast_hash(&fh->fh_base, fh->fh_size, 0);
__set_bit(hash&255, bd->set[bd->new]);
__set_bit((hash>>8)&255, bd->set[bd->new]);
__set_bit((hash>>16)&255, bd->set[bd->new]);
if (bd->entries == 0)
bd->swap_time = seconds_since_boot();
bd->entries += 1;
}
static struct nfs4_delegation *
alloc_init_deleg(struct nfs4_client *clp, struct nfs4_ol_stateid *stp, struct svc_fh *current_fh)
{
struct nfs4_delegation *dp;
dprintk("NFSD alloc_init_deleg\n");
if (num_delegations > max_delegations)
return NULL;
NFSD: Don't hand out delegations for 30 seconds after recalling them. If nfsd needs to recall a delegation for some reason it implies that there is contention on the file, so further delegations should not be handed out. The current code fails to do so, and the result is effectively a live-lock under some workloads: a client attempting a conflicting operation on a read-delegated file receives NFS4ERR_DELAY and retries the operation, but by the time it retries the server may already have given out another delegation. We could simply avoid delegations for (say) 30 seconds after any recall, but this is probably too heavy handed. We could keep a list of inodes (or inode numbers or filehandles) for recalled delegations, but that requires memory allocation and searching. The approach taken here is to use a bloom filter to record the filehandles which are currently blocked from delegation, and to accept the cost of a few false positives. We have 2 bloom filters, each of which is valid for 30 seconds. When a delegation is recalled the filehandle is added to one filter and will remain disabled for between 30 and 60 seconds. We keep a count of the number of filehandles that have been added, so when that count is zero we can bypass all other tests. The bloom filters have 256 bits and 3 hash functions. This should allow a couple of dozen blocked filehandles with minimal false positives. If many more filehandles are all blocked at once, behaviour will degrade towards rejecting all delegations for between 30 and 60 seconds, then resetting and allowing new delegations. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-06-04 07:39:26 +00:00
if (delegation_blocked(&current_fh->fh_handle))
return NULL;
dp = delegstateid(nfs4_alloc_stid(clp, deleg_slab));
if (dp == NULL)
return dp;
/*
* delegation seqid's are never incremented. The 4.1 special
* meaning of seqid 0 isn't meaningful, really, but let's avoid
* 0 anyway just for consistency and use 1:
*/
dp->dl_stid.sc_stateid.si_generation = 1;
num_delegations++;
INIT_LIST_HEAD(&dp->dl_perfile);
INIT_LIST_HEAD(&dp->dl_perclnt);
INIT_LIST_HEAD(&dp->dl_recall_lru);
dp->dl_file = NULL;
dp->dl_type = NFS4_OPEN_DELEGATE_READ;
fh_copy_shallow(&dp->dl_fh, &current_fh->fh_handle);
dp->dl_time = 0;
INIT_WORK(&dp->dl_recall.cb_work, nfsd4_run_cb_recall);
return dp;
}
static void remove_stid(struct nfs4_stid *s)
{
struct idr *stateids = &s->sc_client->cl_stateids;
idr_remove(stateids, s->sc_stateid.si_opaque.so_id);
}
static void nfs4_free_stid(struct kmem_cache *slab, struct nfs4_stid *s)
{
kmem_cache_free(slab, s);
}
void
nfs4_put_delegation(struct nfs4_delegation *dp)
{
if (atomic_dec_and_test(&dp->dl_stid.sc_count)) {
remove_stid(&dp->dl_stid);
nfs4_free_stid(deleg_slab, &dp->dl_stid);
num_delegations--;
}
}
static void nfs4_put_deleg_lease(struct nfs4_file *fp)
{
lockdep_assert_held(&state_lock);
if (!fp->fi_lease)
return;
if (atomic_dec_and_test(&fp->fi_delegees)) {
vfs_setlease(fp->fi_deleg_file, F_UNLCK, &fp->fi_lease);
fp->fi_lease = NULL;
fput(fp->fi_deleg_file);
fp->fi_deleg_file = NULL;
}
}
static void unhash_stid(struct nfs4_stid *s)
{
s->sc_type = 0;
}
static void
hash_delegation_locked(struct nfs4_delegation *dp, struct nfs4_file *fp)
{
lockdep_assert_held(&state_lock);
lockdep_assert_held(&fp->fi_lock);
dp->dl_stid.sc_type = NFS4_DELEG_STID;
list_add(&dp->dl_perfile, &fp->fi_delegations);
list_add(&dp->dl_perclnt, &dp->dl_stid.sc_client->cl_delegations);
}
/* Called under the state lock. */
static void
unhash_delegation(struct nfs4_delegation *dp)
{
struct nfs4_file *fp = dp->dl_file;
spin_lock(&state_lock);
dp->dl_stid.sc_type = NFS4_CLOSED_DELEG_STID;
/* Ensure that deleg break won't try to requeue it */
++dp->dl_time;
spin_lock(&fp->fi_lock);
list_del_init(&dp->dl_perclnt);
list_del_init(&dp->dl_recall_lru);
list_del_init(&dp->dl_perfile);
spin_unlock(&fp->fi_lock);
if (fp) {
nfs4_put_deleg_lease(fp);
dp->dl_file = NULL;
}
spin_unlock(&state_lock);
if (fp)
put_nfs4_file(fp);
}
static void destroy_revoked_delegation(struct nfs4_delegation *dp)
{
list_del_init(&dp->dl_recall_lru);
nfs4_put_delegation(dp);
}
static void destroy_delegation(struct nfs4_delegation *dp)
{
unhash_delegation(dp);
nfs4_put_delegation(dp);
}
static void revoke_delegation(struct nfs4_delegation *dp)
{
struct nfs4_client *clp = dp->dl_stid.sc_client;
if (clp->cl_minorversion == 0)
destroy_delegation(dp);
else {
unhash_delegation(dp);
dp->dl_stid.sc_type = NFS4_REVOKED_DELEG_STID;
list_add(&dp->dl_recall_lru, &clp->cl_revoked);
}
}
/*
* SETCLIENTID state
*/
static unsigned int clientid_hashval(u32 id)
{
return id & CLIENT_HASH_MASK;
}
static unsigned int clientstr_hashval(const char *name)
{
return opaque_hashval(name, 8) & CLIENT_HASH_MASK;
}
/*
* We store the NONE, READ, WRITE, and BOTH bits separately in the
* st_{access,deny}_bmap field of the stateid, in order to track not
* only what share bits are currently in force, but also what
* combinations of share bits previous opens have used. This allows us
* to enforce the recommendation of rfc 3530 14.2.19 that the server
* return an error if the client attempt to downgrade to a combination
* of share bits not explicable by closing some of its previous opens.
*
* XXX: This enforcement is actually incomplete, since we don't keep
* track of access/deny bit combinations; so, e.g., we allow:
*
* OPEN allow read, deny write
* OPEN allow both, deny none
* DOWNGRADE allow read, deny none
*
* which we should reject.
*/
static unsigned int
bmap_to_share_mode(unsigned long bmap) {
int i;
unsigned int access = 0;
for (i = 1; i < 4; i++) {
if (test_bit(i, &bmap))
access |= i;
}
return access;
}
/* set share access for a given stateid */
static inline void
set_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH);
stp->st_access_bmap |= mask;
}
/* clear share access for a given stateid */
static inline void
clear_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH);
stp->st_access_bmap &= ~mask;
}
/* test whether a given stateid has access */
static inline bool
test_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
return (bool)(stp->st_access_bmap & mask);
}
/* set share deny for a given stateid */
static inline void
set_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH);
stp->st_deny_bmap |= mask;
}
/* clear share deny for a given stateid */
static inline void
clear_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH);
stp->st_deny_bmap &= ~mask;
}
/* test whether a given stateid is denying specific access */
static inline bool
test_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
return (bool)(stp->st_deny_bmap & mask);
}
static int nfs4_access_to_omode(u32 access)
{
switch (access & NFS4_SHARE_ACCESS_BOTH) {
case NFS4_SHARE_ACCESS_READ:
return O_RDONLY;
case NFS4_SHARE_ACCESS_WRITE:
return O_WRONLY;
case NFS4_SHARE_ACCESS_BOTH:
return O_RDWR;
}
WARN_ON_ONCE(1);
return O_RDONLY;
}
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/*
* A stateid that had a deny mode associated with it is being released
* or downgraded. Recalculate the deny mode on the file.
*/
static void
recalculate_deny_mode(struct nfs4_file *fp)
{
struct nfs4_ol_stateid *stp;
spin_lock(&fp->fi_lock);
fp->fi_share_deny = 0;
list_for_each_entry(stp, &fp->fi_stateids, st_perfile)
fp->fi_share_deny |= bmap_to_share_mode(stp->st_deny_bmap);
spin_unlock(&fp->fi_lock);
}
static void
reset_union_bmap_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
int i;
bool change = false;
for (i = 1; i < 4; i++) {
if ((i & deny) != i) {
change = true;
clear_deny(i, stp);
}
}
/* Recalculate per-file deny mode if there was a change */
if (change)
recalculate_deny_mode(stp->st_file);
}
/* release all access and file references for a given stateid */
static void
release_all_access(struct nfs4_ol_stateid *stp)
{
int i;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
struct nfs4_file *fp = stp->st_file;
if (fp && stp->st_deny_bmap != 0)
recalculate_deny_mode(fp);
for (i = 1; i < 4; i++) {
if (test_access(i, stp))
nfs4_file_put_access(stp->st_file, i);
clear_access(i, stp);
}
}
static void unhash_generic_stateid(struct nfs4_ol_stateid *stp)
{
struct nfs4_file *fp = stp->st_file;
spin_lock(&fp->fi_lock);
list_del(&stp->st_perfile);
spin_unlock(&fp->fi_lock);
list_del(&stp->st_perstateowner);
}
static void close_generic_stateid(struct nfs4_ol_stateid *stp)
{
release_all_access(stp);
put_nfs4_file(stp->st_file);
stp->st_file = NULL;
}
static void free_generic_stateid(struct nfs4_ol_stateid *stp)
{
remove_stid(&stp->st_stid);
nfs4_free_stid(stateid_slab, &stp->st_stid);
}
static void __release_lock_stateid(struct nfs4_ol_stateid *stp)
{
struct file *file;
list_del(&stp->st_locks);
unhash_generic_stateid(stp);
unhash_stid(&stp->st_stid);
file = find_any_file(stp->st_file);
if (file)
filp_close(file, (fl_owner_t)lockowner(stp->st_stateowner));
close_generic_stateid(stp);
free_generic_stateid(stp);
}
static void unhash_lockowner(struct nfs4_lockowner *lo)
{
struct nfs4_ol_stateid *stp;
list_del(&lo->lo_owner.so_strhash);
while (!list_empty(&lo->lo_owner.so_stateids)) {
stp = list_first_entry(&lo->lo_owner.so_stateids,
struct nfs4_ol_stateid, st_perstateowner);
__release_lock_stateid(stp);
}
}
static void nfs4_free_lockowner(struct nfs4_lockowner *lo)
{
kfree(lo->lo_owner.so_owner.data);
kmem_cache_free(lockowner_slab, lo);
}
static void release_lockowner(struct nfs4_lockowner *lo)
{
unhash_lockowner(lo);
nfs4_free_lockowner(lo);
}
static void release_lockowner_if_empty(struct nfs4_lockowner *lo)
{
if (list_empty(&lo->lo_owner.so_stateids))
release_lockowner(lo);
}
static void release_lock_stateid(struct nfs4_ol_stateid *stp)
{
struct nfs4_lockowner *lo;
lo = lockowner(stp->st_stateowner);
__release_lock_stateid(stp);
release_lockowner_if_empty(lo);
}
static void release_open_stateid_locks(struct nfs4_ol_stateid *open_stp)
{
struct nfs4_ol_stateid *stp;
while (!list_empty(&open_stp->st_locks)) {
stp = list_entry(open_stp->st_locks.next,
struct nfs4_ol_stateid, st_locks);
release_lock_stateid(stp);
}
}
static void unhash_open_stateid(struct nfs4_ol_stateid *stp)
{
unhash_generic_stateid(stp);
release_open_stateid_locks(stp);
close_generic_stateid(stp);
}
static void release_open_stateid(struct nfs4_ol_stateid *stp)
{
unhash_open_stateid(stp);
free_generic_stateid(stp);
}
static void unhash_openowner(struct nfs4_openowner *oo)
{
struct nfs4_ol_stateid *stp;
list_del(&oo->oo_owner.so_strhash);
list_del(&oo->oo_perclient);
while (!list_empty(&oo->oo_owner.so_stateids)) {
stp = list_first_entry(&oo->oo_owner.so_stateids,
struct nfs4_ol_stateid, st_perstateowner);
release_open_stateid(stp);
}
}
static void release_last_closed_stateid(struct nfs4_openowner *oo)
{
struct nfs4_ol_stateid *s = oo->oo_last_closed_stid;
if (s) {
free_generic_stateid(s);
oo->oo_last_closed_stid = NULL;
}
}
static void nfs4_free_openowner(struct nfs4_openowner *oo)
{
kfree(oo->oo_owner.so_owner.data);
kmem_cache_free(openowner_slab, oo);
}
static void release_openowner(struct nfs4_openowner *oo)
{
unhash_openowner(oo);
list_del(&oo->oo_close_lru);
release_last_closed_stateid(oo);
nfs4_free_openowner(oo);
}
static inline int
hash_sessionid(struct nfs4_sessionid *sessionid)
{
struct nfsd4_sessionid *sid = (struct nfsd4_sessionid *)sessionid;
return sid->sequence % SESSION_HASH_SIZE;
}
#ifdef NFSD_DEBUG
static inline void
dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid)
{
u32 *ptr = (u32 *)(&sessionid->data[0]);
dprintk("%s: %u:%u:%u:%u\n", fn, ptr[0], ptr[1], ptr[2], ptr[3]);
}
#else
static inline void
dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid)
{
}
#endif
/*
* Bump the seqid on cstate->replay_owner, and clear replay_owner if it
* won't be used for replay.
*/
void nfsd4_bump_seqid(struct nfsd4_compound_state *cstate, __be32 nfserr)
{
struct nfs4_stateowner *so = cstate->replay_owner;
if (nfserr == nfserr_replay_me)
return;
if (!seqid_mutating_err(ntohl(nfserr))) {
cstate->replay_owner = NULL;
return;
}
if (!so)
return;
if (so->so_is_open_owner)
release_last_closed_stateid(openowner(so));
so->so_seqid++;
return;
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void
gen_sessionid(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_sessionid *sid;
sid = (struct nfsd4_sessionid *)ses->se_sessionid.data;
sid->clientid = clp->cl_clientid;
sid->sequence = current_sessionid++;
sid->reserved = 0;
}
/*
* The protocol defines ca_maxresponssize_cached to include the size of
* the rpc header, but all we need to cache is the data starting after
* the end of the initial SEQUENCE operation--the rest we regenerate
* each time. Therefore we can advertise a ca_maxresponssize_cached
* value that is the number of bytes in our cache plus a few additional
* bytes. In order to stay on the safe side, and not promise more than
* we can cache, those additional bytes must be the minimum possible: 24
* bytes of rpc header (xid through accept state, with AUTH_NULL
* verifier), 12 for the compound header (with zero-length tag), and 44
* for the SEQUENCE op response:
*/
#define NFSD_MIN_HDR_SEQ_SZ (24 + 12 + 44)
static void
free_session_slots(struct nfsd4_session *ses)
{
int i;
for (i = 0; i < ses->se_fchannel.maxreqs; i++)
kfree(ses->se_slots[i]);
}
/*
* We don't actually need to cache the rpc and session headers, so we
* can allocate a little less for each slot:
*/
static inline u32 slot_bytes(struct nfsd4_channel_attrs *ca)
{
u32 size;
if (ca->maxresp_cached < NFSD_MIN_HDR_SEQ_SZ)
size = 0;
else
size = ca->maxresp_cached - NFSD_MIN_HDR_SEQ_SZ;
return size + sizeof(struct nfsd4_slot);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
/*
* XXX: If we run out of reserved DRC memory we could (up to a point)
* re-negotiate active sessions and reduce their slot usage to make
* room for new connections. For now we just fail the create session.
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
*/
static u32 nfsd4_get_drc_mem(struct nfsd4_channel_attrs *ca)
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
{
u32 slotsize = slot_bytes(ca);
u32 num = ca->maxreqs;
int avail;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&nfsd_drc_lock);
avail = min((unsigned long)NFSD_MAX_MEM_PER_SESSION,
nfsd_drc_max_mem - nfsd_drc_mem_used);
num = min_t(int, num, avail / slotsize);
nfsd_drc_mem_used += num * slotsize;
spin_unlock(&nfsd_drc_lock);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
return num;
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void nfsd4_put_drc_mem(struct nfsd4_channel_attrs *ca)
{
int slotsize = slot_bytes(ca);
spin_lock(&nfsd_drc_lock);
nfsd_drc_mem_used -= slotsize * ca->maxreqs;
spin_unlock(&nfsd_drc_lock);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static struct nfsd4_session *alloc_session(struct nfsd4_channel_attrs *fattrs,
struct nfsd4_channel_attrs *battrs)
{
int numslots = fattrs->maxreqs;
int slotsize = slot_bytes(fattrs);
struct nfsd4_session *new;
int mem, i;
BUILD_BUG_ON(NFSD_MAX_SLOTS_PER_SESSION * sizeof(struct nfsd4_slot *)
+ sizeof(struct nfsd4_session) > PAGE_SIZE);
mem = numslots * sizeof(struct nfsd4_slot *);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
new = kzalloc(sizeof(*new) + mem, GFP_KERNEL);
if (!new)
return NULL;
/* allocate each struct nfsd4_slot and data cache in one piece */
for (i = 0; i < numslots; i++) {
new->se_slots[i] = kzalloc(slotsize, GFP_KERNEL);
if (!new->se_slots[i])
goto out_free;
}
memcpy(&new->se_fchannel, fattrs, sizeof(struct nfsd4_channel_attrs));
memcpy(&new->se_bchannel, battrs, sizeof(struct nfsd4_channel_attrs));
return new;
out_free:
while (i--)
kfree(new->se_slots[i]);
kfree(new);
return NULL;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
static void free_conn(struct nfsd4_conn *c)
{
svc_xprt_put(c->cn_xprt);
kfree(c);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void nfsd4_conn_lost(struct svc_xpt_user *u)
{
struct nfsd4_conn *c = container_of(u, struct nfsd4_conn, cn_xpt_user);
struct nfs4_client *clp = c->cn_session->se_client;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&clp->cl_lock);
if (!list_empty(&c->cn_persession)) {
list_del(&c->cn_persession);
free_conn(c);
}
nfsd4_probe_callback(clp);
spin_unlock(&clp->cl_lock);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static struct nfsd4_conn *alloc_conn(struct svc_rqst *rqstp, u32 flags)
{
struct nfsd4_conn *conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
conn = kmalloc(sizeof(struct nfsd4_conn), GFP_KERNEL);
if (!conn)
return NULL;
svc_xprt_get(rqstp->rq_xprt);
conn->cn_xprt = rqstp->rq_xprt;
conn->cn_flags = flags;
INIT_LIST_HEAD(&conn->cn_xpt_user.list);
return conn;
}
static void __nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
conn->cn_session = ses;
list_add(&conn->cn_persession, &ses->se_conns);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
static void nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
spin_lock(&clp->cl_lock);
__nfsd4_hash_conn(conn, ses);
spin_unlock(&clp->cl_lock);
}
static int nfsd4_register_conn(struct nfsd4_conn *conn)
{
conn->cn_xpt_user.callback = nfsd4_conn_lost;
return register_xpt_user(conn->cn_xprt, &conn->cn_xpt_user);
}
static void nfsd4_init_conn(struct svc_rqst *rqstp, struct nfsd4_conn *conn, struct nfsd4_session *ses)
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
{
int ret;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
nfsd4_hash_conn(conn, ses);
ret = nfsd4_register_conn(conn);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&conn->cn_xpt_user);
/* We may have gained or lost a callback channel: */
nfsd4_probe_callback_sync(ses->se_client);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static struct nfsd4_conn *alloc_conn_from_crses(struct svc_rqst *rqstp, struct nfsd4_create_session *cses)
{
u32 dir = NFS4_CDFC4_FORE;
if (cses->flags & SESSION4_BACK_CHAN)
dir |= NFS4_CDFC4_BACK;
return alloc_conn(rqstp, dir);
}
/* must be called under client_lock */
static void nfsd4_del_conns(struct nfsd4_session *s)
{
struct nfs4_client *clp = s->se_client;
struct nfsd4_conn *c;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&clp->cl_lock);
while (!list_empty(&s->se_conns)) {
c = list_first_entry(&s->se_conns, struct nfsd4_conn, cn_persession);
list_del_init(&c->cn_persession);
spin_unlock(&clp->cl_lock);
unregister_xpt_user(c->cn_xprt, &c->cn_xpt_user);
free_conn(c);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
spin_lock(&clp->cl_lock);
}
spin_unlock(&clp->cl_lock);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
static void __free_session(struct nfsd4_session *ses)
{
free_session_slots(ses);
kfree(ses);
}
static void free_session(struct nfsd4_session *ses)
{
struct nfsd_net *nn = net_generic(ses->se_client->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
nfsd4_del_conns(ses);
nfsd4_put_drc_mem(&ses->se_fchannel);
__free_session(ses);
}
static void init_session(struct svc_rqst *rqstp, struct nfsd4_session *new, struct nfs4_client *clp, struct nfsd4_create_session *cses)
{
int idx;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
new->se_client = clp;
gen_sessionid(new);
INIT_LIST_HEAD(&new->se_conns);
new->se_cb_seq_nr = 1;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
new->se_flags = cses->flags;
new->se_cb_prog = cses->callback_prog;
new->se_cb_sec = cses->cb_sec;
atomic_set(&new->se_ref, 0);
idx = hash_sessionid(&new->se_sessionid);
spin_lock(&nn->client_lock);
list_add(&new->se_hash, &nn->sessionid_hashtbl[idx]);
spin_lock(&clp->cl_lock);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
list_add(&new->se_perclnt, &clp->cl_sessions);
spin_unlock(&clp->cl_lock);
spin_unlock(&nn->client_lock);
if (cses->flags & SESSION4_BACK_CHAN) {
struct sockaddr *sa = svc_addr(rqstp);
/*
* This is a little silly; with sessions there's no real
* use for the callback address. Use the peer address
* as a reasonable default for now, but consider fixing
* the rpc client not to require an address in the
* future:
*/
rpc_copy_addr((struct sockaddr *)&clp->cl_cb_conn.cb_addr, sa);
clp->cl_cb_conn.cb_addrlen = svc_addr_len(sa);
}
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
/* caller must hold client_lock */
static struct nfsd4_session *
__find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net)
{
struct nfsd4_session *elem;
int idx;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dump_sessionid(__func__, sessionid);
idx = hash_sessionid(sessionid);
/* Search in the appropriate list */
list_for_each_entry(elem, &nn->sessionid_hashtbl[idx], se_hash) {
if (!memcmp(elem->se_sessionid.data, sessionid->data,
NFS4_MAX_SESSIONID_LEN)) {
return elem;
}
}
dprintk("%s: session not found\n", __func__);
return NULL;
}
static struct nfsd4_session *
find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net,
__be32 *ret)
{
struct nfsd4_session *session;
__be32 status = nfserr_badsession;
session = __find_in_sessionid_hashtbl(sessionid, net);
if (!session)
goto out;
status = nfsd4_get_session_locked(session);
if (status)
session = NULL;
out:
*ret = status;
return session;
}
/* caller must hold client_lock */
static void
unhash_session(struct nfsd4_session *ses)
{
list_del(&ses->se_hash);
spin_lock(&ses->se_client->cl_lock);
list_del(&ses->se_perclnt);
spin_unlock(&ses->se_client->cl_lock);
}
/* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */
static int
STALE_CLIENTID(clientid_t *clid, struct nfsd_net *nn)
{
if (clid->cl_boot == nn->boot_time)
return 0;
dprintk("NFSD stale clientid (%08x/%08x) boot_time %08lx\n",
clid->cl_boot, clid->cl_id, nn->boot_time);
return 1;
}
/*
* XXX Should we use a slab cache ?
