* for-next/asm-annotations:
: Modernise arm64 assembly annotations
arm64: head: Convert install_el2_stub to SYM_INNER_LABEL
arm64: Mark call_smc_arch_workaround_1 as __maybe_unused
arm64: entry-ftrace.S: Fix missing argument for CONFIG_FUNCTION_GRAPH_TRACER=y
arm64: vdso32: Convert to modern assembler annotations
arm64: vdso: Convert to modern assembler annotations
arm64: sdei: Annotate SDEI entry points using new style annotations
arm64: kvm: Modernize __smccc_workaround_1_smc_start annotations
arm64: kvm: Modernize annotation for __bp_harden_hyp_vecs
arm64: kvm: Annotate assembly using modern annoations
arm64: kernel: Convert to modern annotations for assembly data
arm64: head: Annotate stext and preserve_boot_args as code
arm64: head.S: Convert to modern annotations for assembly functions
arm64: ftrace: Modernise annotation of return_to_handler
arm64: ftrace: Correct annotation of ftrace_caller assembly
arm64: entry-ftrace.S: Convert to modern annotations for assembly functions
arm64: entry: Additional annotation conversions for entry.S
arm64: entry: Annotate ret_from_fork as code
arm64: entry: Annotate vector table and handlers as code
arm64: crypto: Modernize names for AES function macros
arm64: crypto: Modernize some extra assembly annotations
* for-next/memory-hotremove:
: Memory hot-remove support for arm64
arm64/mm: Enable memory hot remove
arm64/mm: Hold memory hotplug lock while walking for kernel page table dump
* for-next/arm_sdei:
: SDEI: fix double locking on return from hibernate and clean-up
firmware: arm_sdei: clean up sdei_event_create()
firmware: arm_sdei: Use cpus_read_lock() to avoid races with cpuhp
firmware: arm_sdei: fix possible double-lock on hibernate error path
firmware: arm_sdei: fix double-lock on hibernate with shared events
* for-next/amu:
: ARMv8.4 Activity Monitors support
clocksource/drivers/arm_arch_timer: validate arch_timer_rate
arm64: use activity monitors for frequency invariance
cpufreq: add function to get the hardware max frequency
Documentation: arm64: document support for the AMU extension
arm64/kvm: disable access to AMU registers from kvm guests
arm64: trap to EL1 accesses to AMU counters from EL0
arm64: add support for the AMU extension v1
* for-next/final-cap-helper:
: Introduce cpus_have_final_cap_helper(), migrate arm64 KVM to it
arm64: kvm: hyp: use cpus_have_final_cap()
arm64: cpufeature: add cpus_have_final_cap()
* for-next/cpu_ops-cleanup:
: cpu_ops[] access code clean-up
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
* for-next/misc:
: Various fixes and clean-ups
arm64: define __alloc_zeroed_user_highpage
arm64/kernel: Simplify __cpu_up() by bailing out early
arm64: remove redundant blank for '=' operator
arm64: kexec_file: Fixed code style.
arm64: add blank after 'if'
arm64: fix spelling mistake "ca not" -> "cannot"
arm64: entry: unmask IRQ in el0_sp()
arm64: efi: add efi-entry.o to targets instead of extra-$(CONFIG_EFI)
arm64: csum: Optimise IPv6 header checksum
arch/arm64: fix typo in a comment
arm64: remove gratuitious/stray .ltorg stanzas
arm64: Update comment for ASID() macro
arm64: mm: convert cpu_do_switch_mm() to C
arm64: fix NUMA Kconfig typos
* for-next/perf:
: arm64 perf updates
arm64: perf: Add support for ARMv8.5-PMU 64-bit counters
KVM: arm64: limit PMU version to PMUv3 for ARMv8.1
arm64: cpufeature: Extract capped perfmon fields
arm64: perf: Clean up enable/disable calls
perf: arm-ccn: Use scnprintf() for robustness
arm64: perf: Support new DT compatibles
arm64: perf: Refactor PMU init callbacks
perf: arm_spe: Remove unnecessary zero check on 'nr_pages'
New assembly annotations have recently been introduced which aim to
make the way we describe symbols in assembly more consistent. Recently the
arm64 assembler was converted to use these but install_el2_stub was missed.
Signed-off-by: Mark Brown <broonie@kernel.org>
[catalin.marinas@arm.com: changed to SYM_L_LOCAL]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For dynamically linked binaries the interpreter is responsible for setting
PROT_BTI on everything except itself. The dynamic linker needs to be aware
of PROT_BTI, for example in order to avoid dropping that when marking
executable pages read only after doing relocations, and doing everything
in userspace ensures that we don't get any issues due to divergences in
behaviour between the kernel and dynamic linker within a single executable.
Add a comment indicating that this is intentional to the code to help
people trying to understand what's going on.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This introduces get_cpu_ops() to return the CPU operations according to
the given CPU index. For now, it simply returns the @cpu_ops[cpu] as
before. Also, helper function __cpu_try_die() is introduced to be shared
by cpu_die() and ipi_cpu_crash_stop(). So it shouldn't introduce any
functional changes.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
This renames cpu_read_ops() to init_cpu_ops() as the function is only
called in initialization phase. Also, we will introduce get_cpu_ops() in
the subsequent patches, to retireve the CPU operation by the given CPU
index. The usage of cpu_read_ops() and get_cpu_ops() are difficult to be
distinguished from their names.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It's obvious we needn't declare the corresponding CPU operation when
CONFIG_ARM64_ACPI_PARKING_PROTOCOL is disabled, even it doesn't cause
any compiling warnings.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This datum is not referenced from .idmap.text: it does not need to be
mapped in idmap. Lets move it to .rodata as it is never written to after
early boot of the primary CPU.
(Maybe .data.ro_after_init would be cleaner though?)
Signed-off-by: Rémi Denis-Courmont <remi@remlab.net>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In practice, this requires only 2 instructions, or even only 1 for
the idmap_pg_dir size (with 4 or 64 KiB pages). Only the MAIR values
needed more than 2 instructions and it was already converted to mov_q
by 95b3f74bec.
Signed-off-by: Remi Denis-Courmont <remi.denis.courmont@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
The vDSO library should only include the necessary headers required for
a userspace library (UAPI and a minimal set of kernel headers). To make
this possible it is necessary to isolate from the kernel headers the
common parts that are strictly necessary to build the library.
Refactor the vdso32 implementation to include common headers.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200320145351.32292-22-vincenzo.frascino@arm.com
The vDSO library should only include the necessary headers required for
a userspace library (UAPI and a minimal set of kernel headers). To make
this possible it is necessary to isolate from the kernel headers the
common parts that are strictly necessary to build the library.
Refactor the vdso implementation to include common headers.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200320145351.32292-21-vincenzo.frascino@arm.com
This patch restores the kernel keys from current task during cpu resume
after the mmu is turned on and ptrauth is enabled.
A flag is added in macro ptrauth_keys_install_kernel to check if isb
instruction needs to be executed.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
lr is printed with %pS which will try to find an entry in kallsyms.
After enabling pointer authentication, this match will fail due to
PAC present in the lr.
Strip PAC from the lr to display the correct symbol name.
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When we enable pointer authentication in the kernel, LR values saved to
the stack will have a PAC which we must strip in order to retrieve the
real return address.
Strip PACs when unwinding the stack in order to account for this.
When function graph tracer is used with patchable-function-entry then
return_to_handler will also have pac bits so strip it too.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Re-position ptrauth_strip_insn_pac, comment]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Set up keys to use pointer authentication within the kernel. The kernel
will be compiled with APIAKey instructions, the other keys are currently
unused. Each task is given its own APIAKey, which is initialized during
fork. The key is changed during context switch and on kernel entry from
EL0.
The keys for idle threads need to be set before calling any C functions,
because it is not possible to enter and exit a function with different
keys.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Modified secondary cores key structure, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When the kernel is compiled with pointer auth instructions, the boot CPU
needs to start using address auth very early, so change the cpucap to
account for this.
Pointer auth must be enabled before we call C functions, because it is
not possible to enter a function with pointer auth disabled and exit it
with pointer auth enabled. Note, mismatches between architected and
IMPDEF algorithms will still be caught by the cpufeature framework (the
separate *_ARCH and *_IMP_DEF cpucaps).
Note the change in behavior: if the boot CPU has address auth and a
late CPU does not, then the late CPU is parked by the cpufeature
framework. This is possible as kernel will only have NOP space intructions
for PAC so such mismatched late cpu will silently ignore those
instructions in C functions. Also, if the boot CPU does not have address
auth and the late CPU has then the late cpu will still boot but with
ptrauth feature disabled.
Leave generic authentication as a "system scope" cpucap for now, since
initially the kernel will only use address authentication.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Re-worked ptrauth setup logic, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Each system capability can be of either boot, local, or system scope,
depending on when the state of the capability is finalized. When we
detect a conflict on a late CPU, we either offline the CPU or panic the
system. We currently always panic if the conflict is caused by a boot
scope capability, and offline the CPU if the conflict is caused by a
local or system scope capability.
We're going to want to add a new capability (for pointer authentication)
which needs to be boot scope but doesn't need to panic the system when a
conflict is detected. So add a new flag to specify whether the
capability requires the system to panic or not. Current boot scope
capabilities are updated to set the flag, so there should be no
functional change as a result of this patch.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
These helpers are used only by functions inside cpufeature.c and
hence makes sense to be moved from cpufeature.h to cpufeature.c as
they are not expected to be used globally.
This change helps in reducing the header file size as well as to add
future cpu capability types without confusion. Only a cpu capability
type macro is sufficient to expose those capabilities globally.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch allows __cpu_setup to be invoked with one of these flags,
ARM64_CPU_BOOT_PRIMARY, ARM64_CPU_BOOT_SECONDARY or ARM64_CPU_RUNTIME.
This is required as some cpufeatures need different handling during
different scenarios.
The input parameter in x0 is preserved till the end to be used inside
this function.
There should be no functional change with this patch and is useful
for the subsequent ptrauth patch which utilizes it. Some upcoming
arm cpufeatures can also utilize these flags.
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As we're going to enable pointer auth within the kernel and use a
different APIAKey for the kernel itself, so move the user APIAKey
switch to EL0 exception return.
The other 4 keys could remain switched during task switch, but are also
moved to keep things consistent.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: commit msg, re-positioned the patch, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently enable ptrauth for userspace, but do not use it within the
kernel. We're going to enable it for the kernel, and will need to manage
a separate set of ptrauth keys for the kernel.
We currently keep all 5 keys in struct ptrauth_keys. However, as the
kernel will only need to use 1 key, it is a bit wasteful to allocate a
whole ptrauth_keys struct for every thread.