* This type of memory management is somewhat inefficient, but we use it
* anyway since SETCLIENTID is not a common operation.
*/
static struct nfs4_client *alloc_client(struct xdr_netobj name)
{
struct nfs4_client *clp;
clp = kzalloc(sizeof(struct nfs4_client), GFP_KERNEL);
if (clp == NULL)
return NULL;
clp->cl_name.data = kmemdup(name.data, name.len, GFP_KERNEL);
if (clp->cl_name.data == NULL) {
kfree(clp);
return NULL;
}
clp->cl_name.len = name.len;
INIT_LIST_HEAD(&clp->cl_sessions);
idr_init(&clp->cl_stateids);
atomic_set(&clp->cl_refcount, 0);
clp->cl_cb_state = NFSD4_CB_UNKNOWN;
INIT_LIST_HEAD(&clp->cl_idhash);
INIT_LIST_HEAD(&clp->cl_openowners);
INIT_LIST_HEAD(&clp->cl_delegations);
INIT_LIST_HEAD(&clp->cl_lru);
INIT_LIST_HEAD(&clp->cl_callbacks);
INIT_LIST_HEAD(&clp->cl_revoked);
spin_lock_init(&clp->cl_lock);
rpc_init_wait_queue(&clp->cl_cb_waitq, "Backchannel slot table");
return clp;
}
static void
free_client(struct nfs4_client *clp)
{
struct nfsd_net __maybe_unused *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
while (!list_empty(&clp->cl_sessions)) {
struct nfsd4_session *ses;
ses = list_entry(clp->cl_sessions.next, struct nfsd4_session,
se_perclnt);
list_del(&ses->se_perclnt);
WARN_ON_ONCE(atomic_read(&ses->se_ref));
free_session(ses);
}
rpc_destroy_wait_queue(&clp->cl_cb_waitq);
free_svc_cred(&clp->cl_cred);
kfree(clp->cl_name.data);
idr_destroy(&clp->cl_stateids);
kfree(clp);
}
/* must be called under the client_lock */
static inline void
unhash_client_locked(struct nfs4_client *clp)
{
struct nfsd4_session *ses;
list_del(&clp->cl_lru);
spin_lock(&clp->cl_lock);
list_for_each_entry(ses, &clp->cl_sessions, se_perclnt)
list_del_init(&ses->se_hash);
spin_unlock(&clp->cl_lock);
}
static void
destroy_client(struct nfs4_client *clp)
{
struct nfs4_openowner *oo;
struct nfs4_delegation *dp;
struct list_head reaplist;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
INIT_LIST_HEAD(&reaplist);
spin_lock(&state_lock);
while (!list_empty(&clp->cl_delegations)) {
dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt);
list_del_init(&dp->dl_perclnt);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
/* Ensure that deleg break won't try to requeue it */
++dp->dl_time;
list_move(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
while (!list_empty(&reaplist)) {
dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru);
destroy_delegation(dp);
}
list_splice_init(&clp->cl_revoked, &reaplist);
while (!list_empty(&reaplist)) {
dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru);
destroy_revoked_delegation(dp);
}
while (!list_empty(&clp->cl_openowners)) {
oo = list_entry(clp->cl_openowners.next, struct nfs4_openowner, oo_perclient);
release_openowner(oo);
}
nfsd4_shutdown_callback(clp);
if (clp->cl_cb_conn.cb_xprt)
svc_xprt_put(clp->cl_cb_conn.cb_xprt);
list_del(&clp->cl_idhash);
if (test_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags))
rb_erase(&clp->cl_namenode, &nn->conf_name_tree);
else
rb_erase(&clp->cl_namenode, &nn->unconf_name_tree);
spin_lock(&nn->client_lock);
unhash_client_locked(clp);
WARN_ON_ONCE(atomic_read(&clp->cl_refcount));
free_client(clp);
spin_unlock(&nn->client_lock);
}
static void expire_client(struct nfs4_client *clp)
{
nfsd4_client_record_remove(clp);
destroy_client(clp);
}
static void copy_verf(struct nfs4_client *target, nfs4_verifier *source)
{
memcpy(target->cl_verifier.data, source->data,
sizeof(target->cl_verifier.data));
}
static void copy_clid(struct nfs4_client *target, struct nfs4_client *source)
{
target->cl_clientid.cl_boot = source->cl_clientid.cl_boot;
target->cl_clientid.cl_id = source->cl_clientid.cl_id;
}
static int copy_cred(struct svc_cred *target, struct svc_cred *source)
{
if (source->cr_principal) {
target->cr_principal =
kstrdup(source->cr_principal, GFP_KERNEL);
if (target->cr_principal == NULL)
return -ENOMEM;
} else
target->cr_principal = NULL;
target->cr_flavor = source->cr_flavor;
target->cr_uid = source->cr_uid;
target->cr_gid = source->cr_gid;
target->cr_group_info = source->cr_group_info;
get_group_info(target->cr_group_info);
target->cr_gss_mech = source->cr_gss_mech;
if (source->cr_gss_mech)
gss_mech_get(source->cr_gss_mech);
return 0;
}
static long long
compare_blob(const struct xdr_netobj *o1, const struct xdr_netobj *o2)
{
long long res;
res = o1->len - o2->len;
if (res)
return res;
return (long long)memcmp(o1->data, o2->data, o1->len);
}
static int same_name(const char *n1, const char *n2)
{
return 0 == memcmp(n1, n2, HEXDIR_LEN);
}
static int
same_verf(nfs4_verifier *v1, nfs4_verifier *v2)
{
return 0 == memcmp(v1->data, v2->data, sizeof(v1->data));
}
static int
same_clid(clientid_t *cl1, clientid_t *cl2)
{
return (cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id);
}
static bool groups_equal(struct group_info *g1, struct group_info *g2)
{
int i;
if (g1->ngroups != g2->ngroups)
return false;
for (i=0; i<g1->ngroups; i++)
if (!gid_eq(GROUP_AT(g1, i), GROUP_AT(g2, i)))
return false;
return true;
}
/*
* RFC 3530 language requires clid_inuse be returned when the
* "principal" associated with a requests differs from that previously
* used. We use uid, gid's, and gss principal string as our best
* approximation. We also don't want to allow non-gss use of a client
* established using gss: in theory cr_principal should catch that
* change, but in practice cr_principal can be null even in the gss case
* since gssd doesn't always pass down a principal string.
*/
static bool is_gss_cred(struct svc_cred *cr)
{
/* Is cr_flavor one of the gss "pseudoflavors"?: */
return (cr->cr_flavor > RPC_AUTH_MAXFLAVOR);
}
static bool
same_creds(struct svc_cred *cr1, struct svc_cred *cr2)
{
if ((is_gss_cred(cr1) != is_gss_cred(cr2))
|| (!uid_eq(cr1->cr_uid, cr2->cr_uid))
|| (!gid_eq(cr1->cr_gid, cr2->cr_gid))
|| !groups_equal(cr1->cr_group_info, cr2->cr_group_info))
return false;
if (cr1->cr_principal == cr2->cr_principal)
return true;
if (!cr1->cr_principal || !cr2->cr_principal)
return false;
return 0 == strcmp(cr1->cr_principal, cr2->cr_principal);
}
static bool svc_rqst_integrity_protected(struct svc_rqst *rqstp)
{
struct svc_cred *cr = &rqstp->rq_cred;
u32 service;
if (!cr->cr_gss_mech)
return false;
service = gss_pseudoflavor_to_service(cr->cr_gss_mech, cr->cr_flavor);
return service == RPC_GSS_SVC_INTEGRITY ||
service == RPC_GSS_SVC_PRIVACY;
}
static bool mach_creds_match(struct nfs4_client *cl, struct svc_rqst *rqstp)
{
struct svc_cred *cr = &rqstp->rq_cred;
if (!cl->cl_mach_cred)
return true;
if (cl->cl_cred.cr_gss_mech != cr->cr_gss_mech)
return false;
if (!svc_rqst_integrity_protected(rqstp))
return false;
if (!cr->cr_principal)
return false;
return 0 == strcmp(cl->cl_cred.cr_principal, cr->cr_principal);
}
static void gen_clid(struct nfs4_client *clp, struct nfsd_net *nn)
{
static u32 current_clientid = 1;
clp->cl_clientid.cl_boot = nn->boot_time;
clp->cl_clientid.cl_id = current_clientid++;
}
static void gen_confirm(struct nfs4_client *clp)
{
__be32 verf[2];
static u32 i;
/*
* This is opaque to client, so no need to byte-swap. Use
* __force to keep sparse happy
*/
verf[0] = (__force __be32)get_seconds();
verf[1] = (__force __be32)i++;
memcpy(clp->cl_confirm.data, verf, sizeof(clp->cl_confirm.data));
}
static struct nfs4_stid *find_stateid(struct nfs4_client *cl, stateid_t *t)
{
struct nfs4_stid *ret;
ret = idr_find(&cl->cl_stateids, t->si_opaque.so_id);
if (!ret || !ret->sc_type)
return NULL;
return ret;
}
static struct nfs4_stid *find_stateid_by_type(struct nfs4_client *cl, stateid_t *t, char typemask)
{
struct nfs4_stid *s;
s = find_stateid(cl, t);
if (!s)
return NULL;
if (typemask & s->sc_type)
return s;
return NULL;
}
static struct nfs4_client *create_client(struct xdr_netobj name,
struct svc_rqst *rqstp, nfs4_verifier *verf)
{
struct nfs4_client *clp;
struct sockaddr *sa = svc_addr(rqstp);
int ret;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
clp = alloc_client(name);
if (clp == NULL)
return NULL;
ret = copy_cred(&clp->cl_cred, &rqstp->rq_cred);
if (ret) {
spin_lock(&nn->client_lock);
free_client(clp);
spin_unlock(&nn->client_lock);
return NULL;
}
INIT_WORK(&clp->cl_cb_null.cb_work, nfsd4_run_cb_null);
clp->cl_time = get_seconds();
clear_bit(0, &clp->cl_cb_slot_busy);
copy_verf(clp, verf);
rpc_copy_addr((struct sockaddr *) &clp->cl_addr, sa);
gen_confirm(clp);
clp->cl_cb_session = NULL;
clp->net = net;
return clp;
}
static void
add_clp_to_name_tree(struct nfs4_client *new_clp, struct rb_root *root)
{
struct rb_node **new = &(root->rb_node), *parent = NULL;
struct nfs4_client *clp;
while (*new) {
clp = rb_entry(*new, struct nfs4_client, cl_namenode);
parent = *new;
if (compare_blob(&clp->cl_name, &new_clp->cl_name) > 0)
new = &((*new)->rb_left);
else
new = &((*new)->rb_right);
}
rb_link_node(&new_clp->cl_namenode, parent, new);
rb_insert_color(&new_clp->cl_namenode, root);
}
static struct nfs4_client *
find_clp_in_name_tree(struct xdr_netobj *name, struct rb_root *root)
{
long long cmp;
struct rb_node *node = root->rb_node;
struct nfs4_client *clp;
while (node) {
clp = rb_entry(node, struct nfs4_client, cl_namenode);
cmp = compare_blob(&clp->cl_name, name);
if (cmp > 0)
node = node->rb_left;
else if (cmp < 0)
node = node->rb_right;
else
return clp;
}
return NULL;
}
static void
add_to_unconfirmed(struct nfs4_client *clp)
{
unsigned int idhashval;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
clear_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags);
add_clp_to_name_tree(clp, &nn->unconf_name_tree);
idhashval = clientid_hashval(clp->cl_clientid.cl_id);
list_add(&clp->cl_idhash, &nn->unconf_id_hashtbl[idhashval]);
renew_client(clp);
}
static void
move_to_confirmed(struct nfs4_client *clp)
{
unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id);
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
dprintk("NFSD: move_to_confirm nfs4_client %p\n", clp);
list_move(&clp->cl_idhash, &nn->conf_id_hashtbl[idhashval]);
rb_erase(&clp->cl_namenode, &nn->unconf_name_tree);
add_clp_to_name_tree(clp, &nn->conf_name_tree);
set_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags);
renew_client(clp);
}
static struct nfs4_client *
find_client_in_id_table(struct list_head *tbl, clientid_t *clid, bool sessions)
{
struct nfs4_client *clp;
unsigned int idhashval = clientid_hashval(clid->cl_id);
list_for_each_entry(clp, &tbl[idhashval], cl_idhash) {
if (same_clid(&clp->cl_clientid, clid)) {
if ((bool)clp->cl_minorversion != sessions)
return NULL;
renew_client(clp);
return clp;
}
}
return NULL;
}
static struct nfs4_client *
find_confirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn)
{
struct list_head *tbl = nn->conf_id_hashtbl;
return find_client_in_id_table(tbl, clid, sessions);
}
static struct nfs4_client *
find_unconfirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn)
{
struct list_head *tbl = nn->unconf_id_hashtbl;
return find_client_in_id_table(tbl, clid, sessions);
}
static bool clp_used_exchangeid(struct nfs4_client *clp)
{
return clp->cl_exchange_flags != 0;
}
static struct nfs4_client *
find_confirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn)
{
return find_clp_in_name_tree(name, &nn->conf_name_tree);
}
static struct nfs4_client *
find_unconfirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn)
{
return find_clp_in_name_tree(name, &nn->unconf_name_tree);
}
static void
gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se, struct svc_rqst *rqstp)
{
struct nfs4_cb_conn *conn = &clp->cl_cb_conn;
struct sockaddr *sa = svc_addr(rqstp);
u32 scopeid = rpc_get_scope_id(sa);
unsigned short expected_family;
/* Currently, we only support tcp and tcp6 for the callback channel */
if (se->se_callback_netid_len == 3 &&
!memcmp(se->se_callback_netid_val, "tcp", 3))
expected_family = AF_INET;
else if (se->se_callback_netid_len == 4 &&
!memcmp(se->se_callback_netid_val, "tcp6", 4))
expected_family = AF_INET6;
else
goto out_err;
conn->cb_addrlen = rpc_uaddr2sockaddr(clp->net, se->se_callback_addr_val,
se->se_callback_addr_len,
(struct sockaddr *)&conn->cb_addr,
sizeof(conn->cb_addr));
if (!conn->cb_addrlen || conn->cb_addr.ss_family != expected_family)
goto out_err;
if (conn->cb_addr.ss_family == AF_INET6)
((struct sockaddr_in6 *)&conn->cb_addr)->sin6_scope_id = scopeid;
conn->cb_prog = se->se_callback_prog;
conn->cb_ident = se->se_callback_ident;
memcpy(&conn->cb_saddr, &rqstp->rq_daddr, rqstp->rq_daddrlen);
return;
out_err:
conn->cb_addr.ss_family = AF_UNSPEC;
conn->cb_addrlen = 0;
dprintk(KERN_INFO "NFSD: this client (clientid %08x/%08x) "
"will not receive delegations\n",
clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id);
return;
}
/*
* Cache a reply. nfsd4_check_resp_size() has bounded the cache size.
*/
static void
nfsd4_store_cache_entry(struct nfsd4_compoundres *resp)
{
struct xdr_buf *buf = resp->xdr.buf;
struct nfsd4_slot *slot = resp->cstate.slot;
unsigned int base;
dprintk("--> %s slot %p\n", __func__, slot);
slot->sl_opcnt = resp->opcnt;
slot->sl_status = resp->cstate.status;
slot->sl_flags |= NFSD4_SLOT_INITIALIZED;
if (nfsd4_not_cached(resp)) {
slot->sl_datalen = 0;
return;
}
base = resp->cstate.data_offset;
slot->sl_datalen = buf->len - base;
if (read_bytes_from_xdr_buf(buf, base, slot->sl_data, slot->sl_datalen))
WARN("%s: sessions DRC could not cache compound\n", __func__);
return;
}
/*
* Encode the replay sequence operation from the slot values.
* If cachethis is FALSE encode the uncached rep error on the next
* operation which sets resp->p and increments resp->opcnt for
* nfs4svc_encode_compoundres.
*
*/
static __be32
nfsd4_enc_sequence_replay(struct nfsd4_compoundargs *args,
struct nfsd4_compoundres *resp)
{
struct nfsd4_op *op;
struct nfsd4_slot *slot = resp->cstate.slot;
/* Encode the replayed sequence operation */
op = &args->ops[resp->opcnt - 1];
nfsd4_encode_operation(resp, op);
/* Return nfserr_retry_uncached_rep in next operation. */
if (args->opcnt > 1 && !(slot->sl_flags & NFSD4_SLOT_CACHETHIS)) {
op = &args->ops[resp->opcnt++];
op->status = nfserr_retry_uncached_rep;
nfsd4_encode_operation(resp, op);
}
return op->status;
}
/*
* The sequence operation is not cached because we can use the slot and
* session values.
*/
static __be32
nfsd4_replay_cache_entry(struct nfsd4_compoundres *resp,
struct nfsd4_sequence *seq)
{
struct nfsd4_slot *slot = resp->cstate.slot;
struct xdr_stream *xdr = &resp->xdr;
__be32 *p;
__be32 status;
dprintk("--> %s slot %p\n", __func__, slot);
status = nfsd4_enc_sequence_replay(resp->rqstp->rq_argp, resp);
if (status)
return status;
p = xdr_reserve_space(xdr, slot->sl_datalen);
if (!p) {
WARN_ON_ONCE(1);
return nfserr_serverfault;
}
xdr_encode_opaque_fixed(p, slot->sl_data, slot->sl_datalen);
xdr_commit_encode(xdr);
resp->opcnt = slot->sl_opcnt;
return slot->sl_status;
}
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
/*
* Set the exchange_id flags returned by the server.
*/
static void
nfsd4_set_ex_flags(struct nfs4_client *new, struct nfsd4_exchange_id *clid)
{
/* pNFS is not supported */
new->cl_exchange_flags |= EXCHGID4_FLAG_USE_NON_PNFS;
/* Referrals are supported, Migration is not. */
new->cl_exchange_flags |= EXCHGID4_FLAG_SUPP_MOVED_REFER;
/* set the wire flags to return to client. */
clid->flags = new->cl_exchange_flags;
}
static bool client_has_state(struct nfs4_client *clp)
{
/*
* Note clp->cl_openowners check isn't quite right: there's no
* need to count owners without stateid's.
*
* Also note we should probably be using this in 4.0 case too.