Therefore, a subsequent patch will define a separate struct, with only 1
key, for the kernel. In preparation for that, rename the existing struct
(and associated macros and functions) to reflect that they are specific
to userspace.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Re-positioned the patch to reduce the diff]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To enable pointer auth for the kernel, we're going to need to check for
the presence of address auth and generic auth using alternative_if. We
currently have two cpucaps for each, but alternative_if needs to check a
single cpucap. So define meta-capabilities that are present when either
of the current two capabilities is present.
Leave the existing four cpucaps in place, as they are still needed to
check for mismatched systems where one CPU has the architected algorithm
but another has the IMP DEF algorithm.
Note, the meta-capabilities were present before but were removed in
commit a56005d321 ("arm64: cpufeature: Reduce number of pointer auth
CPU caps from 6 to 4") and commit 1e013d0612 ("arm64: cpufeature: Rework
ptr auth hwcaps using multi_entry_cap_matches"), as they were not needed
then. Note, unlike before, the current patch checks the cpucap values
directly, instead of reading the CPU ID register value.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: commit message and macro rebase, use __system_matches_cap]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some existing/future meta cpucaps match need the presence of individual
cpucaps. Currently the individual cpucaps checks it via an array based
flag and this introduces dependency on the array entry order.
This limitation exists only for system scope cpufeature.
This patch introduces an internal helper function (__system_matches_cap)
to invoke the matching handler for system scope. This helper has to be
used during a narrow window when,
- The system wide safe registers are set with all the SMP CPUs and,
- The SYSTEM_FEATURE cpu_hwcaps may not have been set.
Normal users should use the existing cpus_have_{const_}cap() global
function.
Suggested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On a system configured to trigger a crash_kexec() reboot, when only one CPU
is online and another CPU panics while starting-up, crash_smp_send_stop()
will fail to send any STOP message to the other already online core,
resulting in fail to freeze and registers not properly saved.
Moreover even if the proper messages are sent (case CPUs > 2)
it will similarly fail to account for the booting CPU when executing
the final stop wait-loop, so potentially resulting in some CPU not
been waited for shutdown before rebooting.
A tangible effect of this behaviour can be observed when, after a panic
with kexec enabled and loaded, on the following reboot triggered by kexec,
the cpu that could not be successfully stopped fails to come back online:
[ 362.291022] ------------[ cut here ]------------
[ 362.291525] kernel BUG at arch/arm64/kernel/cpufeature.c:886!
[ 362.292023] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
[ 362.292400] Modules linked in:
[ 362.292970] CPU: 3 PID: 0 Comm: swapper/3 Kdump: loaded Not tainted 5.6.0-rc4-00003-gc780b890948a #105
[ 362.293136] Hardware name: Foundation-v8A (DT)
[ 362.293382] pstate: 200001c5 (nzCv dAIF -PAN -UAO)
[ 362.294063] pc : has_cpuid_feature+0xf0/0x348
[ 362.294177] lr : verify_local_elf_hwcaps+0x84/0xe8
[ 362.294280] sp : ffff800011b1bf60
[ 362.294362] x29: ffff800011b1bf60 x28: 0000000000000000
[ 362.294534] x27: 0000000000000000 x26: 0000000000000000
[ 362.294631] x25: 0000000000000000 x24: ffff80001189a25c
[ 362.294718] x23: 0000000000000000 x22: 0000000000000000
[ 362.294803] x21: ffff8000114aa018 x20: ffff800011156a00
[ 362.294897] x19: ffff800010c944a0 x18: 0000000000000004
[ 362.294987] x17: 0000000000000000 x16: 0000000000000000
[ 362.295073] x15: 00004e53b831ae3c x14: 00004e53b831ae3c
[ 362.295165] x13: 0000000000000384 x12: 0000000000000000
[ 362.295251] x11: 0000000000000000 x10: 00400032b5503510
[ 362.295334] x9 : 0000000000000000 x8 : ffff800010c7e204
[ 362.295426] x7 : 00000000410fd0f0 x6 : 0000000000000001
[ 362.295508] x5 : 00000000410fd0f0 x4 : 0000000000000000
[ 362.295592] x3 : 0000000000000000 x2 : ffff8000100939d8
[ 362.295683] x1 : 0000000000180420 x0 : 0000000000180480
[ 362.296011] Call trace:
[ 362.296257] has_cpuid_feature+0xf0/0x348
[ 362.296350] verify_local_elf_hwcaps+0x84/0xe8
[ 362.296424] check_local_cpu_capabilities+0x44/0x128
[ 362.296497] secondary_start_kernel+0xf4/0x188
[ 362.296998] Code: 52805001 72a00301 6b01001f 54000ec0 (d4210000)
[ 362.298652] SMP: stopping secondary CPUs
[ 362.300615] Starting crashdump kernel...
[ 362.301168] Bye!
[ 0.000000] Booting Linux on physical CPU 0x0000000003 [0x410fd0f0]
[ 0.000000] Linux version 5.6.0-rc4-00003-gc780b890948a (crimar01@e120937-lin) (gcc version 8.3.0 (GNU Toolchain for the A-profile Architecture 8.3-2019.03 (arm-rel-8.36))) #105 SMP PREEMPT Fri Mar 6 17:00:42 GMT 2020
[ 0.000000] Machine model: Foundation-v8A
[ 0.000000] earlycon: pl11 at MMIO 0x000000001c090000 (options '')
[ 0.000000] printk: bootconsole [pl11] enabled
.....
[ 0.138024] rcu: Hierarchical SRCU implementation.
[ 0.153472] its@2f020000: unable to locate ITS domain
[ 0.154078] its@2f020000: Unable to locate ITS domain
[ 0.157541] EFI services will not be available.
[ 0.175395] smp: Bringing up secondary CPUs ...
[ 0.209182] psci: failed to boot CPU1 (-22)
[ 0.209377] CPU1: failed to boot: -22
[ 0.274598] Detected PIPT I-cache on CPU2
[ 0.278707] GICv3: CPU2: found redistributor 1 region 0:0x000000002f120000
[ 0.285212] CPU2: Booted secondary processor 0x0000000001 [0x410fd0f0]
[ 0.369053] Detected PIPT I-cache on CPU3
[ 0.372947] GICv3: CPU3: found redistributor 2 region 0:0x000000002f140000
[ 0.378664] CPU3: Booted secondary processor 0x0000000002 [0x410fd0f0]
[ 0.401707] smp: Brought up 1 node, 3 CPUs
[ 0.404057] SMP: Total of 3 processors activated.
Make crash_smp_send_stop() account also for the online status of the
calling CPU while evaluating how many CPUs are effectively online: this way
the right number of STOPs is sent and all other stopped-cores's registers
are properly saved.
Fixes: 78fd584cde ("arm64: kdump: implement machine_crash_shutdown()")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Cristian Marussi <cristian.marussi@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
At present ARMv8 event counters are limited to 32-bits, though by
using the CHAIN event it's possible to combine adjacent counters to
achieve 64-bits. The perf config1:0 bit can be set to use such a
configuration.
With the introduction of ARMv8.5-PMU support, all event counters can
now be used as 64-bit counters.
Let's enable 64-bit event counters where support exists. Unless the
user sets config1:0 we will adjust the counter value such that it
overflows upon 32-bit overflow. This follows the same behaviour as
the cycle counter which has always been (and remains) 64-bits.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[Mark: fix ID field names, compare with 8.5 value]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Reading this code bordered on painful, what with all the repetition and
pointless return values. More fundamentally, dribbling the hardware
enables and disables in one bit at a time incurs needless system
register overhead for chained events and on reset. We already use
bitmask values for the KVM hooks, so consolidate all the register
accesses to match, and make a reasonable saving in both source and
object code.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The function __cpu_up() is invoked to bring up the target CPU through
the backend, PSCI for example. The nested if statements won't be needed
if we bail out early on the following two conditions where the status
won't be checked. The code looks simplified in that case.
* Error returned from the backend (e.g. PSCI)
* The target CPU has been marked as onlined
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
remove redundant blank for '=' operator, it may be more elegant.
Signed-off-by: hankecai <hankecai@vivo.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
add blank after 'if' for armv8_deprecated_init()
to make it comply with kernel coding style.
Signed-off-by: Zheng Wei <wei.zheng@vivo.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since normal execution of any non-branch instruction resets the
PSTATE BTYPE field to 0, so do the same thing when emulating a
trapped instruction.
Branches don't trap directly, so we should never need to assign a
non-zero value to BTYPE here.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Hoist the IT state handling code earlier in traps.c, to avoid
accumulating forward declarations.
No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Skipping of an instruction on AArch32 works a bit differently from
AArch64, mainly due to the different CPSR/PSTATE semantics.
Currently arm64_skip_faulting_instruction() is only suitable for
AArch64, and arm64_compat_skip_faulting_instruction() handles the IT
state machine but is local to traps.c.
Since manual instruction skipping implies a trap, it's a relatively
slow path.
So, make arm64_skip_faulting_instruction() handle both compat and
native, and get rid of the arm64_compat_skip_faulting_instruction()
special case.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The current code to print PSTATE symbolically when generating
backtraces etc., does not include the BYTPE field used by Branch
Target Identification.
So, decode BYTPE and print it too.
In the interests of human-readability, print the classes of BTI
matched. The symbolic notation, BYTPE (PSTATE[11:10]) and
permitted classes of subsequent instruction are:
-- (BTYPE=0b00): any insn
jc (BTYPE=0b01): BTI jc, BTI j, BTI c, PACIxSP
-c (BYTPE=0b10): BTI jc, BTI c, PACIxSP
j- (BTYPE=0b11): BTI jc, BTI j
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For BTI protection to be as comprehensive as possible, it is
desirable to have BTI enabled from process startup. If this is not
done, the process must use mprotect() to enable BTI for each of its
executable mappings, but this is painful to do in the libc startup
code. It's simpler and more sound to have the kernel do it
instead.
To this end, detect BTI support in the executable (or ELF
interpreter, as appropriate), via the
NT_GNU_PROGRAM_PROPERTY_TYPE_0 note, and tweak the initial prot
flags for the process' executable pages to include PROT_BTI as
appropriate.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds the bare minimum required to expose the ARMv8.5
Branch Target Identification feature to userspace.
By itself, this does _not_ automatically enable BTI for any initial
executable pages mapped by execve(). This will come later, but for
now it should be possible to enable BTI manually on those pages by
using mprotect() from within the target process.
Other arches already using the generic mman.h are already using
0x10 for arch-specific prot flags, so we use that for PROT_BTI
here.