*/
return !list_empty(&clp->cl_openowners)
|| !list_empty(&clp->cl_delegations)
|| !list_empty(&clp->cl_sessions);
}
__be32
nfsd4_exchange_id(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_exchange_id *exid)
{
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
struct nfs4_client *unconf, *conf, *new;
__be32 status;
char addr_str[INET6_ADDRSTRLEN];
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
nfs4_verifier verf = exid->verifier;
struct sockaddr *sa = svc_addr(rqstp);
bool update = exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
rpc_ntop(sa, addr_str, sizeof(addr_str));
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
dprintk("%s rqstp=%p exid=%p clname.len=%u clname.data=%p "
"ip_addr=%s flags %x, spa_how %d\n",
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
__func__, rqstp, exid, exid->clname.len, exid->clname.data,
addr_str, exid->flags, exid->spa_how);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
if (exid->flags & ~EXCHGID4_FLAG_MASK_A)
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
return nfserr_inval;
switch (exid->spa_how) {
case SP4_MACH_CRED:
if (!svc_rqst_integrity_protected(rqstp))
return nfserr_inval;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
case SP4_NONE:
break;
default: /* checked by xdr code */
WARN_ON_ONCE(1);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
case SP4_SSV:
return nfserr_encr_alg_unsupp;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
}
/* Cases below refer to rfc 5661 section 18.35.4: */
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
nfs4_lock_state();
conf = find_confirmed_client_by_name(&exid->clname, nn);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
if (conf) {
bool creds_match = same_creds(&conf->cl_cred, &rqstp->rq_cred);
bool verfs_match = same_verf(&verf, &conf->cl_verifier);
if (update) {
if (!clp_used_exchangeid(conf)) { /* buggy client */
status = nfserr_inval;
goto out;
}
if (!mach_creds_match(conf, rqstp)) {
status = nfserr_wrong_cred;
goto out;
}
if (!creds_match) { /* case 9 */
status = nfserr_perm;
goto out;
}
if (!verfs_match) { /* case 8 */
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
status = nfserr_not_same;
goto out;
}
/* case 6 */
exid->flags |= EXCHGID4_FLAG_CONFIRMED_R;
new = conf;
goto out_copy;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
}
if (!creds_match) { /* case 3 */
if (client_has_state(conf)) {
status = nfserr_clid_inuse;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
goto out;
}
expire_client(conf);
goto out_new;
}
if (verfs_match) { /* case 2 */
conf->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R;
new = conf;
goto out_copy;
}
/* case 5, client reboot */
goto out_new;
}
if (update) { /* case 7 */
status = nfserr_noent;
goto out;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
}
unconf = find_unconfirmed_client_by_name(&exid->clname, nn);
if (unconf) /* case 4, possible retry or client restart */
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
expire_client(unconf);
/* case 1 (normal case) */
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
out_new:
new = create_client(exid->clname, rqstp, &verf);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
if (new == NULL) {
status = nfserr_jukebox;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
goto out;
}
new->cl_minorversion = cstate->minorversion;
new->cl_mach_cred = (exid->spa_how == SP4_MACH_CRED);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
gen_clid(new, nn);
add_to_unconfirmed(new);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
out_copy:
exid->clientid.cl_boot = new->cl_clientid.cl_boot;
exid->clientid.cl_id = new->cl_clientid.cl_id;
exid->seqid = new->cl_cs_slot.sl_seqid + 1;
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
nfsd4_set_ex_flags(new, exid);
dprintk("nfsd4_exchange_id seqid %d flags %x\n",
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
new->cl_cs_slot.sl_seqid, new->cl_exchange_flags);
nfsd41: exchange_id operation Implement the exchange_id operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28 Based on the client provided name, hash a client id. If a confirmed one is found, compare the op's creds and verifier. If the creds match and the verifier is different then expire the old client (client re-incarnated), otherwise, if both match, assume it's a replay and ignore it. If an unconfirmed client is found, then copy the new creds and verifer if need update, otherwise assume replay. The client is moved to a confirmed state on create_session. In the nfs41 branch set the exchange_id flags to EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER (pNFS is not supported, Referrals are supported, Migration is not.). Address various scenarios from section 18.35 of the spec: 1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set EXCHGID4_FLAG_CONFIRMED_R as appropriate. 2. Return error codes per 18.35.4 scenarios. 3. Update client records or generate new client ids depending on scenario. Note: 18.35.4 case 3 probably still needs revisiting. The handling seems not quite right. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamosn <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: use utsname for major_id (and copy to server_scope)] [nfsd41: fix handling of various exchange id scenarios] Signed-off-by: Mike Sager <sager@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A] [simplify nfsd4_encode_exchange_id error handling] [nfsd41: embed an xdr_netobj in nfsd4_exchange_id] [nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:01 +00:00
status = nfs_ok;
out:
nfs4_unlock_state();
return status;
}
static __be32
check_slot_seqid(u32 seqid, u32 slot_seqid, int slot_inuse)
{
dprintk("%s enter. seqid %d slot_seqid %d\n", __func__, seqid,
slot_seqid);
/* The slot is in use, and no response has been sent. */
if (slot_inuse) {
if (seqid == slot_seqid)
return nfserr_jukebox;
else
return nfserr_seq_misordered;
}
/* Note unsigned 32-bit arithmetic handles wraparound: */
if (likely(seqid == slot_seqid + 1))
return nfs_ok;
if (seqid == slot_seqid)
return nfserr_replay_cache;
return nfserr_seq_misordered;
}
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
/*
* Cache the create session result into the create session single DRC
* slot cache by saving the xdr structure. sl_seqid has been set.
* Do this for solo or embedded create session operations.
*/
static void
nfsd4_cache_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot, __be32 nfserr)
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
{
slot->sl_status = nfserr;
memcpy(&slot->sl_cr_ses, cr_ses, sizeof(*cr_ses));
}
static __be32
nfsd4_replay_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot)
{
memcpy(cr_ses, &slot->sl_cr_ses, sizeof(*cr_ses));
return slot->sl_status;
}
#define NFSD_MIN_REQ_HDR_SEQ_SZ ((\
2 * 2 + /* credential,verifier: AUTH_NULL, length 0 */ \
1 + /* MIN tag is length with zero, only length */ \
3 + /* version, opcount, opcode */ \
XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \
/* seqid, slotID, slotID, cache */ \
4 ) * sizeof(__be32))
#define NFSD_MIN_RESP_HDR_SEQ_SZ ((\
2 + /* verifier: AUTH_NULL, length 0 */\
1 + /* status */ \
1 + /* MIN tag is length with zero, only length */ \
3 + /* opcount, opcode, opstatus*/ \
XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \
/* seqid, slotID, slotID, slotID, status */ \
5 ) * sizeof(__be32))
static __be32 check_forechannel_attrs(struct nfsd4_channel_attrs *ca, struct nfsd_net *nn)
{
u32 maxrpc = nn->nfsd_serv->sv_max_mesg;
if (ca->maxreq_sz < NFSD_MIN_REQ_HDR_SEQ_SZ)
return nfserr_toosmall;
if (ca->maxresp_sz < NFSD_MIN_RESP_HDR_SEQ_SZ)
return nfserr_toosmall;
ca->headerpadsz = 0;
ca->maxreq_sz = min_t(u32, ca->maxreq_sz, maxrpc);
ca->maxresp_sz = min_t(u32, ca->maxresp_sz, maxrpc);
ca->maxops = min_t(u32, ca->maxops, NFSD_MAX_OPS_PER_COMPOUND);
ca->maxresp_cached = min_t(u32, ca->maxresp_cached,
NFSD_SLOT_CACHE_SIZE + NFSD_MIN_HDR_SEQ_SZ);
ca->maxreqs = min_t(u32, ca->maxreqs, NFSD_MAX_SLOTS_PER_SESSION);
/*
* Note decreasing slot size below client's request may make it
* difficult for client to function correctly, whereas
* decreasing the number of slots will (just?) affect
* performance. When short on memory we therefore prefer to
* decrease number of slots instead of their size. Clients that
* request larger slots than they need will get poor results:
*/
ca->maxreqs = nfsd4_get_drc_mem(ca);
if (!ca->maxreqs)
return nfserr_jukebox;
return nfs_ok;
}
#define NFSD_CB_MAX_REQ_SZ ((NFS4_enc_cb_recall_sz + \
RPC_MAX_HEADER_WITH_AUTH) * sizeof(__be32))
#define NFSD_CB_MAX_RESP_SZ ((NFS4_dec_cb_recall_sz + \
RPC_MAX_REPHEADER_WITH_AUTH) * sizeof(__be32))
static __be32 check_backchannel_attrs(struct nfsd4_channel_attrs *ca)
{
ca->headerpadsz = 0;
/*
* These RPC_MAX_HEADER macros are overkill, especially since we
* don't even do gss on the backchannel yet. But this is still
* less than 1k. Tighten up this estimate in the unlikely event
* it turns out to be a problem for some client:
*/
if (ca->maxreq_sz < NFSD_CB_MAX_REQ_SZ)
return nfserr_toosmall;
if (ca->maxresp_sz < NFSD_CB_MAX_RESP_SZ)
return nfserr_toosmall;
ca->maxresp_cached = 0;
if (ca->maxops < 2)
return nfserr_toosmall;
return nfs_ok;
}
static __be32 nfsd4_check_cb_sec(struct nfsd4_cb_sec *cbs)
{
switch (cbs->flavor) {
case RPC_AUTH_NULL:
case RPC_AUTH_UNIX:
return nfs_ok;
default:
/*
* GSS case: the spec doesn't allow us to return this
* error. But it also doesn't allow us not to support
* GSS.
* I'd rather this fail hard than return some error the
* client might think it can already handle:
*/
return nfserr_encr_alg_unsupp;
}
}
__be32
nfsd4_create_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_create_session *cr_ses)
{
struct sockaddr *sa = svc_addr(rqstp);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
struct nfs4_client *conf, *unconf;
struct nfsd4_session *new;
struct nfsd4_conn *conn;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
struct nfsd4_clid_slot *cs_slot = NULL;
__be32 status = 0;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
if (cr_ses->flags & ~SESSION4_FLAG_MASK_A)
return nfserr_inval;
status = nfsd4_check_cb_sec(&cr_ses->cb_sec);
if (status)
return status;
status = check_forechannel_attrs(&cr_ses->fore_channel, nn);
if (status)
return status;
status = check_backchannel_attrs(&cr_ses->back_channel);
if (status)
goto out_release_drc_mem;
status = nfserr_jukebox;
new = alloc_session(&cr_ses->fore_channel, &cr_ses->back_channel);
if (!new)
goto out_release_drc_mem;
conn = alloc_conn_from_crses(rqstp, cr_ses);
if (!conn)
goto out_free_session;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
nfs4_lock_state();
unconf = find_unconfirmed_client(&cr_ses->clientid, true, nn);
conf = find_confirmed_client(&cr_ses->clientid, true, nn);
WARN_ON_ONCE(conf && unconf);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
if (conf) {
status = nfserr_wrong_cred;
if (!mach_creds_match(conf, rqstp))
goto out_free_conn;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
cs_slot = &conf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status == nfserr_replay_cache) {
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
status = nfsd4_replay_create_session(cr_ses, cs_slot);
goto out_free_conn;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
} else if (cr_ses->seqid != cs_slot->sl_seqid + 1) {
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
status = nfserr_seq_misordered;
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
} else if (unconf) {
struct nfs4_client *old;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred) ||
!rpc_cmp_addr(sa, (struct sockaddr *) &unconf->cl_addr)) {
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
status = nfserr_clid_inuse;
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
status = nfserr_wrong_cred;
if (!mach_creds_match(unconf, rqstp))
goto out_free_conn;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
cs_slot = &unconf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status) {
/* an unconfirmed replay returns misordered */
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
status = nfserr_seq_misordered;
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
old = find_confirmed_client_by_name(&unconf->cl_name, nn);
if (old) {
status = mark_client_expired(old);
if (status)
goto out_free_conn;
expire_client(old);
}
move_to_confirmed(unconf);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
conf = unconf;
} else {
status = nfserr_stale_clientid;
goto out_free_conn;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
}
status = nfs_ok;
/*
* We do not support RDMA or persistent sessions
*/
cr_ses->flags &= ~SESSION4_PERSIST;
cr_ses->flags &= ~SESSION4_RDMA;
init_session(rqstp, new, conf, cr_ses);
nfsd4_init_conn(rqstp, conn, new);
memcpy(cr_ses->sessionid.data, new->se_sessionid.data,
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
NFS4_MAX_SESSIONID_LEN);
cs_slot->sl_seqid++;
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
cr_ses->seqid = cs_slot->sl_seqid;
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
nfsd41: Use separate DRC for setclientid Instead of trying to share the generic 4.1 reply cache code for the CREATE_SESSION reply cache, it's simpler to handle CREATE_SESSION separately. The nfs41 single slot clientid DRC holds the results of create session processing. CREATE_SESSION can be preceeded by a SEQUENCE operation (an embedded CREATE_SESSION) and the create session single slot cache must be maintained. nfsd4_replay_cache_entry() and nfsd4_store_cache_entry() do not implement the replay of an embedded CREATE_SESSION. The clientid DRC slot does not need the inuse, cachethis or other fields that the multiple slot session cache uses. Replace the clientid DRC cache struct nfs4_slot cache with a new nfsd4_clid_slot cache. Save the xdr struct nfsd4_create_session into the cache at the end of processing, and on a replay, replace the struct for the replay request with the cached version all while under the state lock. nfsd4_proc_compound will handle both the solo and embedded CREATE_SESSION case via the normal use of encode_operation. Errors that do not change the create session cache: A create session NFS4ERR_STALE_CLIENTID error means that a client record (and associated create session slot) could not be found and therefore can't be changed. NFSERR_SEQ_MISORDERED errors do not change the slot cache. All other errors get cached. Remove the clientid DRC specific check in nfs4svc_encode_compoundres to put the session only if cstate.session is set which will now always be true. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-07-23 23:02:16 +00:00
/* cache solo and embedded create sessions under the state lock */
nfsd4_cache_create_session(cr_ses, cs_slot, status);
nfsd41: create_session operation Implement the create_session operation confoming to http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26 Look up the client id (generated by the server on exchange_id, given by the client on create_session). If neither a confirmed or unconfirmed client is found then the client id is stale If a confirmed cilent is found (i.e. we already received create_session for it) then compare the sequence id to determine if it's a replay or possibly a mis-ordered rpc. If the seqid is in order, update the confirmed client seqid and procedd with updating the session parameters. If an unconfirmed client_id is found then verify the creds and seqid. If both match move the client id to confirmed state and proceed with processing the create_session. Currently, we do not support persistent sessions, and RDMA. alloc_init_session generates a new sessionid and creates a session structure. NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for the counting of DRC pages using the hard limits set in struct srv_serv. A note on NFSD_PAGES_PER_SLOT: Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT * PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf pages. So, the hard limit calculation use of pages by a session is underestimated by the number of cached operations using the xdr_buf pages. Yet another patch caches no pages for the solo sequence operation, or any compound where cache_this is False. So the hard limit calculation use of pages by a session is overestimated by the number of these operations in the cache. TODO: improve resource pre-allocation and negotiate session parameters accordingly. Respect and possibly adjust backchannel attributes. Signed-off-by: Marc Eshel <eshel@almaden.ibm.com> Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com> [nfsd41: remove headerpadsz from channel attributes] Our client and server only support a headerpadsz of 0. [nfsd41: use DRC limits in fore channel init] [nfsd41: do not change CREATE_SESSION back channel attrs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [use sessionid_lock spin lock] [nfsd41: use bool inuse for slot state] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfsd41 remove sl_session from alloc_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [simplify nfsd4_encode_create_session error handling] [nfsd41: fix comment style in init_forechannel_attrs] [nfsd41: allocate struct nfsd4_session and slot table in one piece] [nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 05:28:28 +00:00
nfs4_unlock_state();
return status;
out_free_conn:
nfs4_unlock_state();
free_conn(conn);
out_free_session:
__free_session(new);
out_release_drc_mem:
nfsd4_put_drc_mem(&cr_ses->fore_channel);
return status;
}
static __be32 nfsd4_map_bcts_dir(u32 *dir)
{
switch (*dir) {
case NFS4_CDFC4_FORE:
case NFS4_CDFC4_BACK:
return nfs_ok;
case NFS4_CDFC4_FORE_OR_BOTH:
case NFS4_CDFC4_BACK_OR_BOTH:
*dir = NFS4_CDFC4_BOTH;
return nfs_ok;
};
return nfserr_inval;
}
__be32 nfsd4_backchannel_ctl(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_backchannel_ctl *bc)
{
struct nfsd4_session *session = cstate->session;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
__be32 status;
status = nfsd4_check_cb_sec(&bc->bc_cb_sec);
if (status)
return status;
spin_lock(&nn->client_lock);
session->se_cb_prog = bc->bc_cb_program;
session->se_cb_sec = bc->bc_cb_sec;
spin_unlock(&nn->client_lock);
nfsd4_probe_callback(session->se_client);
return nfs_ok;
}
__be32 nfsd4_bind_conn_to_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_bind_conn_to_session *bcts)
{
__be32 status;
struct nfsd4_conn *conn;
struct nfsd4_session *session;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
if (!nfsd4_last_compound_op(rqstp))
return nfserr_not_only_op;
nfs4_lock_state();
spin_lock(&nn->client_lock);
session = find_in_sessionid_hashtbl(&bcts->sessionid, net, &status);
spin_unlock(&nn->client_lock);
if (!session)
goto out_no_session;
status = nfserr_wrong_cred;
if (!mach_creds_match(session->se_client, rqstp))
goto out;
status = nfsd4_map_bcts_dir(&bcts->dir);
if (status)
goto out;
conn = alloc_conn(rqstp, bcts->dir);
status = nfserr_jukebox;
if (!conn)
goto out;
nfsd4_init_conn(rqstp, conn, session);
status = nfs_ok;
out:
nfsd4_put_session(session);
out_no_session:
nfs4_unlock_state();
return status;
}
static bool nfsd4_compound_in_session(struct nfsd4_session *session, struct nfs4_sessionid *sid)
{
if (!session)
return 0;
return !memcmp(sid, &session->se_sessionid, sizeof(*sid));
}
__be32
nfsd4_destroy_session(struct svc_rqst *r,
struct nfsd4_compound_state *cstate,
struct nfsd4_destroy_session *sessionid)
{
struct nfsd4_session *ses;
__be32 status;
int ref_held_by_me = 0;
struct net *net = SVC_NET(r);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
nfs4_lock_state();
status = nfserr_not_only_op;
if (nfsd4_compound_in_session(cstate->session, &sessionid->sessionid)) {
if (!nfsd4_last_compound_op(r))
goto out;
ref_held_by_me++;
}
dump_sessionid(__func__, &sessionid->sessionid);
spin_lock(&nn->client_lock);
ses = find_in_sessionid_hashtbl(&sessionid->sessionid, net, &status);
if (!ses)
goto out_client_lock;
status = nfserr_wrong_cred;
if (!mach_creds_match(ses->se_client, r))
goto out_put_session;
status = mark_session_dead_locked(ses, 1 + ref_held_by_me);
if (status)
goto out_put_session;
unhash_session(ses);
spin_unlock(&nn->client_lock);
nfsd4_probe_callback_sync(ses->se_client);
spin_lock(&nn->client_lock);
status = nfs_ok;
out_put_session:
nfsd4_put_session_locked(ses);
out_client_lock:
spin_unlock(&nn->client_lock);
out:
nfs4_unlock_state();
return status;
}
static struct nfsd4_conn *__nfsd4_find_conn(struct svc_xprt *xpt, struct nfsd4_session *s)
{
struct nfsd4_conn *c;
list_for_each_entry(c, &s->se_conns, cn_persession) {
if (c->cn_xprt == xpt) {
return c;
}
}
return NULL;
}
static __be32 nfsd4_sequence_check_conn(struct nfsd4_conn *new, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_conn *c;
__be32 status = nfs_ok;
int ret;
spin_lock(&clp->cl_lock);
c = __nfsd4_find_conn(new->cn_xprt, ses);
if (c)
goto out_free;
status = nfserr_conn_not_bound_to_session;
if (clp->cl_mach_cred)
goto out_free;
__nfsd4_hash_conn(new, ses);
spin_unlock(&clp->cl_lock);
ret = nfsd4_register_conn(new);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&new->cn_xpt_user);
return nfs_ok;
out_free:
spin_unlock(&clp->cl_lock);
free_conn(new);
return status;
}
static bool nfsd4_session_too_many_ops(struct svc_rqst *rqstp, struct nfsd4_session *session)
{
struct nfsd4_compoundargs *args = rqstp->rq_argp;
return args->opcnt > session->se_fchannel.maxops;
}
static bool nfsd4_request_too_big(struct svc_rqst *rqstp,
struct nfsd4_session *session)
{
struct xdr_buf *xb = &rqstp->rq_arg;
return xb->len > session->se_fchannel.maxreq_sz;
}
__be32
nfsd4_sequence(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_sequence *seq)
{
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct xdr_stream *xdr = &resp->xdr;
struct nfsd4_session *session;
struct nfs4_client *clp;
struct nfsd4_slot *slot;
struct nfsd4_conn *conn;
__be32 status;
int buflen;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
if (resp->opcnt != 1)
return nfserr_sequence_pos;
/*
* Will be either used or freed by nfsd4_sequence_check_conn
* below.