For consistency, signal handler entry points in BTI guarded pages
are required to be annotated as such, just like any other function.
This blocks a relatively minor attack vector, but comforming
userspace will have the annotations anyway, so we may as well
enforce them.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, the EL0 SP alignment handler masks IRQs unnecessarily. It
does so due to historic code sharing of the EL0 SP and PC alignment
handlers, and branch predictor hardening applicable to the EL0 SP
handler.
We began masking IRQs in the EL0 SP alignment handler in commit:
5dfc6ed277 ("arm64: entry: Apply BP hardening for high-priority synchronous exception")
... as this shared code with the EL0 PC alignment handler, and branch
predictor hardening made it necessary to disable IRQs for early parts of
the EL0 PC alignment handler. It was not necessary to mask IRQs during
EL0 SP alignment exceptions, but it was not considered harmful to do so.
This masking was carried forward into C code in commit:
582f95835a ("arm64: entry: convert el0_sync to C")
... where the SP/PC cases were split into separate handlers, and the
masking duplicated.
Subsequently the EL0 PC alignment handler was refactored to perform
branch predictor hardening before unmasking IRQs, in commit:
bfe298745a ("arm64: entry-common: don't touch daif before bp-hardening")
... but the redundant masking of IRQs was not removed from the EL0 SP
alignment handler.
Let's do so now, and make it interruptible as with most other
synchronous exception handlers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
When building allnoconfig:
arch/arm64/kernel/cpu_errata.c:174:13: warning: unused function
'call_smc_arch_workaround_1' [-Wunused-function]
static void call_smc_arch_workaround_1(void)
^
1 warning generated.
Follow arch/arm and mark this function as __maybe_unused.
Fixes: 4db61fef16 ("arm64: kvm: Modernize __smccc_workaround_1_smc_start annotations")
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Missing argument of another SYM_INNER_LABEL() breaks build for
CONFIG_FUNCTION_GRAPH_TRACER=y.
Fixes: e2d591d29d ("arm64: entry-ftrace.S: Convert to modern annotations for assembly functions")
Signed-off-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Brown <broonie@kernel.org>
efi-entry.o is built on demand for efi-entry.stub.o, so you do not have
to repeat $(CONFIG_EFI) here. Adding it to 'targets' is enough.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions. Use these for the compat VDSO,
allowing us to drop the custom ARM_ENTRY() and ARM_ENDPROC() macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions. Convert the assembly function in the
arm64 VDSO to the new macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions.
The SDEI entry points are currently annotated as normal functions but
are called from non-kernel contexts with non-standard calling convention
and should therefore be annotated as such so do so.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: James Morse <james.Morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC with separate annotations for standard C callable functions,
data and code with different calling conventions.
Using these for __smccc_workaround_1_smc is more involved than for most
symbols as this symbol is annotated quite unusually, rather than just have
the explicit symbol we define _start and _end symbols which we then use to
compute the length. This does not play at all nicely with the new style
macros. Instead define a constant for the size of the function and use that
in both the C code and for .org based size checks in the assembly code.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
We have recently introduced new macros for annotating assembly symbols
for things that aren't C functions, SYM_CODE_START() and SYM_CODE_END(),
in an effort to clarify and simplify our annotations of assembly files.
Using these for __bp_harden_hyp_vecs is more involved than for most symbols
as this symbol is annotated quite unusually as rather than just have the
explicit symbol we define _start and _end symbols which we then use to
compute the length. This does not play at all nicely with the new style
macros. Since the size of the vectors is a known constant which won't vary
the simplest thing to do is simply to drop the separate _start and _end
symbols and just use a #define for the size.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These include specific
annotations for the start and end of data, update symbols for data to use
these.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions. Neither stext nor preserve_boot_args
is called with the usual AAPCS calling conventions and they should
therefore be annotated as code.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC and also add a new annotation for static functions which previously
had no ENTRY equivalent. Update the annotations in the core kernel code to
the new macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions.
return_to_handler does entertaining things with LR so doesn't follow the
usual C conventions and should therefore be annotated as code rather than
a function.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions.
The patchable function entry versions of ftrace_*_caller don't follow the
usual AAPCS rules, pushing things onto the stack which they don't clean up,
and therefore should be annotated as code rather than functions.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC and also add a new annotation for static functions which previously
had no ENTRY equivalent. Update the annotations in the core kernel code to
the new macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC with separate annotations for standard C callable functions,
data and code with different calling conventions. Update the
remaining annotations in the entry.S code to the new macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions.
ret_from_fork is not a normal C function and should therefore be
annotated as code.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions. The vector table and handlers aren't
normal C style code so should be annotated as CODE.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Frequency Invariance Engine (FIE) is providing a frequency
scaling correction factor that helps achieve more accurate
load-tracking.
So far, for arm and arm64 platforms, this scale factor has been
obtained based on the ratio between the current frequency and the
maximum supported frequency recorded by the cpufreq policy. The
setting of this scale factor is triggered from cpufreq drivers by
calling arch_set_freq_scale. The current frequency used in computation
is the frequency requested by a governor, but it may not be the
frequency that was implemented by the platform.
This correction factor can also be obtained using a core counter and a
constant counter to get information on the performance (frequency based
only) obtained in a period of time. This will more accurately reflect
the actual current frequency of the CPU, compared with the alternative
implementation that reflects the request of a performance level from
the OS.