*/
conn = alloc_conn(rqstp, NFS4_CDFC4_FORE);
if (!conn)
return nfserr_jukebox;
spin_lock(&nn->client_lock);
session = find_in_sessionid_hashtbl(&seq->sessionid, net, &status);
if (!session)
goto out_no_session;
clp = session->se_client;
status = nfserr_too_many_ops;
if (nfsd4_session_too_many_ops(rqstp, session))
goto out_put_session;
status = nfserr_req_too_big;
if (nfsd4_request_too_big(rqstp, session))
goto out_put_session;
status = nfserr_badslot;
if (seq->slotid >= session->se_fchannel.maxreqs)
goto out_put_session;
slot = session->se_slots[seq->slotid];
dprintk("%s: slotid %d\n", __func__, seq->slotid);
/* We do not negotiate the number of slots yet, so set the
* maxslots to the session maxreqs which is used to encode
* sr_highest_slotid and the sr_target_slot id to maxslots */
seq->maxslots = session->se_fchannel.maxreqs;
status = check_slot_seqid(seq->seqid, slot->sl_seqid,
slot->sl_flags & NFSD4_SLOT_INUSE);
if (status == nfserr_replay_cache) {
status = nfserr_seq_misordered;
if (!(slot->sl_flags & NFSD4_SLOT_INITIALIZED))
goto out_put_session;
cstate->slot = slot;
cstate->session = session;
cstate->clp = clp;
/* Return the cached reply status and set cstate->status
* for nfsd4_proc_compound processing */
status = nfsd4_replay_cache_entry(resp, seq);
cstate->status = nfserr_replay_cache;
goto out;
}
if (status)
goto out_put_session;
status = nfsd4_sequence_check_conn(conn, session);
conn = NULL;
if (status)
goto out_put_session;
buflen = (seq->cachethis) ?
session->se_fchannel.maxresp_cached :
session->se_fchannel.maxresp_sz;
status = (seq->cachethis) ? nfserr_rep_too_big_to_cache :
nfserr_rep_too_big;
if (xdr_restrict_buflen(xdr, buflen - rqstp->rq_auth_slack))
goto out_put_session;
svc_reserve(rqstp, buflen);
status = nfs_ok;
/* Success! bump slot seqid */
slot->sl_seqid = seq->seqid;
slot->sl_flags |= NFSD4_SLOT_INUSE;
if (seq->cachethis)
slot->sl_flags |= NFSD4_SLOT_CACHETHIS;
else
slot->sl_flags &= ~NFSD4_SLOT_CACHETHIS;
cstate->slot = slot;
cstate->session = session;
cstate->clp = clp;
out:
switch (clp->cl_cb_state) {
case NFSD4_CB_DOWN:
seq->status_flags = SEQ4_STATUS_CB_PATH_DOWN;
break;
case NFSD4_CB_FAULT:
seq->status_flags = SEQ4_STATUS_BACKCHANNEL_FAULT;
break;
default:
seq->status_flags = 0;
}
if (!list_empty(&clp->cl_revoked))
seq->status_flags |= SEQ4_STATUS_RECALLABLE_STATE_REVOKED;
out_no_session:
if (conn)
free_conn(conn);
spin_unlock(&nn->client_lock);
return status;
out_put_session:
nfsd4_put_session_locked(session);
goto out_no_session;
}
void
nfsd4_sequence_done(struct nfsd4_compoundres *resp)
{
struct nfsd4_compound_state *cs = &resp->cstate;
if (nfsd4_has_session(cs)) {
if (cs->status != nfserr_replay_cache) {
nfsd4_store_cache_entry(resp);
cs->slot->sl_flags &= ~NFSD4_SLOT_INUSE;
}
/* Drop session reference that was taken in nfsd4_sequence() */
nfsd4_put_session(cs->session);
} else if (cs->clp)
put_client_renew(cs->clp);
}
__be32
nfsd4_destroy_clientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_destroy_clientid *dc)
{
struct nfs4_client *conf, *unconf, *clp;
__be32 status = 0;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfs4_lock_state();
unconf = find_unconfirmed_client(&dc->clientid, true, nn);
conf = find_confirmed_client(&dc->clientid, true, nn);
WARN_ON_ONCE(conf && unconf);
if (conf) {
clp = conf;
if (client_has_state(conf)) {
status = nfserr_clientid_busy;
goto out;
}
} else if (unconf)
clp = unconf;
else {
status = nfserr_stale_clientid;
goto out;
}
if (!mach_creds_match(clp, rqstp)) {
status = nfserr_wrong_cred;
goto out;
}
expire_client(clp);
out:
nfs4_unlock_state();
return status;
}
__be32
nfsd4_reclaim_complete(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_reclaim_complete *rc)
{
__be32 status = 0;
if (rc->rca_one_fs) {
if (!cstate->current_fh.fh_dentry)
return nfserr_nofilehandle;
/*
* We don't take advantage of the rca_one_fs case.
* That's OK, it's optional, we can safely ignore it.
*/
return nfs_ok;
}
nfs4_lock_state();
status = nfserr_complete_already;
if (test_and_set_bit(NFSD4_CLIENT_RECLAIM_COMPLETE,
&cstate->session->se_client->cl_flags))
goto out;
status = nfserr_stale_clientid;
if (is_client_expired(cstate->session->se_client))
/*
* The following error isn't really legal.
* But we only get here if the client just explicitly
* destroyed the client. Surely it no longer cares what
* error it gets back on an operation for the dead
* client.
*/
goto out;
status = nfs_ok;
nfsd4_client_record_create(cstate->session->se_client);
out:
nfs4_unlock_state();
return status;
}
__be32
nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_setclientid *setclid)
{
struct xdr_netobj clname = setclid->se_name;
nfs4_verifier clverifier = setclid->se_verf;
struct nfs4_client *conf, *unconf, *new;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
/* Cases below refer to rfc 3530 section 14.2.33: */
nfs4_lock_state();
conf = find_confirmed_client_by_name(&clname, nn);
if (conf) {
/* case 0: */
status = nfserr_clid_inuse;
if (clp_used_exchangeid(conf))
goto out;
if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) {
char addr_str[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *) &conf->cl_addr, addr_str,
sizeof(addr_str));
dprintk("NFSD: setclientid: string in use by client "
"at %s\n", addr_str);
goto out;
}
}
unconf = find_unconfirmed_client_by_name(&clname, nn);
if (unconf)
expire_client(unconf);
status = nfserr_jukebox;
new = create_client(clname, rqstp, &clverifier);
if (new == NULL)
goto out;
if (conf && same_verf(&conf->cl_verifier, &clverifier))
/* case 1: probable callback update */
copy_clid(new, conf);
else /* case 4 (new client) or cases 2, 3 (client reboot): */
gen_clid(new, nn);
new->cl_minorversion = 0;
gen_callback(new, setclid, rqstp);
add_to_unconfirmed(new);
setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot;
setclid->se_clientid.cl_id = new->cl_clientid.cl_id;
memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data));
status = nfs_ok;
out:
nfs4_unlock_state();
return status;
}
__be32
nfsd4_setclientid_confirm(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_setclientid_confirm *setclientid_confirm)
{
struct nfs4_client *conf, *unconf;
nfs4_verifier confirm = setclientid_confirm->sc_confirm;
clientid_t * clid = &setclientid_confirm->sc_clientid;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if (STALE_CLIENTID(clid, nn))
return nfserr_stale_clientid;
nfs4_lock_state();
conf = find_confirmed_client(clid, false, nn);
unconf = find_unconfirmed_client(clid, false, nn);
/*
* We try hard to give out unique clientid's, so if we get an
* attempt to confirm the same clientid with a different cred,
* there's a bug somewhere. Let's charitably assume it's our
* bug.
*/
status = nfserr_serverfault;
if (unconf && !same_creds(&unconf->cl_cred, &rqstp->rq_cred))
goto out;
if (conf && !same_creds(&conf->cl_cred, &rqstp->rq_cred))
goto out;
/* cases below refer to rfc 3530 section 14.2.34: */
if (!unconf || !same_verf(&confirm, &unconf->cl_confirm)) {
if (conf && !unconf) /* case 2: probable retransmit */
status = nfs_ok;
else /* case 4: client hasn't noticed we rebooted yet? */
status = nfserr_stale_clientid;
goto out;
}
status = nfs_ok;
if (conf) { /* case 1: callback update */
nfsd4_change_callback(conf, &unconf->cl_cb_conn);
nfsd4_probe_callback(conf);
expire_client(unconf);
} else { /* case 3: normal case; new or rebooted client */
conf = find_confirmed_client_by_name(&unconf->cl_name, nn);
if (conf) {
status = mark_client_expired(conf);
if (status)
goto out;
expire_client(conf);
}
move_to_confirmed(unconf);
nfsd4_probe_callback(unconf);
}
out:
nfs4_unlock_state();
return status;
}
static struct nfs4_file *nfsd4_alloc_file(void)
{
return kmem_cache_alloc(file_slab, GFP_KERNEL);
}
/* OPEN Share state helper functions */
static void nfsd4_init_file(struct nfs4_file *fp, struct inode *ino,
struct knfsd_fh *fh)
{
unsigned int hashval = file_hashval(fh);
lockdep_assert_held(&state_lock);
atomic_set(&fp->fi_ref, 1);
spin_lock_init(&fp->fi_lock);
INIT_LIST_HEAD(&fp->fi_stateids);
INIT_LIST_HEAD(&fp->fi_delegations);
ihold(ino);
fp->fi_inode = ino;
fh_copy_shallow(&fp->fi_fhandle, fh);
fp->fi_had_conflict = false;
fp->fi_lease = NULL;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
fp->fi_share_deny = 0;
memset(fp->fi_fds, 0, sizeof(fp->fi_fds));
memset(fp->fi_access, 0, sizeof(fp->fi_access));
hlist_add_head(&fp->fi_hash, &file_hashtbl[hashval]);
}
void
nfsd4_free_slabs(void)
{
kmem_cache_destroy(openowner_slab);
kmem_cache_destroy(lockowner_slab);
kmem_cache_destroy(file_slab);
kmem_cache_destroy(stateid_slab);
kmem_cache_destroy(deleg_slab);
}
int
nfsd4_init_slabs(void)
{
openowner_slab = kmem_cache_create("nfsd4_openowners",
sizeof(struct nfs4_openowner), 0, 0, NULL);
if (openowner_slab == NULL)
goto out;
lockowner_slab = kmem_cache_create("nfsd4_lockowners",
sizeof(struct nfs4_lockowner), 0, 0, NULL);
if (lockowner_slab == NULL)
goto out_free_openowner_slab;
file_slab = kmem_cache_create("nfsd4_files",
sizeof(struct nfs4_file), 0, 0, NULL);
if (file_slab == NULL)
goto out_free_lockowner_slab;
stateid_slab = kmem_cache_create("nfsd4_stateids",
sizeof(struct nfs4_ol_stateid), 0, 0, NULL);
if (stateid_slab == NULL)
goto out_free_file_slab;
deleg_slab = kmem_cache_create("nfsd4_delegations",
sizeof(struct nfs4_delegation), 0, 0, NULL);
if (deleg_slab == NULL)
goto out_free_stateid_slab;
return 0;
out_free_stateid_slab:
kmem_cache_destroy(stateid_slab);
out_free_file_slab:
kmem_cache_destroy(file_slab);
out_free_lockowner_slab:
kmem_cache_destroy(lockowner_slab);
out_free_openowner_slab:
kmem_cache_destroy(openowner_slab);
out:
dprintk("nfsd4: out of memory while initializing nfsv4\n");
return -ENOMEM;
}
static void init_nfs4_replay(struct nfs4_replay *rp)
{
rp->rp_status = nfserr_serverfault;
rp->rp_buflen = 0;
rp->rp_buf = rp->rp_ibuf;
}
static inline void *alloc_stateowner(struct kmem_cache *slab, struct xdr_netobj *owner, struct nfs4_client *clp)
{
struct nfs4_stateowner *sop;
sop = kmem_cache_alloc(slab, GFP_KERNEL);
if (!sop)
return NULL;
sop->so_owner.data = kmemdup(owner->data, owner->len, GFP_KERNEL);
if (!sop->so_owner.data) {
kmem_cache_free(slab, sop);
return NULL;
}
sop->so_owner.len = owner->len;
INIT_LIST_HEAD(&sop->so_stateids);
sop->so_client = clp;
init_nfs4_replay(&sop->so_replay);
return sop;
}
static void hash_openowner(struct nfs4_openowner *oo, struct nfs4_client *clp, unsigned int strhashval)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
list_add(&oo->oo_owner.so_strhash, &nn->ownerstr_hashtbl[strhashval]);
list_add(&oo->oo_perclient, &clp->cl_openowners);
}
static struct nfs4_openowner *
alloc_init_open_stateowner(unsigned int strhashval, struct nfsd4_open *open,
struct nfsd4_compound_state *cstate)
{
struct nfs4_client *clp = cstate->clp;
struct nfs4_openowner *oo;
oo = alloc_stateowner(openowner_slab, &open->op_owner, clp);
if (!oo)
return NULL;
oo->oo_owner.so_is_open_owner = 1;
oo->oo_owner.so_seqid = open->op_seqid;
oo->oo_flags = NFS4_OO_NEW;
if (nfsd4_has_session(cstate))
oo->oo_flags |= NFS4_OO_CONFIRMED;
oo->oo_time = 0;
oo->oo_last_closed_stid = NULL;
INIT_LIST_HEAD(&oo->oo_close_lru);
hash_openowner(oo, clp, strhashval);
return oo;
}
static void init_open_stateid(struct nfs4_ol_stateid *stp, struct nfs4_file *fp, struct nfsd4_open *open) {
struct nfs4_openowner *oo = open->op_openowner;
stp->st_stid.sc_type = NFS4_OPEN_STID;
INIT_LIST_HEAD(&stp->st_locks);
list_add(&stp->st_perstateowner, &oo->oo_owner.so_stateids);
stp->st_stateowner = &oo->oo_owner;
get_nfs4_file(fp);
stp->st_file = fp;
stp->st_access_bmap = 0;
stp->st_deny_bmap = 0;
stp->st_openstp = NULL;
spin_lock(&fp->fi_lock);
list_add(&stp->st_perfile, &fp->fi_stateids);
spin_unlock(&fp->fi_lock);
}
static void
move_to_close_lru(struct nfs4_openowner *oo, struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dprintk("NFSD: move_to_close_lru nfs4_openowner %p\n", oo);
list_move_tail(&oo->oo_close_lru, &nn->close_lru);
oo->oo_time = get_seconds();
}
static int
same_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner,
clientid_t *clid)
{
return (sop->so_owner.len == owner->len) &&
0 == memcmp(sop->so_owner.data, owner->data, owner->len) &&
(sop->so_client->cl_clientid.cl_id == clid->cl_id);
}
static struct nfs4_openowner *
find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open,
bool sessions, struct nfsd_net *nn)
{
struct nfs4_stateowner *so;
struct nfs4_openowner *oo;
struct nfs4_client *clp;
list_for_each_entry(so, &nn->ownerstr_hashtbl[hashval], so_strhash) {
if (!so->so_is_open_owner)
continue;
if (same_owner_str(so, &open->op_owner, &open->op_clientid)) {
oo = openowner(so);
clp = oo->oo_owner.so_client;
if ((bool)clp->cl_minorversion != sessions)
return NULL;
renew_client(oo->oo_owner.so_client);
return oo;
}
}
return NULL;
}
/* search file_hashtbl[] for file */
static struct nfs4_file *
find_file_locked(struct knfsd_fh *fh)
{
unsigned int hashval = file_hashval(fh);
struct nfs4_file *fp;
lockdep_assert_held(&state_lock);
hlist_for_each_entry(fp, &file_hashtbl[hashval], fi_hash) {
if (nfsd_fh_match(&fp->fi_fhandle, fh)) {
get_nfs4_file(fp);
return fp;
}
}
return NULL;
}
static struct nfs4_file *
find_file(struct knfsd_fh *fh)
{
struct nfs4_file *fp;
spin_lock(&state_lock);
fp = find_file_locked(fh);
spin_unlock(&state_lock);
return fp;
}
static struct nfs4_file *
find_or_add_file(struct inode *ino, struct nfs4_file *new, struct knfsd_fh *fh)
{
struct nfs4_file *fp;
spin_lock(&state_lock);
fp = find_file_locked(fh);
if (fp == NULL) {
nfsd4_init_file(new, ino, fh);
fp = new;
}
spin_unlock(&state_lock);
return fp;
}
/*
* Called to check deny when READ with all zero stateid or
* WRITE with all zero or all one stateid
*/
static __be32
nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type)
{
struct nfs4_file *fp;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
__be32 ret = nfs_ok;
fp = find_file(&current_fh->fh_handle);
if (!fp)
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
return ret;
/* Check for conflicting share reservations */
spin_lock(&fp->fi_lock);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
if (fp->fi_share_deny & deny_type)
ret = nfserr_locked;
spin_unlock(&fp->fi_lock);
put_nfs4_file(fp);
return ret;
}
void nfsd4_prepare_cb_recall(struct nfs4_delegation *dp)
{
struct nfs4_client *clp = dp->dl_stid.sc_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
/*
* We can't do this in nfsd_break_deleg_cb because it is
* already holding inode->i_lock
*/
spin_lock(&state_lock);
block_delegations(&dp->dl_fh);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
/*
* If the dl_time != 0, then we know that it has already been
* queued for a lease break. Don't queue it again.
*/
if (dp->dl_time == 0) {
dp->dl_time = get_seconds();
list_add_tail(&dp->dl_recall_lru, &nn->del_recall_lru);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
}
spin_unlock(&state_lock);
}
static void nfsd_break_one_deleg(struct nfs4_delegation *dp)
{
/*
* We're assuming the state code never drops its reference
* without first removing the lease. Since we're in this lease
* callback (and since the lease code is serialized by the kernel
* lock) we know the server hasn't removed the lease yet, we know
* it's safe to take a reference.
*/
atomic_inc(&dp->dl_stid.sc_count);
nfsd4_cb_recall(dp);
}
/* Called from break_lease() with i_lock held. */
static void nfsd_break_deleg_cb(struct file_lock *fl)
{
struct nfs4_file *fp = (struct nfs4_file *)fl->fl_owner;
struct nfs4_delegation *dp;
if (!fp) {
WARN(1, "(%p)->fl_owner NULL\n", fl);
return;
}
if (fp->fi_had_conflict) {
WARN(1, "duplicate break on %p\n", fp);
return;
}
/*
* We don't want the locks code to timeout the lease for us;
* we'll remove it ourself if a delegation isn't returned
* in time:
*/
fl->fl_break_time = 0;
spin_lock(&fp->fi_lock);
fp->fi_had_conflict = true;
/*
* If there are no delegations on the list, then we can't count on this
* lease ever being cleaned up. Set the fl_break_time to jiffies so that
* time_out_leases will do it ASAP. The fact that fi_had_conflict is now
* true should keep any new delegations from being hashed.
*/
if (list_empty(&fp->fi_delegations))
fl->fl_break_time = jiffies;
else
list_for_each_entry(dp, &fp->fi_delegations, dl_perfile)
nfsd_break_one_deleg(dp);
spin_unlock(&fp->fi_lock);
}
static
int nfsd_change_deleg_cb(struct file_lock **onlist, int arg)
{
if (arg & F_UNLCK)
return lease_modify(onlist, arg);
else
return -EAGAIN;
}
static const struct lock_manager_operations nfsd_lease_mng_ops = {
.lm_break = nfsd_break_deleg_cb,
.lm_change = nfsd_change_deleg_cb,
};
static __be32 nfsd4_check_seqid(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so, u32 seqid)
{
if (nfsd4_has_session(cstate))
return nfs_ok;
if (seqid == so->so_seqid - 1)
return nfserr_replay_me;
if (seqid == so->so_seqid)
return nfs_ok;
return nfserr_bad_seqid;
}
static __be32 lookup_clientid(clientid_t *clid,
struct nfsd4_compound_state *cstate,
struct nfsd_net *nn)
{
struct nfs4_client *found;
if (cstate->clp) {
found = cstate->clp;
if (!same_clid(&found->cl_clientid, clid))
return nfserr_stale_clientid;
return nfs_ok;
}
if (STALE_CLIENTID(clid, nn))
return nfserr_stale_clientid;
/*
* For v4.1+ we get the client in the SEQUENCE op. If we don't have one
* cached already then we know this is for is for v4.0 and "sessions"
* will be false.