Therefore, implement arch_scale_freq_tick to use activity monitors, if
present, for the computation of the frequency scale factor.
The use of AMU counters depends on:
- CONFIG_ARM64_AMU_EXTN - depents on the AMU extension being present
- CONFIG_CPU_FREQ - the current frequency obtained using counter
information is divided by the maximum frequency obtained from the
cpufreq policy.
While it is possible to have a combination of CPUs in the system with
and without support for activity monitors, the use of counters for
frequency invariance is only enabled for a CPU if all related CPUs
(CPUs in the same frequency domain) support and have enabled the core
and constant activity monitor counters. In this way, there is a clear
separation between the policies for which arch_set_freq_scale (cpufreq
based FIE) is used, and the policies for which arch_scale_freq_tick
(counter based FIE) is used to set the frequency scale factor. For
this purpose, a late_initcall_sync is registered to trigger validation
work for policies that will enable or disable the use of AMU counters
for frequency invariance. If CONFIG_CPU_FREQ is not defined, the use
of counters is enabled on all CPUs only if all possible CPUs correctly
support the necessary counters.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The activity monitors extension is an optional extension introduced
by the ARMv8.4 CPU architecture. This implements basic support for
version 1 of the activity monitors architecture, AMUv1.
This support includes:
- Extension detection on each CPU (boot, secondary, hotplugged)
- Register interface for AMU aarch64 registers
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There are no applicable literals above them.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Remi Denis-Courmont <remi.denis.courmont@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for matching the new PMUs. For now, this just wires them up
as generic PMUv3 such that people writing DTs for new SoCs can do the
right thing, and at least have architectural and raw events be usable.
We can come back and fill in event maps for sysfs and/or perf tools at
a later date.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The PMU init callbacks are already drowning in boilerplate, so before
doubling the number of supported PMU models, give it a sensible refactor
to significantly reduce the bloat, both in source and object code.
Although nobody uses non-default sysfs attributes today, there's minimal
impact to preserving the notion that maybe, some day, somebody might, so
we may as well keep up appearances.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Commit 9f9223778 ("efi/libstub/arm: Make efi_entry() an ordinary PE/COFF
entrypoint") modified the handover code written in assembler, and for
maintainability, aligned the logic with the logic used in the 32-bit ARM
version, which is to avoid cache maintenance on the remaining instructions
in the subroutine that will be executed with the MMU and caches off, and
instead, branch into the relocated copy of the kernel image.
However, this assumes that this copy is executable, and this means we
expect EFI_LOADER_DATA regions to be executable as well, which is not
a reasonable assumption to make, even if this is true for most UEFI
implementations today.
So change this back, and add a __clean_dcache_area_poc() call to cover
the remaining code in the subroutine. While at it, switch the other
call site over to __clean_dcache_area_poc() as well, and clean up the
terminology in comments to avoid using 'flush' in the context of cache
maintenance. Also, let's switch to the new style asm annotations.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20200228121408.9075-6-ardb@kernel.org
This time, the set of changes for the EFI subsystem is much larger than
usual. The main reasons are:
- Get things cleaned up before EFI support for RISC-V arrives, which will
increase the size of the validation matrix, and therefore the threshold to
making drastic changes,
- After years of defunct maintainership, the GRUB project has finally started
to consider changes from the distros regarding UEFI boot, some of which are
highly specific to the way x86 does UEFI secure boot and measured boot,
based on knowledge of both shim internals and the layout of bootparams and
the x86 setup header. Having this maintenance burden on other architectures
(which don't need shim in the first place) is hard to justify, so instead,
we are introducing a generic Linux/UEFI boot protocol.
Summary of changes:
- Boot time GDT handling changes (Arvind)
- Simplify handling of EFI properties table on arm64
- Generic EFI stub cleanups, to improve command line handling, file I/O,
memory allocation, etc.
- Introduce a generic initrd loading method based on calling back into
the firmware, instead of relying on the x86 EFI handover protocol or
device tree.
- Introduce a mixed mode boot method that does not rely on the x86 EFI
handover protocol either, and could potentially be adopted by other
architectures (if another one ever surfaces where one execution mode
is a superset of another)
- Clean up the contents of struct efi, and move out everything that
doesn't need to be stored there.
- Incorporate support for UEFI spec v2.8A changes that permit firmware
implementations to return EFI_UNSUPPORTED from UEFI runtime services at
OS runtime, and expose a mask of which ones are supported or unsupported
via a configuration table.