*/
WARN_ON_ONCE(cstate->session);
found = find_confirmed_client(clid, false, nn);
if (!found)
return nfserr_expired;
/* Cache the nfs4_client in cstate! */
cstate->clp = found;
atomic_inc(&found->cl_refcount);
return nfs_ok;
}
__be32
nfsd4_process_open1(struct nfsd4_compound_state *cstate,
struct nfsd4_open *open, struct nfsd_net *nn)
{
clientid_t *clientid = &open->op_clientid;
struct nfs4_client *clp = NULL;
unsigned int strhashval;
struct nfs4_openowner *oo = NULL;
__be32 status;
if (STALE_CLIENTID(&open->op_clientid, nn))
return nfserr_stale_clientid;
/*
* In case we need it later, after we've already created the
* file and don't want to risk a further failure:
*/
open->op_file = nfsd4_alloc_file();
if (open->op_file == NULL)
return nfserr_jukebox;
status = lookup_clientid(clientid, cstate, nn);
if (status)
return status;
clp = cstate->clp;
strhashval = ownerstr_hashval(clientid->cl_id, &open->op_owner);
oo = find_openstateowner_str(strhashval, open, cstate->minorversion, nn);
open->op_openowner = oo;
if (!oo) {
goto new_owner;
}
if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) {
/* Replace unconfirmed owners without checking for replay. */
release_openowner(oo);
open->op_openowner = NULL;
goto new_owner;
}
status = nfsd4_check_seqid(cstate, &oo->oo_owner, open->op_seqid);
if (status)
return status;
goto alloc_stateid;
new_owner:
oo = alloc_init_open_stateowner(strhashval, open, cstate);
if (oo == NULL)
return nfserr_jukebox;
open->op_openowner = oo;
alloc_stateid:
open->op_stp = nfs4_alloc_stateid(clp);
if (!open->op_stp)
return nfserr_jukebox;
return nfs_ok;
}
static inline __be32
nfs4_check_delegmode(struct nfs4_delegation *dp, int flags)
{
if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ))
return nfserr_openmode;
else
return nfs_ok;
}
static int share_access_to_flags(u32 share_access)
{
return share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE;
}
static struct nfs4_delegation *find_deleg_stateid(struct nfs4_client *cl, stateid_t *s)
{
struct nfs4_stid *ret;
ret = find_stateid_by_type(cl, s, NFS4_DELEG_STID);
if (!ret)
return NULL;
return delegstateid(ret);
}
static bool nfsd4_is_deleg_cur(struct nfsd4_open *open)
{
return open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR ||
open->op_claim_type == NFS4_OPEN_CLAIM_DELEG_CUR_FH;
}
static __be32
nfs4_check_deleg(struct nfs4_client *cl, struct nfsd4_open *open,
struct nfs4_delegation **dp)
{
int flags;
__be32 status = nfserr_bad_stateid;
*dp = find_deleg_stateid(cl, &open->op_delegate_stateid);
if (*dp == NULL)
goto out;
flags = share_access_to_flags(open->op_share_access);
status = nfs4_check_delegmode(*dp, flags);
if (status)
*dp = NULL;
out:
if (!nfsd4_is_deleg_cur(open))
return nfs_ok;
if (status)
return status;
open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED;
return nfs_ok;
}
static struct nfs4_ol_stateid *
nfsd4_find_existing_open(struct nfs4_file *fp, struct nfsd4_open *open)
{
struct nfs4_ol_stateid *local, *ret = NULL;
struct nfs4_openowner *oo = open->op_openowner;
spin_lock(&fp->fi_lock);
list_for_each_entry(local, &fp->fi_stateids, st_perfile) {
/* ignore lock owners */
if (local->st_stateowner->so_is_open_owner == 0)
continue;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
if (local->st_stateowner == &oo->oo_owner) {
ret = local;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
break;
}
}
spin_unlock(&fp->fi_lock);
return ret;
}
static inline int nfs4_access_to_access(u32 nfs4_access)
{
int flags = 0;
if (nfs4_access & NFS4_SHARE_ACCESS_READ)
flags |= NFSD_MAY_READ;
if (nfs4_access & NFS4_SHARE_ACCESS_WRITE)
flags |= NFSD_MAY_WRITE;
return flags;
}
static inline __be32
nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh,
struct nfsd4_open *open)
{
struct iattr iattr = {
.ia_valid = ATTR_SIZE,
.ia_size = 0,
};
if (!open->op_truncate)
return 0;
if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE))
return nfserr_inval;
return nfsd_setattr(rqstp, fh, &iattr, 0, (time_t)0);
}
static __be32 nfs4_get_vfs_file(struct svc_rqst *rqstp, struct nfs4_file *fp,
struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp,
struct nfsd4_open *open)
{
struct file *filp = NULL;
__be32 status;
int oflag = nfs4_access_to_omode(open->op_share_access);
int access = nfs4_access_to_access(open->op_share_access);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
unsigned char old_access_bmap, old_deny_bmap;
spin_lock(&fp->fi_lock);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/*
* Are we trying to set a deny mode that would conflict with
* current access?
*/
status = nfs4_file_check_deny(fp, open->op_share_deny);
if (status != nfs_ok) {
spin_unlock(&fp->fi_lock);
goto out;
}
/* set access to the file */
status = nfs4_file_get_access(fp, open->op_share_access);
if (status != nfs_ok) {
spin_unlock(&fp->fi_lock);
goto out;
}
/* Set access bits in stateid */
old_access_bmap = stp->st_access_bmap;
set_access(open->op_share_access, stp);
/* Set new deny mask */
old_deny_bmap = stp->st_deny_bmap;
set_deny(open->op_share_deny, stp);
fp->fi_share_deny |= (open->op_share_deny & NFS4_SHARE_DENY_BOTH);
if (!fp->fi_fds[oflag]) {
spin_unlock(&fp->fi_lock);
status = nfsd_open(rqstp, cur_fh, S_IFREG, access, &filp);
if (status)
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
goto out_put_access;
spin_lock(&fp->fi_lock);
if (!fp->fi_fds[oflag]) {
fp->fi_fds[oflag] = filp;
filp = NULL;
}
}
spin_unlock(&fp->fi_lock);
if (filp)
fput(filp);
status = nfsd4_truncate(rqstp, cur_fh, open);
if (status)
goto out_put_access;
out:
return status;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
out_put_access:
stp->st_access_bmap = old_access_bmap;
nfs4_file_put_access(fp, open->op_share_access);
reset_union_bmap_deny(bmap_to_share_mode(old_deny_bmap), stp);
goto out;
}
static __be32
nfs4_upgrade_open(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open)
{
__be32 status;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
unsigned char old_deny_bmap;
if (!test_access(open->op_share_access, stp))
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
return nfs4_get_vfs_file(rqstp, fp, cur_fh, stp, open);
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
/* test and set deny mode */
spin_lock(&fp->fi_lock);
status = nfs4_file_check_deny(fp, open->op_share_deny);
if (status == nfs_ok) {
old_deny_bmap = stp->st_deny_bmap;
set_deny(open->op_share_deny, stp);
fp->fi_share_deny |=
(open->op_share_deny & NFS4_SHARE_DENY_BOTH);
}
spin_unlock(&fp->fi_lock);
if (status != nfs_ok)
return status;
nfsd: make deny mode enforcement more efficient and close races in it The current enforcement of deny modes is both inefficient and scattered across several places, which makes it hard to guarantee atomicity. The inefficiency is a problem now, and the lack of atomicity will mean races once the client_mutex is removed. First, we address the inefficiency. We have to track deny modes on a per-stateid basis to ensure that open downgrades are sane, but when the server goes to enforce them it has to walk the entire list of stateids and check against each one. Instead of doing that, maintain a per-nfs4_file deny mode. When a file is opened, we simply set any deny bits in that mode that were specified in the OPEN call. We can then use that unified deny mode to do a simple check to see whether there are any conflicts without needing to walk the entire stateid list. The only time we'll need to walk the entire list of stateids is when a stateid that has a deny mode on it is being released, or one is having its deny mode downgraded. In that case, we must walk the entire list and recalculate the fi_share_deny field. Since deny modes are pretty rare today, this should be very rare under normal workloads. To address the potential for races once the client_mutex is removed, protect fi_share_deny with the fi_lock. In nfs4_get_vfs_file, check to make sure that any deny mode we want to apply won't conflict with existing access. If that's ok, then have nfs4_file_get_access check that new access to the file won't conflict with existing deny modes. If that also passes, then get file access references, set the correct access and deny bits in the stateid, and update the fi_share_deny field. If opening the file or truncating it fails, then unwind the whole mess and return the appropriate error. Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-10 18:07:34 +00:00
status = nfsd4_truncate(rqstp, cur_fh, open);
if (status != nfs_ok)
reset_union_bmap_deny(old_deny_bmap, stp);
return status;
}
static void
nfs4_set_claim_prev(struct nfsd4_open *open, bool has_session)
{
open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED;
}
/* Should we give out recallable state?: */
static bool nfsd4_cb_channel_good(struct nfs4_client *clp)
{
if (clp->cl_cb_state == NFSD4_CB_UP)
return true;
/*
* In the sessions case, since we don't have to establish a
* separate connection for callbacks, we assume it's OK
* until we hear otherwise:
*/
return clp->cl_minorversion && clp->cl_cb_state == NFSD4_CB_UNKNOWN;
}
static struct file_lock *nfs4_alloc_init_lease(struct nfs4_file *fp, int flag)
{
struct file_lock *fl;
fl = locks_alloc_lock();
if (!fl)
return NULL;
locks_init_lock(fl);
fl->fl_lmops = &nfsd_lease_mng_ops;
fl->fl_flags = FL_DELEG;
fl->fl_type = flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK;
fl->fl_end = OFFSET_MAX;
fl->fl_owner = (fl_owner_t)fp;
fl->fl_pid = current->tgid;
return fl;
}
static int nfs4_setlease(struct nfs4_delegation *dp)
{
struct nfs4_file *fp = dp->dl_file;
struct file_lock *fl;
struct file *filp;
int status = 0;
fl = nfs4_alloc_init_lease(fp, NFS4_OPEN_DELEGATE_READ);
if (!fl)
return -ENOMEM;
filp = find_readable_file(fp);
if (!filp) {
/* We should always have a readable file here */
WARN_ON_ONCE(1);
return -EBADF;
}
fl->fl_file = filp;
status = vfs_setlease(filp, fl->fl_type, &fl);
if (status) {
locks_free_lock(fl);
goto out_fput;
}
spin_lock(&state_lock);
spin_lock(&fp->fi_lock);
/* Did the lease get broken before we took the lock? */
status = -EAGAIN;
if (fp->fi_had_conflict)
goto out_unlock;
/* Race breaker */
if (fp->fi_lease) {
status = 0;
atomic_inc(&fp->fi_delegees);
hash_delegation_locked(dp, fp);
goto out_unlock;
}
fp->fi_lease = fl;
fp->fi_deleg_file = filp;
atomic_set(&fp->fi_delegees, 1);
hash_delegation_locked(dp, fp);
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
return 0;
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
out_fput:
fput(filp);
return status;
}
static int nfs4_set_delegation(struct nfs4_delegation *dp, struct nfs4_file *fp)
{
int status = 0;
if (fp->fi_had_conflict)
return -EAGAIN;
get_nfs4_file(fp);
spin_lock(&state_lock);
spin_lock(&fp->fi_lock);
dp->dl_file = fp;
if (!fp->fi_lease) {
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
return nfs4_setlease(dp);
}
atomic_inc(&fp->fi_delegees);
if (fp->fi_had_conflict) {
status = -EAGAIN;
goto out_unlock;
}
hash_delegation_locked(dp, fp);
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
return status;
}
static void nfsd4_open_deleg_none_ext(struct nfsd4_open *open, int status)
{
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
if (status == -EAGAIN)
open->op_why_no_deleg = WND4_CONTENTION;
else {
open->op_why_no_deleg = WND4_RESOURCE;
switch (open->op_deleg_want) {
case NFS4_SHARE_WANT_READ_DELEG:
case NFS4_SHARE_WANT_WRITE_DELEG:
case NFS4_SHARE_WANT_ANY_DELEG:
break;
case NFS4_SHARE_WANT_CANCEL:
open->op_why_no_deleg = WND4_CANCELLED;
break;
case NFS4_SHARE_WANT_NO_DELEG:
WARN_ON_ONCE(1);
}
}
}
/*
* Attempt to hand out a delegation.
*
* Note we don't support write delegations, and won't until the vfs has
* proper support for them.
*/
static void
nfs4_open_delegation(struct net *net, struct svc_fh *fh,
struct nfsd4_open *open, struct nfs4_ol_stateid *stp)
{
struct nfs4_delegation *dp;
struct nfs4_openowner *oo = container_of(stp->st_stateowner, struct nfs4_openowner, oo_owner);
int cb_up;
int status = 0;
cb_up = nfsd4_cb_channel_good(oo->oo_owner.so_client);
open->op_recall = 0;
switch (open->op_claim_type) {
case NFS4_OPEN_CLAIM_PREVIOUS:
if (!cb_up)
open->op_recall = 1;
if (open->op_delegate_type != NFS4_OPEN_DELEGATE_READ)
goto out_no_deleg;
break;
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
/*
* Let's not give out any delegations till everyone's
* had the chance to reclaim theirs....
*/
if (locks_in_grace(net))
goto out_no_deleg;
if (!cb_up || !(oo->oo_flags & NFS4_OO_CONFIRMED))
goto out_no_deleg;
/*
* Also, if the file was opened for write or
* create, there's a good chance the client's
* about to write to it, resulting in an
* immediate recall (since we don't support
* write delegations):
*/
if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE)
goto out_no_deleg;
if (open->op_create == NFS4_OPEN_CREATE)
goto out_no_deleg;
break;
default:
goto out_no_deleg;
}
dp = alloc_init_deleg(oo->oo_owner.so_client, stp, fh);
if (dp == NULL)
goto out_no_deleg;
status = nfs4_set_delegation(dp, stp->st_file);
if (status)
goto out_free;
memcpy(&open->op_delegate_stateid, &dp->dl_stid.sc_stateid, sizeof(dp->dl_stid.sc_stateid));
dprintk("NFSD: delegation stateid=" STATEID_FMT "\n",
STATEID_VAL(&dp->dl_stid.sc_stateid));
open->op_delegate_type = NFS4_OPEN_DELEGATE_READ;
return;
out_free:
destroy_delegation(dp);
out_no_deleg:
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE;
if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS &&
open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE) {
dprintk("NFSD: WARNING: refusing delegation reclaim\n");
open->op_recall = 1;
}
/* 4.1 client asking for a delegation? */
if (open->op_deleg_want)
nfsd4_open_deleg_none_ext(open, status);
return;
}
static void nfsd4_deleg_xgrade_none_ext(struct nfsd4_open *open,
struct nfs4_delegation *dp)
{
if (open->op_deleg_want == NFS4_SHARE_WANT_READ_DELEG &&
dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_SUPP_DOWNGRADE;
} else if (open->op_deleg_want == NFS4_SHARE_WANT_WRITE_DELEG &&
dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_SUPP_UPGRADE;
}
/* Otherwise the client must be confused wanting a delegation
* it already has, therefore we don't return
* NFS4_OPEN_DELEGATE_NONE_EXT and reason.
*/
}
/*
* called with nfs4_lock_state() held.
*/
__be32
nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open)
{
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct nfs4_client *cl = open->op_openowner->oo_owner.so_client;
struct nfs4_file *fp = NULL;
struct inode *ino = current_fh->fh_dentry->d_inode;
struct nfs4_ol_stateid *stp = NULL;
struct nfs4_delegation *dp = NULL;
__be32 status;
/*
* Lookup file; if found, lookup stateid and check open request,
* and check for delegations in the process of being recalled.
* If not found, create the nfs4_file struct
*/
fp = find_or_add_file(ino, open->op_file, &current_fh->fh_handle);
if (fp != open->op_file) {
status = nfs4_check_deleg(cl, open, &dp);
if (status)
goto out;
stp = nfsd4_find_existing_open(fp, open);
} else {
open->op_file = NULL;
status = nfserr_bad_stateid;
if (nfsd4_is_deleg_cur(open))
goto out;
status = nfserr_jukebox;
}
/*
* OPEN the file, or upgrade an existing OPEN.
* If truncate fails, the OPEN fails.
*/
if (stp) {
/* Stateid was found, this is an OPEN upgrade */
status = nfs4_upgrade_open(rqstp, fp, current_fh, stp, open);
if (status)
goto out;
} else {
stp = open->op_stp;
open->op_stp = NULL;
init_open_stateid(stp, fp, open);
status = nfs4_get_vfs_file(rqstp, fp, current_fh, stp, open);
if (status) {
release_open_stateid(stp);
goto out;
}
}
update_stateid(&stp->st_stid.sc_stateid);
memcpy(&open->op_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t));
if (nfsd4_has_session(&resp->cstate)) {
if (open->op_deleg_want & NFS4_SHARE_WANT_NO_DELEG) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_WANTED;
goto nodeleg;
}
}
/*
* Attempt to hand out a delegation. No error return, because the
* OPEN succeeds even if we fail.
*/
nfs4_open_delegation(SVC_NET(rqstp), current_fh, open, stp);
nodeleg:
status = nfs_ok;
dprintk("%s: stateid=" STATEID_FMT "\n", __func__,
STATEID_VAL(&stp->st_stid.sc_stateid));
out:
/* 4.1 client trying to upgrade/downgrade delegation? */
if (open->op_delegate_type == NFS4_OPEN_DELEGATE_NONE && dp &&
open->op_deleg_want)
nfsd4_deleg_xgrade_none_ext(open, dp);
if (fp)
put_nfs4_file(fp);
if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS)
nfs4_set_claim_prev(open, nfsd4_has_session(&resp->cstate));
/*
* To finish the open response, we just need to set the rflags.
*/
open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX;
if (!(open->op_openowner->oo_flags & NFS4_OO_CONFIRMED) &&
!nfsd4_has_session(&resp->cstate))
open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM;
return status;
}
void nfsd4_cleanup_open_state(struct nfsd4_open *open, __be32 status)
{
if (open->op_openowner) {
struct nfs4_openowner *oo = open->op_openowner;
if (!list_empty(&oo->oo_owner.so_stateids))
list_del_init(&oo->oo_close_lru);
if (oo->oo_flags & NFS4_OO_NEW) {
if (status) {
release_openowner(oo);
open->op_openowner = NULL;
} else
oo->oo_flags &= ~NFS4_OO_NEW;
}
}
if (open->op_file)
nfsd4_free_file(open->op_file);
if (open->op_stp)
free_generic_stateid(open->op_stp);
}
__be32
nfsd4_renew(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
clientid_t *clid)
{
struct nfs4_client *clp;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
nfs4_lock_state();
dprintk("process_renew(%08x/%08x): starting\n",
clid->cl_boot, clid->cl_id);
status = lookup_clientid(clid, cstate, nn);
if (status)
goto out;
clp = cstate->clp;
status = nfserr_cb_path_down;
if (!list_empty(&clp->cl_delegations)
&& clp->cl_cb_state != NFSD4_CB_UP)
goto out;
status = nfs_ok;
out:
nfs4_unlock_state();
return status;
}
static void
nfsd4_end_grace(struct nfsd_net *nn)
{
/* do nothing if grace period already ended */
if (nn->grace_ended)
return;
dprintk("NFSD: end of grace period\n");
nn->grace_ended = true;
nfsd4_record_grace_done(nn, nn->boot_time);
locks_end_grace(&nn->nfsd4_manager);
/*
* Now that every NFSv4 client has had the chance to recover and
* to see the (possibly new, possibly shorter) lease time, we
* can safely set the next grace time to the current lease time:
*/
nn->nfsd4_grace = nn->nfsd4_lease;
}
static time_t
nfs4_laundromat(struct nfsd_net *nn)
{
struct nfs4_client *clp;
struct nfs4_openowner *oo;
struct nfs4_delegation *dp;
struct list_head *pos, *next, reaplist;
time_t cutoff = get_seconds() - nn->nfsd4_lease;
time_t t, new_timeo = nn->nfsd4_lease;
nfs4_lock_state();
dprintk("NFSD: laundromat service - starting\n");
nfsd4_end_grace(nn);
INIT_LIST_HEAD(&reaplist);
spin_lock(&nn->client_lock);
list_for_each_safe(pos, next, &nn->client_lru) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
if (time_after((unsigned long)clp->cl_time, (unsigned long)cutoff)) {
t = clp->cl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
if (mark_client_expired_locked(clp)) {
dprintk("NFSD: client in use (clientid %08x)\n",
clp->cl_clientid.cl_id);
continue;
}
list_move(&clp->cl_lru, &reaplist);
}
spin_unlock(&nn->client_lock);
list_for_each_safe(pos, next, &reaplist) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
dprintk("NFSD: purging unused client (clientid %08x)\n",
clp->cl_clientid.cl_id);
expire_client(clp);
}
spin_lock(&state_lock);
list_for_each_safe(pos, next, &nn->del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
if (net_generic(dp->dl_stid.sc_client->net, nfsd_net_id) != nn)
continue;
if (time_after((unsigned long)dp->dl_time, (unsigned long)cutoff)) {
t = dp->dl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
list_move(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
list_for_each_safe(pos, next, &reaplist) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
revoke_delegation(dp);
}
list_for_each_safe(pos, next, &nn->close_lru) {
oo = container_of(pos, struct nfs4_openowner, oo_close_lru);
if (time_after((unsigned long)oo->oo_time, (unsigned long)cutoff)) {
t = oo->oo_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
release_openowner(oo);
}
new_timeo = max_t(time_t, new_timeo, NFSD_LAUNDROMAT_MINTIMEOUT);
nfs4_unlock_state();
return new_timeo;
}
static struct workqueue_struct *laundry_wq;
static void laundromat_main(struct work_struct *);
static void
laundromat_main(struct work_struct *laundry)
{
time_t t;
struct delayed_work *dwork = container_of(laundry, struct delayed_work,
work);
struct nfsd_net *nn = container_of(dwork, struct nfsd_net,
laundromat_work);
t = nfs4_laundromat(nn);
dprintk("NFSD: laundromat_main - sleeping for %ld seconds\n", t);
queue_delayed_work(laundry_wq, &nn->laundromat_work, t*HZ);
}
static inline __be32 nfs4_check_fh(struct svc_fh *fhp, struct nfs4_ol_stateid *stp)
{
if (!nfsd_fh_match(&fhp->fh_handle, &stp->st_file->fi_fhandle))
return nfserr_bad_stateid;
return nfs_ok;
}
static inline int
access_permit_read(struct nfs4_ol_stateid *stp)
{
return test_access(NFS4_SHARE_ACCESS_READ, stp) ||
test_access(NFS4_SHARE_ACCESS_BOTH, stp) ||
test_access(NFS4_SHARE_ACCESS_WRITE, stp);
}
static inline int
access_permit_write(struct nfs4_ol_stateid *stp)
{
return test_access(NFS4_SHARE_ACCESS_WRITE, stp) ||
test_access(NFS4_SHARE_ACCESS_BOTH, stp);
}
static
__be32 nfs4_check_openmode(struct nfs4_ol_stateid *stp, int flags)
{
__be32 status = nfserr_openmode;
/* For lock stateid's, we test the parent open, not the lock: */
if (stp->st_openstp)
stp = stp->st_openstp;
if ((flags & WR_STATE) && !access_permit_write(stp))
goto out;
if ((flags & RD_STATE) && !access_permit_read(stp))
goto out;
status = nfs_ok;
out:
return status;
}
static inline __be32
check_special_stateids(struct net *net, svc_fh *current_fh, stateid_t *stateid, int flags)
{
if (ONE_STATEID(stateid) && (flags & RD_STATE))
return nfs_ok;
else if (locks_in_grace(net)) {
/* Answer in remaining cases depends on existence of
* conflicting state; so we must wait out the grace period. */
return nfserr_grace;
} else if (flags & WR_STATE)
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_WRITE);
else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_READ);
}
/*
* Allow READ/WRITE during grace period on recovered state only for files
* that are not able to provide mandatory locking.
*/
static inline int
grace_disallows_io(struct net *net, struct inode *inode)
{
return locks_in_grace(net) && mandatory_lock(inode);
}
/* Returns true iff a is later than b: */
static bool stateid_generation_after(stateid_t *a, stateid_t *b)
{
return (s32)(a->si_generation - b->si_generation) > 0;
}
static __be32 check_stateid_generation(stateid_t *in, stateid_t *ref, bool has_session)
{
/*
* When sessions are used the stateid generation number is ignored
* when it is zero.
*/
if (has_session && in->si_generation == 0)
return nfs_ok;
if (in->si_generation == ref->si_generation)
return nfs_ok;
/* If the client sends us a stateid from the future, it's buggy: */
if (stateid_generation_after(in, ref))
return nfserr_bad_stateid;
/*
* However, we could see a stateid from the past, even from a
* non-buggy client. For example, if the client sends a lock
* while some IO is outstanding, the lock may bump si_generation
* while the IO is still in flight. The client could avoid that
* situation by waiting for responses on all the IO requests,
* but better performance may result in retrying IO that
* receives an old_stateid error if requests are rarely
* reordered in flight:
*/
return nfserr_old_stateid;
}
static __be32 nfsd4_validate_stateid(struct nfs4_client *cl, stateid_t *stateid)
{
struct nfs4_stid *s;
struct nfs4_ol_stateid *ols;
__be32 status;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid))
return nfserr_bad_stateid;
/* Client debugging aid. */
if (!same_clid(&stateid->si_opaque.so_clid, &cl->cl_clientid)) {
char addr_str[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *)&cl->cl_addr, addr_str,
sizeof(addr_str));
pr_warn_ratelimited("NFSD: client %s testing state ID "
"with incorrect client ID\n", addr_str);
return nfserr_bad_stateid;
}
s = find_stateid(cl, stateid);
if (!s)
return nfserr_bad_stateid;
status = check_stateid_generation(stateid, &s->sc_stateid, 1);
if (status)
return status;
switch (s->sc_type) {
case NFS4_DELEG_STID:
return nfs_ok;
case NFS4_REVOKED_DELEG_STID:
return nfserr_deleg_revoked;
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
ols = openlockstateid(s);
if (ols->st_stateowner->so_is_open_owner
&& !(openowner(ols->st_stateowner)->oo_flags
& NFS4_OO_CONFIRMED))
return nfserr_bad_stateid;
return nfs_ok;
default:
printk("unknown stateid type %x\n", s->sc_type);
/* Fallthrough */
case NFS4_CLOSED_STID:
case NFS4_CLOSED_DELEG_STID:
return nfserr_bad_stateid;
}
}
static __be32
nfsd4_lookup_stateid(struct nfsd4_compound_state *cstate,
stateid_t *stateid, unsigned char typemask,
struct nfs4_stid **s, struct nfsd_net *nn)
{
__be32 status;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid))
return nfserr_bad_stateid;
status = lookup_clientid(&stateid->si_opaque.so_clid, cstate, nn);
if (status == nfserr_stale_clientid) {
if (cstate->session)
return nfserr_bad_stateid;
return nfserr_stale_stateid;
}
if (status)
return status;
*s = find_stateid_by_type(cstate->clp, stateid, typemask);
if (!*s)
return nfserr_bad_stateid;
return nfs_ok;
}
/*
* Checks for stateid operations
*/
__be32
nfs4_preprocess_stateid_op(struct net *net, struct nfsd4_compound_state *cstate,
stateid_t *stateid, int flags, struct file **filpp)
{
struct nfs4_stid *s;
struct nfs4_ol_stateid *stp = NULL;
struct nfs4_delegation *dp = NULL;
struct svc_fh *current_fh = &cstate->current_fh;
struct inode *ino = current_fh->fh_dentry->d_inode;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct file *file = NULL;
__be32 status;
if (filpp)
*filpp = NULL;
if (grace_disallows_io(net, ino))
return nfserr_grace;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid))
return check_special_stateids(net, current_fh, stateid, flags);
nfs4_lock_state();
status = nfsd4_lookup_stateid(cstate, stateid,
NFS4_DELEG_STID|NFS4_OPEN_STID|NFS4_LOCK_STID,
&s, nn);
if (status)
goto out;
status = check_stateid_generation(stateid, &s->sc_stateid, nfsd4_has_session(cstate));
if (status)
goto out;
switch (s->sc_type) {
case NFS4_DELEG_STID:
dp = delegstateid(s);
status = nfs4_check_delegmode(dp, flags);
if (status)
goto out;
if (filpp) {
file = dp->dl_file->fi_deleg_file;
if (!file) {
WARN_ON_ONCE(1);
status = nfserr_serverfault;
goto out;
}
get_file(file);
}
break;
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
stp = openlockstateid(s);
status = nfs4_check_fh(current_fh, stp);
if (status)
goto out;
if (stp->st_stateowner->so_is_open_owner
&& !(openowner(stp->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED))
goto out;
status = nfs4_check_openmode(stp, flags);
if (status)
goto out;
if (filpp) {
if (flags & RD_STATE)
file = find_readable_file(stp->st_file);
else
file = find_writeable_file(stp->st_file);
}
break;
default:
status = nfserr_bad_stateid;
goto out;
}
status = nfs_ok;
if (file)
*filpp = file;
out:
nfs4_unlock_state();
return status;
}
static __be32
nfsd4_free_lock_stateid(struct nfs4_ol_stateid *stp)
{
struct nfs4_lockowner *lo = lockowner(stp->st_stateowner);
if (check_for_locks(stp->st_file, lo))
return nfserr_locks_held;
release_lockowner_if_empty(lo);
return nfs_ok;
}
/*
* Test if the stateid is valid
*/
__be32
nfsd4_test_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_test_stateid *test_stateid)
{
struct nfsd4_test_stateid_id *stateid;
struct nfs4_client *cl = cstate->session->se_client;
nfs4_lock_state();
list_for_each_entry(stateid, &test_stateid->ts_stateid_list, ts_id_list)
stateid->ts_id_status =
nfsd4_validate_stateid(cl, &stateid->ts_id_stateid);
nfs4_unlock_state();
return nfs_ok;
}
__be32
nfsd4_free_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_free_stateid *free_stateid)
{
stateid_t *stateid = &free_stateid->fr_stateid;
struct nfs4_stid *s;
struct nfs4_delegation *dp;
struct nfs4_client *cl = cstate->session->se_client;
__be32 ret = nfserr_bad_stateid;
nfs4_lock_state();
s = find_stateid(cl, stateid);
if (!s)
goto out;
switch (s->sc_type) {
case NFS4_DELEG_STID:
ret = nfserr_locks_held;
goto out;
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
ret = check_stateid_generation(stateid, &s->sc_stateid, 1);
if (ret)
goto out;
if (s->sc_type == NFS4_LOCK_STID)
ret = nfsd4_free_lock_stateid(openlockstateid(s));
else
ret = nfserr_locks_held;
break;
case NFS4_REVOKED_DELEG_STID:
dp = delegstateid(s);
destroy_revoked_delegation(dp);
ret = nfs_ok;
break;
default:
ret = nfserr_bad_stateid;
}
out:
nfs4_unlock_state();
return ret;
}
static inline int
setlkflg (int type)
{
return (type == NFS4_READW_LT || type == NFS4_READ_LT) ?
RD_STATE : WR_STATE;
}
static __be32 nfs4_seqid_op_checks(struct nfsd4_compound_state *cstate, stateid_t *stateid, u32 seqid, struct nfs4_ol_stateid *stp)
{
struct svc_fh *current_fh = &cstate->current_fh;
struct nfs4_stateowner *sop = stp->st_stateowner;
__be32 status;
status = nfsd4_check_seqid(cstate, sop, seqid);
if (status)
return status;
if (stp->st_stid.sc_type == NFS4_CLOSED_STID
|| stp->st_stid.sc_type == NFS4_REVOKED_DELEG_STID)
/*
* "Closed" stateid's exist *only* to return
* nfserr_replay_me from the previous step, and
* revoked delegations are kept only for free_stateid.
*/
return nfserr_bad_stateid;
status = check_stateid_generation(stateid, &stp->st_stid.sc_stateid, nfsd4_has_session(cstate));
if (status)
return status;
return nfs4_check_fh(current_fh, stp);
}
/*
* Checks for sequence id mutating operations.
*/
static __be32
nfs4_preprocess_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid,
stateid_t *stateid, char typemask,
struct nfs4_ol_stateid **stpp,
struct nfsd_net *nn)
{
__be32 status;
struct nfs4_stid *s;
struct nfs4_ol_stateid *stp = NULL;
dprintk("NFSD: %s: seqid=%d stateid = " STATEID_FMT "\n", __func__,
seqid, STATEID_VAL(stateid));
*stpp = NULL;
status = nfsd4_lookup_stateid(cstate, stateid, typemask, &s, nn);
if (status)
return status;
stp = openlockstateid(s);
if (!nfsd4_has_session(cstate))
cstate->replay_owner = stp->st_stateowner;
status = nfs4_seqid_op_checks(cstate, stateid, seqid, stp);
if (!status)
*stpp = stp;
return status;
}
static __be32 nfs4_preprocess_confirmed_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid,
stateid_t *stateid, struct nfs4_ol_stateid **stpp, struct nfsd_net *nn)
{
__be32 status;
struct nfs4_openowner *oo;
status = nfs4_preprocess_seqid_op(cstate, seqid, stateid,
NFS4_OPEN_STID, stpp, nn);
if (status)
return status;
oo = openowner((*stpp)->st_stateowner);
if (!(oo->oo_flags & NFS4_OO_CONFIRMED))
return nfserr_bad_stateid;
return nfs_ok;
}
__be32
nfsd4_open_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_open_confirm *oc)
{
__be32 status;
struct nfs4_openowner *oo;
struct nfs4_ol_stateid *stp;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_open_confirm on file %pd\n",
cstate->current_fh.fh_dentry);
status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0);
if (status)
return status;
nfs4_lock_state();
status = nfs4_preprocess_seqid_op(cstate,
oc->oc_seqid, &oc->oc_req_stateid,
NFS4_OPEN_STID, &stp, nn);
if (status)
goto out;
oo = openowner(stp->st_stateowner);
status = nfserr_bad_stateid;
if (oo->oo_flags & NFS4_OO_CONFIRMED)
goto out;
oo->oo_flags |= NFS4_OO_CONFIRMED;
update_stateid(&stp->st_stid.sc_stateid);
memcpy(&oc->oc_resp_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t));
dprintk("NFSD: %s: success, seqid=%d stateid=" STATEID_FMT "\n",
__func__, oc->oc_seqid, STATEID_VAL(&stp->st_stid.sc_stateid));
nfsd4_client_record_create(oo->oo_owner.so_client);
status = nfs_ok;
out:
nfsd4_bump_seqid(cstate, status);
if (!cstate->replay_owner)
nfs4_unlock_state();
return status;
}
static inline void nfs4_stateid_downgrade_bit(struct nfs4_ol_stateid *stp, u32 access)
{
if (!test_access(access, stp))
return;
nfs4_file_put_access(stp->st_file, access);
clear_access(access, stp);
}
static inline void nfs4_stateid_downgrade(struct nfs4_ol_stateid *stp, u32 to_access)
{
switch (to_access) {
case NFS4_SHARE_ACCESS_READ:
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_WRITE);
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH);
break;
case NFS4_SHARE_ACCESS_WRITE:
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_READ);
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH);
break;
case NFS4_SHARE_ACCESS_BOTH:
break;
default:
WARN_ON_ONCE(1);
}
}
__be32
nfsd4_open_downgrade(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_open_downgrade *od)
{
__be32 status;
struct nfs4_ol_stateid *stp;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_open_downgrade on file %pd\n",
cstate->current_fh.fh_dentry);
/* We don't yet support WANT bits: */
if (od->od_deleg_want)
dprintk("NFSD: %s: od_deleg_want=0x%x ignored\n", __func__,
od->od_deleg_want);
nfs4_lock_state();
status = nfs4_preprocess_confirmed_seqid_op(cstate, od->od_seqid,
&od->od_stateid, &stp, nn);
if (status)
goto out;
status = nfserr_inval;
if (!test_access(od->od_share_access, stp)) {
dprintk("NFSD: access not a subset of current bitmap: 0x%hhx, input access=%08x\n",
stp->st_access_bmap, od->od_share_access);
goto out;
}
if (!test_deny(od->od_share_deny, stp)) {
dprintk("NFSD: deny not a subset of current bitmap: 0x%hhx, input deny=%08x\n",
stp->st_deny_bmap, od->od_share_deny);
goto out;
}
nfs4_stateid_downgrade(stp, od->od_share_access);
reset_union_bmap_deny(od->od_share_deny, stp);
update_stateid(&stp->st_stid.sc_stateid);
memcpy(&od->od_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t));
status = nfs_ok;
out:
nfsd4_bump_seqid(cstate, status);
if (!cstate->replay_owner)
nfs4_unlock_state();
return status;
}
static void nfsd4_close_open_stateid(struct nfs4_ol_stateid *s)
{
struct nfs4_client *clp = s->st_stid.sc_client;
struct nfs4_openowner *oo = openowner(s->st_stateowner);
s->st_stid.sc_type = NFS4_CLOSED_STID;
unhash_open_stateid(s);
if (clp->cl_minorversion) {
free_generic_stateid(s);
if (list_empty(&oo->oo_owner.so_stateids))
release_openowner(oo);
} else {
oo->oo_last_closed_stid = s;
/*
* In the 4.0 case we need to keep the owners around a
* little while to handle CLOSE replay.
*/
if (list_empty(&oo->oo_owner.so_stateids))
move_to_close_lru(oo, clp->net);
}
}
/*
* nfs4_unlock_state() called after encode
*/
__be32
nfsd4_close(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_close *close)
{
__be32 status;
struct nfs4_ol_stateid *stp;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dprintk("NFSD: nfsd4_close on file %pd\n",
cstate->current_fh.fh_dentry);
nfs4_lock_state();
status = nfs4_preprocess_seqid_op(cstate, close->cl_seqid,
&close->cl_stateid,
NFS4_OPEN_STID|NFS4_CLOSED_STID,
&stp, nn);
nfsd4_bump_seqid(cstate, status);
if (status)
goto out;
update_stateid(&stp->st_stid.sc_stateid);
memcpy(&close->cl_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t));
nfsd4_close_open_stateid(stp);
out:
if (!cstate->replay_owner)
nfs4_unlock_state();
return status;
}
__be32
nfsd4_delegreturn(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_delegreturn *dr)
{
struct nfs4_delegation *dp;
stateid_t *stateid = &dr->dr_stateid;
struct nfs4_stid *s;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0)))
return status;
nfs4_lock_state();
status = nfsd4_lookup_stateid(cstate, stateid, NFS4_DELEG_STID, &s, nn);
if (status)
goto out;
dp = delegstateid(s);
status = check_stateid_generation(stateid, &dp->dl_stid.sc_stateid, nfsd4_has_session(cstate));
if (status)
goto out;
destroy_delegation(dp);
out:
nfs4_unlock_state();
return status;
}
#define LOFF_OVERFLOW(start, len) ((u64)(len) > ~(u64)(start))
static inline u64
end_offset(u64 start, u64 len)
{
u64 end;
end = start + len;
return end >= start ? end: NFS4_MAX_UINT64;
}
/* last octet in a range */
static inline u64
last_byte_offset(u64 start, u64 len)
{
u64 end;
WARN_ON_ONCE(!len);
end = start + len;
return end > start ? end - 1: NFS4_MAX_UINT64;
}
/*
* TODO: Linux file offsets are _signed_ 64-bit quantities, which means that
* we can't properly handle lock requests that go beyond the (2^63 - 1)-th
* byte, because of sign extension problems. Since NFSv4 calls for 64-bit
* locking, this prevents us from being completely protocol-compliant. The
* real solution to this problem is to start using unsigned file offsets in
* the VFS, but this is a very deep change!
*/
static inline void
nfs4_transform_lock_offset(struct file_lock *lock)
{
if (lock->fl_start < 0)
lock->fl_start = OFFSET_MAX;
if (lock->fl_end < 0)
lock->fl_end = OFFSET_MAX;
}
/* Hack!: For now, we're defining this just so we can use a pointer to it
* as a unique cookie to identify our (NFSv4's) posix locks. */
static const struct lock_manager_operations nfsd_posix_mng_ops = {
};
static inline void
nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny)
{
struct nfs4_lockowner *lo;
if (fl->fl_lmops == &nfsd_posix_mng_ops) {
lo = (struct nfs4_lockowner *) fl->fl_owner;
deny->ld_owner.data = kmemdup(lo->lo_owner.so_owner.data,
lo->lo_owner.so_owner.len, GFP_KERNEL);
if (!deny->ld_owner.data)
/* We just don't care that much */
goto nevermind;
deny->ld_owner.len = lo->lo_owner.so_owner.len;
deny->ld_clientid = lo->lo_owner.so_client->cl_clientid;
} else {
nevermind:
deny->ld_owner.len = 0;
deny->ld_owner.data = NULL;
deny->ld_clientid.cl_boot = 0;
deny->ld_clientid.cl_id = 0;
}
deny->ld_start = fl->fl_start;
deny->ld_length = NFS4_MAX_UINT64;
if (fl->fl_end != NFS4_MAX_UINT64)
deny->ld_length = fl->fl_end - fl->fl_start + 1;
deny->ld_type = NFS4_READ_LT;
if (fl->fl_type != F_RDLCK)
deny->ld_type = NFS4_WRITE_LT;
}
static struct nfs4_lockowner *
find_lockowner_str(clientid_t *clid, struct xdr_netobj *owner,
struct nfsd_net *nn)
{
unsigned int strhashval = ownerstr_hashval(clid->cl_id, owner);
struct nfs4_stateowner *so;
list_for_each_entry(so, &nn->ownerstr_hashtbl[strhashval], so_strhash) {
if (so->so_is_open_owner)
continue;
if (!same_owner_str(so, owner, clid))
continue;
return lockowner(so);
}
return NULL;
}
/*
* Alloc a lock owner structure.
* Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has
* occurred.