- Various documentation updates and minor code cleanups (Heinrich)
- Partial fix for the lack of by-VA cache maintenance in the decompressor
on 32-bit ARM. Note that these patches were deliberately put at the
beginning so they can be used as a stable branch that will be shared with
a PR containing the complete fix, which I will send to the ARM tree.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEnNKg2mrY9zMBdeK7wjcgfpV0+n0FAl5S7WYACgkQwjcgfpV0
+n1jmQgAmwV3V8pbgB4mi4P2Mv8w5Zj5feUe6uXnTR2AFv5nygLcTzdxN+TU/6lc
OmZv2zzdsAscYlhuUdI/4t4cXIjHAZI39+UBoNRuMqKbkbvXCFscZANLxvJjHjZv
FFbgUk0DXkF0BCEDuSLNavidAv4b3gZsOmHbPfwuB8xdP05LbvbS2mf+2tWVAi2z
ULfua/0o9yiwl19jSS6iQEPCvvLBeBzTLW7x5Rcm/S0JnotzB59yMaeqD7jO8JYP
5PvI4WM/l5UfVHnZp2k1R76AOjReALw8dQgqAsT79Q7+EH3sNNuIjU6omdy+DFf4
tnpwYfeLOaZ1SztNNfU87Hsgnn2CGw==
=pDE3
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core
Pull EFI updates for v5.7 from Ard Biesheuvel:
This time, the set of changes for the EFI subsystem is much larger than
usual. The main reasons are:
- Get things cleaned up before EFI support for RISC-V arrives, which will
increase the size of the validation matrix, and therefore the threshold to
making drastic changes,
- After years of defunct maintainership, the GRUB project has finally started
to consider changes from the distros regarding UEFI boot, some of which are
highly specific to the way x86 does UEFI secure boot and measured boot,
based on knowledge of both shim internals and the layout of bootparams and
the x86 setup header. Having this maintenance burden on other architectures
(which don't need shim in the first place) is hard to justify, so instead,
we are introducing a generic Linux/UEFI boot protocol.
Summary of changes:
- Boot time GDT handling changes (Arvind)
- Simplify handling of EFI properties table on arm64
- Generic EFI stub cleanups, to improve command line handling, file I/O,
memory allocation, etc.
- Introduce a generic initrd loading method based on calling back into
the firmware, instead of relying on the x86 EFI handover protocol or
device tree.
- Introduce a mixed mode boot method that does not rely on the x86 EFI
handover protocol either, and could potentially be adopted by other
architectures (if another one ever surfaces where one execution mode
is a superset of another)
- Clean up the contents of struct efi, and move out everything that
doesn't need to be stored there.
- Incorporate support for UEFI spec v2.8A changes that permit firmware
implementations to return EFI_UNSUPPORTED from UEFI runtime services at
OS runtime, and expose a mask of which ones are supported or unsupported
via a configuration table.
- Various documentation updates and minor code cleanups (Heinrich)
- Partial fix for the lack of by-VA cache maintenance in the decompressor
on 32-bit ARM. Note that these patches were deliberately put at the
beginning so they can be used as a stable branch that will be shared with
a PR containing the complete fix, which I will send to the ARM tree.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we have added new ways to load the initrd or the mixed mode
kernel, we will also need a way to tell the loader about this. Add
symbolic constants for the PE/COFF major/minor version numbers (which
fortunately have always been 0x0 for all architectures), so that we
can bump them later to document the capabilities of the stub.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We currently parse the command non-destructively, to avoid having to
allocate memory for a copy before passing it to the standard parsing
routines that are used by the core kernel, and which modify the input
to delineate the parsed tokens with NUL characters.
Instead, we call strstr() and strncmp() to go over the input multiple
times, and match prefixes rather than tokens, which implies that we
would match, e.g., 'nokaslrfoo' in the stub and disable KASLR, while
the kernel would disregard the option and run with KASLR enabled.
In order to avoid having to reason about whether and how this behavior
may be abused, let's clean up the parsing routines, and rebuild them
on top of the existing helpers.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Expose efi_entry() as the PE/COFF entrypoint directly, instead of
jumping into a wrapper that fiddles with stack buffers and other
stuff that the compiler is much better at. The only reason this
code exists is to obtain a pointer to the base of the image, but
we can get the same value from the loaded_image protocol, which
we already need for other reasons anyway.
Update the return type as well, to make it consistent with what
is required for a PE/COFF executable entrypoint.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The arm64 time code is not a clock provider, and just needs to call
of_clk_init().
Hence it can include <linux/of_clk.h> instead of <linux/clk-provider.h>.
Reviewed-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Will Deacon <will@kernel.org>
The entire asm/archrandom.h header is generically included via
linux/archrandom.h only when CONFIG_ARCH_RANDOM is already set, so the
stub definitions of __arm64_rndr() and __early_cpu_has_rndr() are only
visible to KASLR if it explicitly includes the arch-internal header.
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When all CPUs in the system implement the SSBS extension, the SSBS field
in PSTATE is the definitive indication of the mitigation state. Further,
when the CPUs implement the SSBS manipulation instructions (advertised
to userspace via an HWCAP), EL0 can toggle the SSBS field directly and
so we cannot rely on any shadow state such as TIF_SSBD at all.
Avoid forcing the SSBS field in context-switch on such a system, and
simply rely on the PSTATE register instead.
Cc: <stable@vger.kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Srinivas Ramana <sramana@codeaurora.org>
Fixes: cbdf8a189a ("arm64: Force SSBS on context switch")
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Use shared sysctl variables for zero and one constants, as in
commit eec4844fae ("proc/sysctl: add shared variables for range check")
Fixes: 63f0c60379 ("arm64: Introduce prctl() options to control the tagged user addresses ABI")
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Will Deacon <will@kernel.org>
In old days, the "host-progs" syntax was used for specifying host
programs. It was renamed to the current "hostprogs-y" in 2004.
It is typically useful in scripts/Makefile because it allows Kbuild to
selectively compile host programs based on the kernel configuration.
This commit renames like follows:
always -> always-y
hostprogs-y -> hostprogs
So, scripts/Makefile will look like this:
always-$(CONFIG_BUILD_BIN2C) += ...
always-$(CONFIG_KALLSYMS) += ...