*
* strhashval = ownerstr_hashval
*/
static struct nfs4_lockowner *
alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfs4_ol_stateid *open_stp, struct nfsd4_lock *lock) {
struct nfs4_lockowner *lo;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lo = alloc_stateowner(lockowner_slab, &lock->lk_new_owner, clp);
if (!lo)
return NULL;
INIT_LIST_HEAD(&lo->lo_owner.so_stateids);
lo->lo_owner.so_is_open_owner = 0;
/* It is the openowner seqid that will be incremented in encode in the
* case of new lockowners; so increment the lock seqid manually: */
lo->lo_owner.so_seqid = lock->lk_new_lock_seqid + 1;
list_add(&lo->lo_owner.so_strhash, &nn->ownerstr_hashtbl[strhashval]);
return lo;
}
static struct nfs4_ol_stateid *
alloc_init_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fp, struct nfs4_ol_stateid *open_stp)
{
struct nfs4_ol_stateid *stp;
struct nfs4_client *clp = lo->lo_owner.so_client;
stp = nfs4_alloc_stateid(clp);
if (stp == NULL)
return NULL;
stp->st_stid.sc_type = NFS4_LOCK_STID;
list_add(&stp->st_perstateowner, &lo->lo_owner.so_stateids);
stp->st_stateowner = &lo->lo_owner;
get_nfs4_file(fp);
stp->st_file = fp;
stp->st_access_bmap = 0;
stp->st_deny_bmap = open_stp->st_deny_bmap;
stp->st_openstp = open_stp;
list_add(&stp->st_locks, &open_stp->st_locks);
spin_lock(&fp->fi_lock);
list_add(&stp->st_perfile, &fp->fi_stateids);
spin_unlock(&fp->fi_lock);
return stp;
}
static struct nfs4_ol_stateid *
find_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fp)
{
struct nfs4_ol_stateid *lst;
list_for_each_entry(lst, &lo->lo_owner.so_stateids, st_perstateowner) {
if (lst->st_file == fp)
return lst;
}
return NULL;
}
static int
check_lock_length(u64 offset, u64 length)
{
return ((length == 0) || ((length != NFS4_MAX_UINT64) &&
LOFF_OVERFLOW(offset, length)));
}
static void get_lock_access(struct nfs4_ol_stateid *lock_stp, u32 access)
{
struct nfs4_file *fp = lock_stp->st_file;
lockdep_assert_held(&fp->fi_lock);
if (test_access(access, lock_stp))
return;
__nfs4_file_get_access(fp, access);
set_access(access, lock_stp);
}
static __be32 lookup_or_create_lock_state(struct nfsd4_compound_state *cstate, struct nfs4_ol_stateid *ost, struct nfsd4_lock *lock, struct nfs4_ol_stateid **lst, bool *new)
{
struct nfs4_file *fi = ost->st_file;
struct nfs4_openowner *oo = openowner(ost->st_stateowner);
struct nfs4_client *cl = oo->oo_owner.so_client;
struct nfs4_lockowner *lo;
unsigned int strhashval;
struct nfsd_net *nn = net_generic(cl->net, nfsd_net_id);
lo = find_lockowner_str(&cl->cl_clientid, &lock->v.new.owner, nn);
if (!lo) {
strhashval = ownerstr_hashval(cl->cl_clientid.cl_id,
&lock->v.new.owner);
lo = alloc_init_lock_stateowner(strhashval, cl, ost, lock);
if (lo == NULL)
return nfserr_jukebox;
} else {
/* with an existing lockowner, seqids must be the same */
if (!cstate->minorversion &&
lock->lk_new_lock_seqid != lo->lo_owner.so_seqid)
return nfserr_bad_seqid;
}
*lst = find_lock_stateid(lo, fi);
if (*lst == NULL) {
*lst = alloc_init_lock_stateid(lo, fi, ost);
if (*lst == NULL) {
release_lockowner_if_empty(lo);
return nfserr_jukebox;
}
*new = true;
}
return nfs_ok;
}
/*
* LOCK operation
*/
__be32
nfsd4_lock(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_lock *lock)
{
struct nfs4_openowner *open_sop = NULL;
struct nfs4_lockowner *lock_sop = NULL;
struct nfs4_ol_stateid *lock_stp;
struct nfs4_file *fp;
struct file *filp = NULL;
struct file_lock *file_lock = NULL;
struct file_lock *conflock = NULL;
__be32 status = 0;
bool new_state = false;
int lkflg;
int err;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n",
(long long) lock->lk_offset,
(long long) lock->lk_length);
if (check_lock_length(lock->lk_offset, lock->lk_length))
return nfserr_inval;
if ((status = fh_verify(rqstp, &cstate->current_fh,
S_IFREG, NFSD_MAY_LOCK))) {
dprintk("NFSD: nfsd4_lock: permission denied!\n");
return status;
}
nfs4_lock_state();
if (lock->lk_is_new) {
struct nfs4_ol_stateid *open_stp = NULL;
if (nfsd4_has_session(cstate))
/* See rfc 5661 18.10.3: given clientid is ignored: */
memcpy(&lock->v.new.clientid,
&cstate->session->se_client->cl_clientid,
sizeof(clientid_t));
status = nfserr_stale_clientid;
if (STALE_CLIENTID(&lock->lk_new_clientid, nn))
goto out;
/* validate and update open stateid and open seqid */
status = nfs4_preprocess_confirmed_seqid_op(cstate,
lock->lk_new_open_seqid,
&lock->lk_new_open_stateid,
&open_stp, nn);
if (status)
goto out;
open_sop = openowner(open_stp->st_stateowner);
status = nfserr_bad_stateid;
if (!same_clid(&open_sop->oo_owner.so_client->cl_clientid,
&lock->v.new.clientid))
goto out;
status = lookup_or_create_lock_state(cstate, open_stp, lock,
&lock_stp, &new_state);
} else
status = nfs4_preprocess_seqid_op(cstate,
lock->lk_old_lock_seqid,
&lock->lk_old_lock_stateid,
NFS4_LOCK_STID, &lock_stp, nn);
if (status)
goto out;
lock_sop = lockowner(lock_stp->st_stateowner);
lkflg = setlkflg(lock->lk_type);
status = nfs4_check_openmode(lock_stp, lkflg);
if (status)
goto out;
status = nfserr_grace;
if (locks_in_grace(net) && !lock->lk_reclaim)
goto out;
status = nfserr_no_grace;
if (!locks_in_grace(net) && lock->lk_reclaim)
goto out;
file_lock = locks_alloc_lock();
if (!file_lock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto out;
}
fp = lock_stp->st_file;
locks_init_lock(file_lock);
switch (lock->lk_type) {
case NFS4_READ_LT:
case NFS4_READW_LT:
spin_lock(&fp->fi_lock);
filp = find_readable_file_locked(fp);
if (filp)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_READ);
spin_unlock(&fp->fi_lock);
file_lock->fl_type = F_RDLCK;
break;
case NFS4_WRITE_LT:
case NFS4_WRITEW_LT:
spin_lock(&fp->fi_lock);
filp = find_writeable_file_locked(fp);
if (filp)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_WRITE);
spin_unlock(&fp->fi_lock);
file_lock->fl_type = F_WRLCK;
break;
default:
status = nfserr_inval;
goto out;
}
if (!filp) {
status = nfserr_openmode;
goto out;
}
file_lock->fl_owner = (fl_owner_t)lock_sop;
file_lock->fl_pid = current->tgid;
file_lock->fl_file = filp;
file_lock->fl_flags = FL_POSIX;
file_lock->fl_lmops = &nfsd_posix_mng_ops;
file_lock->fl_start = lock->lk_offset;
file_lock->fl_end = last_byte_offset(lock->lk_offset, lock->lk_length);
nfs4_transform_lock_offset(file_lock);
conflock = locks_alloc_lock();
if (!conflock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto out;
}
err = vfs_lock_file(filp, F_SETLK, file_lock, conflock);
switch (-err) {
case 0: /* success! */
update_stateid(&lock_stp->st_stid.sc_stateid);
memcpy(&lock->lk_resp_stateid, &lock_stp->st_stid.sc_stateid,
sizeof(stateid_t));
status = 0;
break;
case (EAGAIN): /* conflock holds conflicting lock */
status = nfserr_denied;
dprintk("NFSD: nfsd4_lock: conflicting lock found!\n");
nfs4_set_lock_denied(conflock, &lock->lk_denied);
break;
case (EDEADLK):
status = nfserr_deadlock;
break;
default:
dprintk("NFSD: nfsd4_lock: vfs_lock_file() failed! status %d\n",err);
status = nfserrno(err);
break;
}
out:
if (filp)
fput(filp);
if (status && new_state)
release_lock_stateid(lock_stp);
nfsd4_bump_seqid(cstate, status);
if (!cstate->replay_owner)
nfs4_unlock_state();
if (file_lock)
locks_free_lock(file_lock);
if (conflock)
locks_free_lock(conflock);
return status;
}
/*
* The NFSv4 spec allows a client to do a LOCKT without holding an OPEN,
* so we do a temporary open here just to get an open file to pass to
* vfs_test_lock. (Arguably perhaps test_lock should be done with an
* inode operation.)
*/
static __be32 nfsd_test_lock(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file_lock *lock)
{
struct file *file;
__be32 err = nfsd_open(rqstp, fhp, S_IFREG, NFSD_MAY_READ, &file);
if (!err) {
err = nfserrno(vfs_test_lock(file, lock));
nfsd_close(file);
}
return err;
}
/*
* LOCKT operation
*/
__be32
nfsd4_lockt(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_lockt *lockt)
{
struct file_lock *file_lock = NULL;
struct nfs4_lockowner *lo;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if (locks_in_grace(SVC_NET(rqstp)))
return nfserr_grace;
if (check_lock_length(lockt->lt_offset, lockt->lt_length))
return nfserr_inval;
nfs4_lock_state();
if (!nfsd4_has_session(cstate)) {
status = lookup_clientid(&lockt->lt_clientid, cstate, nn);
if (status)
goto out;
}
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0)))
goto out;
file_lock = locks_alloc_lock();
if (!file_lock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto out;
}
locks_init_lock(file_lock);
switch (lockt->lt_type) {
case NFS4_READ_LT:
case NFS4_READW_LT:
file_lock->fl_type = F_RDLCK;
break;
case NFS4_WRITE_LT:
case NFS4_WRITEW_LT:
file_lock->fl_type = F_WRLCK;
break;
default:
dprintk("NFSD: nfs4_lockt: bad lock type!\n");
status = nfserr_inval;
goto out;
}
lo = find_lockowner_str(&lockt->lt_clientid, &lockt->lt_owner, nn);
if (lo)
file_lock->fl_owner = (fl_owner_t)lo;
file_lock->fl_pid = current->tgid;
file_lock->fl_flags = FL_POSIX;
file_lock->fl_start = lockt->lt_offset;
file_lock->fl_end = last_byte_offset(lockt->lt_offset, lockt->lt_length);
nfs4_transform_lock_offset(file_lock);
status = nfsd_test_lock(rqstp, &cstate->current_fh, file_lock);
if (status)
goto out;
if (file_lock->fl_type != F_UNLCK) {
status = nfserr_denied;
nfs4_set_lock_denied(file_lock, &lockt->lt_denied);
}
out:
nfs4_unlock_state();
if (file_lock)
locks_free_lock(file_lock);
return status;
}
__be32
nfsd4_locku(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_locku *locku)
{
struct nfs4_ol_stateid *stp;
struct file *filp = NULL;
struct file_lock *file_lock = NULL;
__be32 status;
int err;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n",
(long long) locku->lu_offset,
(long long) locku->lu_length);
if (check_lock_length(locku->lu_offset, locku->lu_length))
return nfserr_inval;
nfs4_lock_state();
status = nfs4_preprocess_seqid_op(cstate, locku->lu_seqid,
&locku->lu_stateid, NFS4_LOCK_STID,
&stp, nn);
if (status)
goto out;
filp = find_any_file(stp->st_file);
if (!filp) {
status = nfserr_lock_range;
goto out;
}
file_lock = locks_alloc_lock();
if (!file_lock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto fput;
}
locks_init_lock(file_lock);
file_lock->fl_type = F_UNLCK;
file_lock->fl_owner = (fl_owner_t)lockowner(stp->st_stateowner);
file_lock->fl_pid = current->tgid;
file_lock->fl_file = filp;
file_lock->fl_flags = FL_POSIX;
file_lock->fl_lmops = &nfsd_posix_mng_ops;
file_lock->fl_start = locku->lu_offset;
file_lock->fl_end = last_byte_offset(locku->lu_offset,
locku->lu_length);
nfs4_transform_lock_offset(file_lock);
err = vfs_lock_file(filp, F_SETLK, file_lock, NULL);
if (err) {
dprintk("NFSD: nfs4_locku: vfs_lock_file failed!\n");
goto out_nfserr;
}
update_stateid(&stp->st_stid.sc_stateid);
memcpy(&locku->lu_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t));
fput:
fput(filp);
out:
nfsd4_bump_seqid(cstate, status);
nfsd4: fix state lock usage in LOCKU In commit 5ec094c1096ab3bb795651855d53f18daa26afde "nfsd4: extend state lock over seqid replay logic" I modified the exit logic of all the seqid-based procedures except nfsd4_locku(). Fix the oversight. The result of the bug was a double-unlock while handling the LOCKU procedure, and a warning like: [ 142.150014] WARNING: at kernel/mutex-debug.c:78 debug_mutex_unlock+0xda/0xe0() ... [ 142.152927] Pid: 742, comm: nfsd Not tainted 3.1.0-rc1-SLIM+ #9 [ 142.152927] Call Trace: [ 142.152927] [<ffffffff8105fa4f>] warn_slowpath_common+0x7f/0xc0 [ 142.152927] [<ffffffff8105faaa>] warn_slowpath_null+0x1a/0x20 [ 142.152927] [<ffffffff810960ca>] debug_mutex_unlock+0xda/0xe0 [ 142.152927] [<ffffffff813e4200>] __mutex_unlock_slowpath+0x80/0x140 [ 142.152927] [<ffffffff813e42ce>] mutex_unlock+0xe/0x10 [ 142.152927] [<ffffffffa03bd3f5>] nfs4_lock_state+0x35/0x40 [nfsd] [ 142.152927] [<ffffffffa03b0b71>] nfsd4_proc_compound+0x2a1/0x690 [nfsd] [ 142.152927] [<ffffffffa039f9fb>] nfsd_dispatch+0xeb/0x230 [nfsd] [ 142.152927] [<ffffffffa02b1055>] svc_process_common+0x345/0x690 [sunrpc] [ 142.152927] [<ffffffff81058d10>] ? try_to_wake_up+0x280/0x280 [ 142.152927] [<ffffffffa02b16e2>] svc_process+0x102/0x150 [sunrpc] [ 142.152927] [<ffffffffa039f0bd>] nfsd+0xbd/0x160 [nfsd] [ 142.152927] [<ffffffffa039f000>] ? 0xffffffffa039efff [ 142.152927] [<ffffffff8108230c>] kthread+0x8c/0xa0 [ 142.152927] [<ffffffff813e8694>] kernel_thread_helper+0x4/0x10 [ 142.152927] [<ffffffff81082280>] ? kthread_worker_fn+0x190/0x190 [ 142.152927] [<ffffffff813e8690>] ? gs_change+0x13/0x13 Reported-by: Bryan Schumaker <bjschuma@netapp.com> Tested-by: Bryan Schumaker <bjschuma@netapp.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2011-09-28 01:42:29 +00:00
if (!cstate->replay_owner)
nfs4_unlock_state();
if (file_lock)
locks_free_lock(file_lock);
return status;
out_nfserr:
status = nfserrno(err);
goto fput;
}
/*
* returns
* 1: locks held by lockowner
* 0: no locks held by lockowner
*/
static int
check_for_locks(struct nfs4_file *filp, struct nfs4_lockowner *lowner)
{
struct file_lock **flpp;
struct inode *inode = filp->fi_inode;
int status = 0;
spin_lock(&inode->i_lock);
for (flpp = &inode->i_flock; *flpp != NULL; flpp = &(*flpp)->fl_next) {
if ((*flpp)->fl_owner == (fl_owner_t)lowner) {
status = 1;
goto out;
}
}
out:
spin_unlock(&inode->i_lock);
return status;
}
__be32
nfsd4_release_lockowner(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_release_lockowner *rlockowner)
{
clientid_t *clid = &rlockowner->rl_clientid;
struct nfs4_stateowner *sop = NULL, *tmp;
struct nfs4_lockowner *lo;
struct nfs4_ol_stateid *stp;
struct xdr_netobj *owner = &rlockowner->rl_owner;
unsigned int hashval = ownerstr_hashval(clid->cl_id, owner);
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n",
clid->cl_boot, clid->cl_id);
nfs4_lock_state();
status = lookup_clientid(clid, cstate, nn);
if (status)
goto out;
status = nfserr_locks_held;
/* Find the matching lock stateowner */
list_for_each_entry(tmp, &nn->ownerstr_hashtbl[hashval], so_strhash) {
if (tmp->so_is_open_owner)
continue;
if (same_owner_str(tmp, owner, clid)) {
sop = tmp;
break;
}
}
/* No matching owner found, maybe a replay? Just declare victory... */
if (!sop) {
status = nfs_ok;
goto out;
}
lo = lockowner(sop);
/* see if there are still any locks associated with it */
list_for_each_entry(stp, &sop->so_stateids, st_perstateowner) {
if (check_for_locks(stp->st_file, lo))
goto out;
}
status = nfs_ok;
release_lockowner(lo);
out:
nfs4_unlock_state();
return status;
}
static inline struct nfs4_client_reclaim *
alloc_reclaim(void)
{
return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL);
}
bool
nfs4_has_reclaimed_state(const char *name, struct nfsd_net *nn)
{
struct nfs4_client_reclaim *crp;
crp = nfsd4_find_reclaim_client(name, nn);
return (crp && crp->cr_clp);
}
/*
* failure => all reset bets are off, nfserr_no_grace...
*/
struct nfs4_client_reclaim *
nfs4_client_to_reclaim(const char *name, struct nfsd_net *nn)
{
unsigned int strhashval;
struct nfs4_client_reclaim *crp;
dprintk("NFSD nfs4_client_to_reclaim NAME: %.*s\n", HEXDIR_LEN, name);
crp = alloc_reclaim();
if (crp) {
strhashval = clientstr_hashval(name);
INIT_LIST_HEAD(&crp->cr_strhash);
list_add(&crp->cr_strhash, &nn->reclaim_str_hashtbl[strhashval]);
memcpy(crp->cr_recdir, name, HEXDIR_LEN);
crp->cr_clp = NULL;
nn->reclaim_str_hashtbl_size++;
}
return crp;
}
void
nfs4_remove_reclaim_record(struct nfs4_client_reclaim *crp, struct nfsd_net *nn)
{
list_del(&crp->cr_strhash);
kfree(crp);
nn->reclaim_str_hashtbl_size--;
}
void
nfs4_release_reclaim(struct nfsd_net *nn)
{
struct nfs4_client_reclaim *crp = NULL;
int i;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->reclaim_str_hashtbl[i])) {
crp = list_entry(nn->reclaim_str_hashtbl[i].next,
struct nfs4_client_reclaim, cr_strhash);
nfs4_remove_reclaim_record(crp, nn);
}
}
WARN_ON_ONCE(nn->reclaim_str_hashtbl_size);
}
/*
* called from OPEN, CLAIM_PREVIOUS with a new clientid. */
struct nfs4_client_reclaim *
nfsd4_find_reclaim_client(const char *recdir, struct nfsd_net *nn)
{
unsigned int strhashval;
struct nfs4_client_reclaim *crp = NULL;
dprintk("NFSD: nfs4_find_reclaim_client for recdir %s\n", recdir);
strhashval = clientstr_hashval(recdir);
list_for_each_entry(crp, &nn->reclaim_str_hashtbl[strhashval], cr_strhash) {
if (same_name(crp->cr_recdir, recdir)) {
return crp;
}
}
return NULL;
}
/*
* Called from OPEN. Look for clientid in reclaim list.
*/
__be32
nfs4_check_open_reclaim(clientid_t *clid,
struct nfsd4_compound_state *cstate,
struct nfsd_net *nn)
{
__be32 status;
/* find clientid in conf_id_hashtbl */
status = lookup_clientid(clid, cstate, nn);
if (status)
return nfserr_reclaim_bad;
if (nfsd4_client_record_check(cstate->clp))
return nfserr_reclaim_bad;
return nfs_ok;
}
#ifdef CONFIG_NFSD_FAULT_INJECTION
u64 nfsd_forget_client(struct nfs4_client *clp, u64 max)
{
if (mark_client_expired(clp))
return 0;
expire_client(clp);
return 1;
}
u64 nfsd_print_client(struct nfs4_client *clp, u64 num)
{
char buf[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf));
printk(KERN_INFO "NFS Client: %s\n", buf);
return 1;
}
static void nfsd_print_count(struct nfs4_client *clp, unsigned int count,
const char *type)
{
char buf[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf));
printk(KERN_INFO "NFS Client: %s has %u %s\n", buf, count, type);
}
static u64 nfsd_foreach_client_lock(struct nfs4_client *clp, u64 max,
void (*func)(struct nfs4_ol_stateid *))
{
struct nfs4_openowner *oop;
struct nfs4_ol_stateid *stp, *st_next;
struct nfs4_ol_stateid *lst, *lst_next;
u64 count = 0;
list_for_each_entry(oop, &clp->cl_openowners, oo_perclient) {
list_for_each_entry_safe(stp, st_next,
&oop->oo_owner.so_stateids, st_perstateowner) {
list_for_each_entry_safe(lst, lst_next,
&stp->st_locks, st_locks) {
if (func)
func(lst);
if (++count == max)
return count;
}
}
}
return count;
}
u64 nfsd_forget_client_locks(struct nfs4_client *clp, u64 max)
{
return nfsd_foreach_client_lock(clp, max, release_lock_stateid);
}
u64 nfsd_print_client_locks(struct nfs4_client *clp, u64 max)
{
u64 count = nfsd_foreach_client_lock(clp, max, NULL);
nfsd_print_count(clp, count, "locked files");
return count;
}
static u64 nfsd_foreach_client_open(struct nfs4_client *clp, u64 max, void (*func)(struct nfs4_openowner *))
{
struct nfs4_openowner *oop, *next;
u64 count = 0;
list_for_each_entry_safe(oop, next, &clp->cl_openowners, oo_perclient) {
if (func)
func(oop);
if (++count == max)
break;
}
return count;
}
u64 nfsd_forget_client_openowners(struct nfs4_client *clp, u64 max)
{
return nfsd_foreach_client_open(clp, max, release_openowner);
}
u64 nfsd_print_client_openowners(struct nfs4_client *clp, u64 max)
{
u64 count = nfsd_foreach_client_open(clp, max, NULL);
nfsd_print_count(clp, count, "open files");
return count;
}
static u64 nfsd_find_all_delegations(struct nfs4_client *clp, u64 max,
struct list_head *victims)
{
struct nfs4_delegation *dp, *next;
u64 count = 0;
lockdep_assert_held(&state_lock);
list_for_each_entry_safe(dp, next, &clp->cl_delegations, dl_perclnt) {
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
if (victims) {
/*
* It's not safe to mess with delegations that have a
* non-zero dl_time. They might have already been broken
* and could be processed by the laundromat outside of
* the state_lock. Just leave them be.
*/
if (dp->dl_time != 0)
continue;
/*
* Increment dl_time to ensure that delegation breaks
* don't monkey with it now that we are.
*/
++dp->dl_time;
list_move(&dp->dl_recall_lru, victims);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
}
if (++count == max)
break;
}
return count;
}
u64 nfsd_forget_client_delegations(struct nfs4_client *clp, u64 max)
{
struct nfs4_delegation *dp, *next;
LIST_HEAD(victims);
u64 count;
spin_lock(&state_lock);
count = nfsd_find_all_delegations(clp, max, &victims);
spin_unlock(&state_lock);
list_for_each_entry_safe(dp, next, &victims, dl_recall_lru)
revoke_delegation(dp);
return count;
}
u64 nfsd_recall_client_delegations(struct nfs4_client *clp, u64 max)
{
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
struct nfs4_delegation *dp;
LIST_HEAD(victims);
u64 count;
spin_lock(&state_lock);
count = nfsd_find_all_delegations(clp, max, &victims);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
while (!list_empty(&victims)) {
dp = list_first_entry(&victims, struct nfs4_delegation,
dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
dp->dl_time = 0;
nfsd_break_one_deleg(dp);
nfsd: close potential race between delegation break and laundromat Bruce says: There's also a preexisting expire_client/laundromat vs break race: - expire_client/laundromat adds a delegation to its local reaplist using the same dl_recall_lru field that a delegation uses to track its position on the recall lru and drops the state lock. - a concurrent break_lease adds the delegation to the lru. - expire/client/laundromat then walks it reaplist and sees the lru head as just another delegation on the list.... Fix this race by checking the dl_time under the state_lock. If we find that it's not 0, then we know that it has already been queued to the LRU list and that we shouldn't queue it again. In the case of destroy_client, we must also ensure that we don't hit similar races by ensuring that we don't move any delegations to the reaplist with a dl_time of 0. Just bump the dl_time by one before we drop the state_lock. We're destroying the delegations anyway, so a 1s difference there won't matter. The fault injection code also requires a bit of surgery here: First, in the case of nfsd_forget_client_delegations, we must prevent the same sort of race vs. the delegation break callback. For that, we just increment the dl_time to ensure that a delegation callback can't race in while we're working on it. We can't do that for nfsd_recall_client_delegations, as we need to have it actually queue the delegation, and that won't happen if we increment the dl_time. The state lock is held over that function, so we don't need to worry about these sorts of races there. There is one other potential bug nfsd_recall_client_delegations though. Entries on the victims list are not dequeued before calling nfsd_break_one_deleg. That's a potential list corruptor, so ensure that we do that there. Reported-by: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-07-08 18:02:49 +00:00
}
spin_unlock(&state_lock);
return count;
}
u64 nfsd_print_client_delegations(struct nfs4_client *clp, u64 max)
{
u64 count = 0;
spin_lock(&state_lock);
count = nfsd_find_all_delegations(clp, max, NULL);
spin_unlock(&state_lock);
nfsd_print_count(clp, count, "delegations");
return count;
}
u64 nfsd_for_n_state(u64 max, u64 (*func)(struct nfs4_client *, u64))
{
struct nfs4_client *clp, *next;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id);
if (!nfsd_netns_ready(nn))
return 0;
list_for_each_entry_safe(clp, next, &nn->client_lru, cl_lru) {
count += func(clp, max - count);
if ((max != 0) && (count >= max))
break;
}
return count;
}
struct nfs4_client *nfsd_find_client(struct sockaddr_storage *addr, size_t addr_size)
{
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id);
if (!nfsd_netns_ready(nn))
return NULL;
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
if (memcmp(&clp->cl_addr, addr, addr_size) == 0)
return clp;
}
return NULL;
}
#endif /* CONFIG_NFSD_FAULT_INJECTION */
/*
* Since the lifetime of a delegation isn't limited to that of an open, a
* client may quite reasonably hang on to a delegation as long as it has
* the inode cached. This becomes an obvious problem the first time a
* client's inode cache approaches the size of the server's total memory.
*
* For now we avoid this problem by imposing a hard limit on the number
* of delegations, which varies according to the server's memory size.
*/
static void
set_max_delegations(void)
{
/*
* Allow at most 4 delegations per megabyte of RAM. Quick
* estimates suggest that in the worst case (where every delegation
* is for a different inode), a delegation could take about 1.5K,
* giving a worst case usage of about 6% of memory.
*/
max_delegations = nr_free_buffer_pages() >> (20 - 2 - PAGE_SHIFT);
}
static int nfs4_state_create_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
int i;
nn->conf_id_hashtbl = kmalloc(sizeof(struct list_head) *
CLIENT_HASH_SIZE, GFP_KERNEL);
if (!nn->conf_id_hashtbl)
goto err;
nn->unconf_id_hashtbl = kmalloc(sizeof(struct list_head) *
CLIENT_HASH_SIZE, GFP_KERNEL);
if (!nn->unconf_id_hashtbl)
goto err_unconf_id;
nn->ownerstr_hashtbl = kmalloc(sizeof(struct list_head) *
OWNER_HASH_SIZE, GFP_KERNEL);
if (!nn->ownerstr_hashtbl)
goto err_ownerstr;
nn->sessionid_hashtbl = kmalloc(sizeof(struct list_head) *
SESSION_HASH_SIZE, GFP_KERNEL);
if (!nn->sessionid_hashtbl)
goto err_sessionid;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
INIT_LIST_HEAD(&nn->conf_id_hashtbl[i]);
INIT_LIST_HEAD(&nn->unconf_id_hashtbl[i]);
}
for (i = 0; i < OWNER_HASH_SIZE; i++)
INIT_LIST_HEAD(&nn->ownerstr_hashtbl[i]);
for (i = 0; i < SESSION_HASH_SIZE; i++)
INIT_LIST_HEAD(&nn->sessionid_hashtbl[i]);
nn->conf_name_tree = RB_ROOT;
nn->unconf_name_tree = RB_ROOT;
INIT_LIST_HEAD(&nn->client_lru);
INIT_LIST_HEAD(&nn->close_lru);
INIT_LIST_HEAD(&nn->del_recall_lru);
spin_lock_init(&nn->client_lock);
INIT_DELAYED_WORK(&nn->laundromat_work, laundromat_main);
get_net(net);
return 0;
err_sessionid:
kfree(nn->ownerstr_hashtbl);
err_ownerstr:
kfree(nn->unconf_id_hashtbl);
err_unconf_id:
kfree(nn->conf_id_hashtbl);
err:
return -ENOMEM;
}
static void
nfs4_state_destroy_net(struct net *net)
{
int i;
struct nfs4_client *clp = NULL;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->conf_id_hashtbl[i])) {
clp = list_entry(nn->conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash);
destroy_client(clp);
}
}
NFSD: Traverse unconfirmed client through hash-table When stopping nfsd, I got BUG messages, and soft lockup messages, The problem is cuased by double rb_erase() in nfs4_state_destroy_net() and destroy_client(). This patch just let nfsd traversing unconfirmed client through hash-table instead of rbtree. [ 2325.021995] BUG: unable to handle kernel NULL pointer dereference at (null) [ 2325.022809] IP: [<ffffffff8133c18c>] rb_erase+0x14c/0x390 [ 2325.022982] PGD 7a91b067 PUD 7a33d067 PMD 0 [ 2325.022982] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 2325.022982] Modules linked in: nfsd(OF) cfg80211 rfkill bridge stp llc snd_intel8x0 snd_ac97_codec ac97_bus auth_rpcgss nfs_acl serio_raw e1000 i2c_piix4 ppdev snd_pcm snd_timer lockd pcspkr joydev parport_pc snd parport i2c_core soundcore microcode sunrpc ata_generic pata_acpi [last unloaded: nfsd] [ 2325.022982] CPU: 1 PID: 2123 Comm: nfsd Tainted: GF O 3.14.0-rc8+ #2 [ 2325.022982] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 [ 2325.022982] task: ffff88007b384800 ti: ffff8800797f6000 task.ti: ffff8800797f6000 [ 2325.022982] RIP: 0010:[<ffffffff8133c18c>] [<ffffffff8133c18c>] rb_erase+0x14c/0x390 [ 2325.022982] RSP: 0018:ffff8800797f7d98 EFLAGS: 00010246 [ 2325.022982] RAX: ffff880079c1f010 RBX: ffff880079f4c828 RCX: 0000000000000000 [ 2325.022982] RDX: 0000000000000000 RSI: ffff880079bcb070 RDI: ffff880079f4c810 [ 2325.022982] RBP: ffff8800797f7d98 R08: 0000000000000000 R09: ffff88007964fc70 [ 2325.022982] R10: 0000000000000000 R11: 0000000000000400 R12: ffff880079f4c800 [ 2325.022982] R13: ffff880079bcb000 R14: ffff8800797f7da8 R15: ffff880079f4c860 [ 2325.022982] FS: 0000000000000000(0000) GS:ffff88007f900000(0000) knlGS:0000000000000000 [ 2325.022982] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2325.022982] CR2: 0000000000000000 CR3: 000000007a3ef000 CR4: 00000000000006e0 [ 2325.022982] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2325.022982] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2325.022982] Stack: [ 2325.022982] ffff8800797f7de0 ffffffffa0191c6e ffff8800797f7da8 ffff8800797f7da8 [ 2325.022982] ffff880079f4c810 ffff880079bcb000 ffffffff81cc26c0 ffff880079c1f010 [ 2325.022982] ffff880079bcb070 ffff8800797f7e28 ffffffffa01977f2 ffff8800797f7df0 [ 2325.022982] Call Trace: [ 2325.022982] [<ffffffffa0191c6e>] destroy_client+0x32e/0x3b0 [nfsd] [ 2325.022982] [<ffffffffa01977f2>] nfs4_state_shutdown_net+0x1a2/0x220 [nfsd] [ 2325.022982] [<ffffffffa01700b8>] nfsd_shutdown_net+0x38/0x70 [nfsd] [ 2325.022982] [<ffffffffa017013e>] nfsd_last_thread+0x4e/0x80 [nfsd] [ 2325.022982] [<ffffffffa001f1eb>] svc_shutdown_net+0x2b/0x30 [sunrpc] [ 2325.022982] [<ffffffffa017064b>] nfsd_destroy+0x5b/0x80 [nfsd] [ 2325.022982] [<ffffffffa0170773>] nfsd+0x103/0x130 [nfsd] [ 2325.022982] [<ffffffffa0170670>] ? nfsd_destroy+0x80/0x80 [nfsd] [ 2325.022982] [<ffffffff810a8232>] kthread+0xd2/0xf0 [ 2325.022982] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 2325.022982] [<ffffffff816c493c>] ret_from_fork+0x7c/0xb0 [ 2325.022982] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 2325.022982] Code: 48 83 e1 fc 48 89 10 0f 84 02 01 00 00 48 3b 41 10 0f 84 08 01 00 00 48 89 51 08 48 89 fa e9 74 ff ff ff 0f 1f 40 00 48 8b 50 10 <f6> 02 01 0f 84 93 00 00 00 48 8b 7a 10 48 85 ff 74 05 f6 07 01 [ 2325.022982] RIP [<ffffffff8133c18c>] rb_erase+0x14c/0x390 [ 2325.022982] RSP <ffff8800797f7d98> [ 2325.022982] CR2: 0000000000000000 [ 2325.022982] ---[ end trace 28c27ed011655e57 ]--- [ 228.064071] BUG: soft lockup - CPU#0 stuck for 22s! [nfsd:558] [ 228.064428] Modules linked in: ip6t_rpfilter ip6t_REJECT cfg80211 xt_conntrack rfkill ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw nfsd(OF) auth_rpcgss nfs_acl lockd snd_intel8x0 snd_ac97_codec ac97_bus joydev snd_pcm snd_timer e1000 sunrpc snd ppdev parport_pc serio_raw pcspkr i2c_piix4 microcode parport soundcore i2c_core ata_generic pata_acpi [ 228.064539] CPU: 0 PID: 558 Comm: nfsd Tainted: GF O 3.14.0-rc8+ #2 [ 228.064539] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 [ 228.064539] task: ffff880076adec00 ti: ffff880074616000 task.ti: ffff880074616000 [ 228.064539] RIP: 0010:[<ffffffff8133ba17>] [<ffffffff8133ba17>] rb_next+0x27/0x50 [ 228.064539] RSP: 0018:ffff880074617de0 EFLAGS: 00000282 [ 228.064539] RAX: ffff880074478010 RBX: ffff88007446f860 RCX: 0000000000000014 [ 228.064539] RDX: ffff880074478010 RSI: 0000000000000000 RDI: ffff880074478010 [ 228.064539] RBP: ffff880074617de0 R08: 0000000000000000 R09: 0000000000000012 [ 228.064539] R10: 0000000000000001 R11: ffffffffffffffec R12: ffffea0001d11a00 [ 228.064539] R13: ffff88007f401400 R14: ffff88007446f800 R15: ffff880074617d50 [ 228.064539] FS: 0000000000000000(0000) GS:ffff88007f800000(0000) knlGS:0000000000000000 [ 228.064539] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 228.064539] CR2: 00007fe9ac6ec000 CR3: 000000007a5d6000 CR4: 00000000000006f0 [ 228.064539] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 228.064539] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 228.064539] Stack: [ 228.064539] ffff880074617e28 ffffffffa01ab7db ffff880074617df0 ffff880074617df0 [ 228.064539] ffff880079273000 ffffffff81cc26c0 ffffffff81cc26c0 0000000000000000 [ 228.064539] 0000000000000000 ffff880074617e48 ffffffffa01840b8 ffffffff81cc26c0 [ 228.064539] Call Trace: [ 228.064539] [<ffffffffa01ab7db>] nfs4_state_shutdown_net+0x18b/0x220 [nfsd] [ 228.064539] [<ffffffffa01840b8>] nfsd_shutdown_net+0x38/0x70 [nfsd] [ 228.064539] [<ffffffffa018413e>] nfsd_last_thread+0x4e/0x80 [nfsd] [ 228.064539] [<ffffffffa00aa1eb>] svc_shutdown_net+0x2b/0x30 [sunrpc] [ 228.064539] [<ffffffffa018464b>] nfsd_destroy+0x5b/0x80 [nfsd] [ 228.064539] [<ffffffffa0184773>] nfsd+0x103/0x130 [nfsd] [ 228.064539] [<ffffffffa0184670>] ? nfsd_destroy+0x80/0x80 [nfsd] [ 228.064539] [<ffffffff810a8232>] kthread+0xd2/0xf0 [ 228.064539] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 228.064539] [<ffffffff816c493c>] ret_from_fork+0x7c/0xb0 [ 228.064539] [<ffffffff810a8160>] ? insert_kthread_work+0x40/0x40 [ 228.064539] Code: 1f 44 00 00 55 48 8b 17 48 89 e5 48 39 d7 74 3b 48 8b 47 08 48 85 c0 75 0e eb 25 66 0f 1f 84 00 00 00 00 00 48 89 d0 48 8b 50 10 <48> 85 d2 75 f4 5d c3 66 90 48 3b 78 08 75 f6 48 8b 10 48 89 c7 Fixes: ac55fdc408039 (nfsd: move the confirmed and unconfirmed hlists...) Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Cc: stable@vger.kernel.org Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-03-26 14:09:30 +00:00
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->unconf_id_hashtbl[i])) {
clp = list_entry(nn->unconf_id_hashtbl[i].next, struct nfs4_client, cl_idhash);
destroy_client(clp);
}
}
kfree(nn->sessionid_hashtbl);
kfree(nn->ownerstr_hashtbl);
kfree(nn->unconf_id_hashtbl);
kfree(nn->conf_id_hashtbl);
put_net(net);
}
int
nfs4_state_start_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
int ret;
ret = nfs4_state_create_net(net);
if (ret)
return ret;
nfsd4_client_tracking_init(net);
nn->boot_time = get_seconds();
locks_start_grace(net, &nn->nfsd4_manager);
nn->grace_ended = false;
printk(KERN_INFO "NFSD: starting %ld-second grace period (net %p)\n",
nn->nfsd4_grace, net);
queue_delayed_work(laundry_wq, &nn->laundromat_work, nn->nfsd4_grace * HZ);
return 0;
}
/* initialization to perform when the nfsd service is started: */
int
nfs4_state_start(void)
{
int ret;
ret = set_callback_cred();
if (ret)
return -ENOMEM;
laundry_wq = create_singlethread_workqueue("nfsd4");
if (laundry_wq == NULL) {
ret = -ENOMEM;
goto out_recovery;
}
ret = nfsd4_create_callback_queue();
if (ret)
goto out_free_laundry;
set_max_delegations();
return 0;
out_free_laundry:
destroy_workqueue(laundry_wq);
out_recovery:
return ret;
}
void
nfs4_state_shutdown_net(struct net *net)
{
struct nfs4_delegation *dp = NULL;
struct list_head *pos, *next, reaplist;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
cancel_delayed_work_sync(&nn->laundromat_work);
locks_end_grace(&nn->nfsd4_manager);
nfs4_lock_state();
INIT_LIST_HEAD(&reaplist);
spin_lock(&state_lock);
list_for_each_safe(pos, next, &nn->del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
list_move(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
list_for_each_safe(pos, next, &reaplist) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
destroy_delegation(dp);
}
nfsd4_client_tracking_exit(net);
nfs4_state_destroy_net(net);
nfs4_unlock_state();
}
void
nfs4_state_shutdown(void)
{
destroy_workqueue(laundry_wq);
nfsd4_destroy_callback_queue();
}
static void
get_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid)
{
if (HAS_STATE_ID(cstate, CURRENT_STATE_ID_FLAG) && CURRENT_STATEID(stateid))
memcpy(stateid, &cstate->current_stateid, sizeof(stateid_t));
}
static void
put_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid)
{
if (cstate->minorversion) {
memcpy(&cstate->current_stateid, stateid, sizeof(stateid_t));
SET_STATE_ID(cstate, CURRENT_STATE_ID_FLAG);
}
}
void
clear_current_stateid(struct nfsd4_compound_state *cstate)
{
CLEAR_STATE_ID(cstate, CURRENT_STATE_ID_FLAG);
}
/*
* functions to set current state id
*/
void
nfsd4_set_opendowngradestateid(struct nfsd4_compound_state *cstate, struct nfsd4_open_downgrade *odp)
{
put_stateid(cstate, &odp->od_stateid);
}
void
nfsd4_set_openstateid(struct nfsd4_compound_state *cstate, struct nfsd4_open *open)
{
put_stateid(cstate, &open->op_stateid);
}
void
nfsd4_set_closestateid(struct nfsd4_compound_state *cstate, struct nfsd4_close *close)
{
put_stateid(cstate, &close->cl_stateid);
}
void
nfsd4_set_lockstateid(struct nfsd4_compound_state *cstate, struct nfsd4_lock *lock)
{
put_stateid(cstate, &lock->lk_resp_stateid);
}
/*
* functions to consume current state id
*/
void
nfsd4_get_opendowngradestateid(struct nfsd4_compound_state *cstate, struct nfsd4_open_downgrade *odp)
{
get_stateid(cstate, &odp->od_stateid);
}
void
nfsd4_get_delegreturnstateid(struct nfsd4_compound_state *cstate, struct nfsd4_delegreturn *drp)
{
get_stateid(cstate, &drp->dr_stateid);
}
void
nfsd4_get_freestateid(struct nfsd4_compound_state *cstate, struct nfsd4_free_stateid *fsp)
{
get_stateid(cstate, &fsp->fr_stateid);
}
void
nfsd4_get_setattrstateid(struct nfsd4_compound_state *cstate, struct nfsd4_setattr *setattr)
{
get_stateid(cstate, &setattr->sa_stateid);
}
void
nfsd4_get_closestateid(struct nfsd4_compound_state *cstate, struct nfsd4_close *close)
{
get_stateid(cstate, &close->cl_stateid);
}
void
nfsd4_get_lockustateid(struct nfsd4_compound_state *cstate, struct nfsd4_locku *locku)
{
get_stateid(cstate, &locku->lu_stateid);
}
void
nfsd4_get_readstateid(struct nfsd4_compound_state *cstate, struct nfsd4_read *read)
{
get_stateid(cstate, &read->rd_stateid);
}
void
nfsd4_get_writestateid(struct nfsd4_compound_state *cstate, struct nfsd4_write *write)
{
get_stateid(cstate, &write->wr_stateid);
}