...
hostprogs := $(always-y) $(always-m)
I think this makes more sense because a host program is always a host
program, irrespective of the kernel configuration. We want to specify
which ones to compile by CONFIG options, so always-y will be handier.
The "always", "hostprogs-y", "hostprogs-m" will be kept for backward
compatibility for a while.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Here are the big set of tty and serial driver updates for 5.6-rc1
Included in here are:
- dummy_con cleanups (touches lots of arch code)
- sysrq logic cleanups (touches lots of serial drivers)
- samsung driver fixes (wasn't really being built)
- conmakeshash move to tty subdir out of scripts
- lots of small tty/serial driver updates
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXjFRBg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yn2VACgkge7vTeUNeZFc+6F4NWphAQ5tCQAoK/MMbU6
0O8ef7PjFwCU4s227UTv
=6m40
-----END PGP SIGNATURE-----
Merge tag 'tty-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver updates from Greg KH:
"Here are the big set of tty and serial driver updates for 5.6-rc1
Included in here are:
- dummy_con cleanups (touches lots of arch code)
- sysrq logic cleanups (touches lots of serial drivers)
- samsung driver fixes (wasn't really being built)
- conmakeshash move to tty subdir out of scripts
- lots of small tty/serial driver updates
All of these have been in linux-next for a while with no reported
issues"
* tag 'tty-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (140 commits)
tty: n_hdlc: Use flexible-array member and struct_size() helper
tty: baudrate: SPARC supports few more baud rates
tty: baudrate: Synchronise baud_table[] and baud_bits[]
tty: serial: meson_uart: Add support for kernel debugger
serial: imx: fix a race condition in receive path
serial: 8250_bcm2835aux: Document struct bcm2835aux_data
serial: 8250_bcm2835aux: Use generic remapping code
serial: 8250_bcm2835aux: Allocate uart_8250_port on stack
serial: 8250_bcm2835aux: Suppress register_port error on -EPROBE_DEFER
serial: 8250_bcm2835aux: Suppress clk_get error on -EPROBE_DEFER
serial: 8250_bcm2835aux: Fix line mismatch on driver unbind
serial_core: Remove unused member in uart_port
vt: Correct comment documenting do_take_over_console()
vt: Delete comment referencing non-existent unbind_con_driver()
arch/xtensa/setup: Drop dummy_con initialization
arch/x86/setup: Drop dummy_con initialization
arch/unicore32/setup: Drop dummy_con initialization
arch/sparc/setup: Drop dummy_con initialization
arch/sh/setup: Drop dummy_con initialization
arch/s390/setup: Drop dummy_con initialization
...
Pull scheduler updates from Ingo Molnar:
"These were the main changes in this cycle:
- More -rt motivated separation of CONFIG_PREEMPT and
CONFIG_PREEMPTION.
- Add more low level scheduling topology sanity checks and warnings
to filter out nonsensical topologies that break scheduling.
- Extend uclamp constraints to influence wakeup CPU placement
- Make the RT scheduler more aware of asymmetric topologies and CPU
capacities, via uclamp metrics, if CONFIG_UCLAMP_TASK=y
- Make idle CPU selection more consistent
- Various fixes, smaller cleanups, updates and enhancements - please
see the git log for details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
sched/fair: Define sched_idle_cpu() only for SMP configurations
sched/topology: Assert non-NUMA topology masks don't (partially) overlap
idle: fix spelling mistake "iterrupts" -> "interrupts"
sched/fair: Remove redundant call to cpufreq_update_util()
sched/psi: create /proc/pressure and /proc/pressure/{io|memory|cpu} only when psi enabled
sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAP
sched/fair: calculate delta runnable load only when it's needed
sched/cputime: move rq parameter in irqtime_account_process_tick
stop_machine: Make stop_cpus() static
sched/debug: Reset watchdog on all CPUs while processing sysrq-t
sched/core: Fix size of rq::uclamp initialization
sched/uclamp: Fix a bug in propagating uclamp value in new cgroups
sched/fair: Load balance aggressively for SCHED_IDLE CPUs
sched/fair : Improve update_sd_pick_busiest for spare capacity case
watchdog: Remove soft_lockup_hrtimer_cnt and related code
sched/rt: Make RT capacity-aware
sched/fair: Make EAS wakeup placement consider uclamp restrictions
sched/fair: Make task_fits_capacity() consider uclamp restrictions
sched/uclamp: Rename uclamp_util_with() into uclamp_rq_util_with()
sched/uclamp: Make uclamp util helpers use and return UL values
...
- New architecture features
* Support for Armv8.5 E0PD, which benefits KASLR in the same way as
KPTI but without the overhead. This allows KPTI to be disabled on
CPUs that are not affected by Meltdown, even is KASLR is enabled.
* Initial support for the Armv8.5 RNG instructions, which claim to
provide access to a high bandwidth, cryptographically secure hardware
random number generator. As well as exposing these to userspace, we
also use them as part of the KASLR seed and to seed the crng once
all CPUs have come online.
* Advertise a bunch of new instructions to userspace, including support
for Data Gathering Hint, Matrix Multiply and 16-bit floating point.
- Kexec
* Cleanups in preparation for relocating with the MMU enabled
* Support for loading crash dump kernels with kexec_file_load()
- Perf and PMU drivers
* Cleanups and non-critical fixes for a couple of system PMU drivers
- FPU-less (aka broken) CPU support
* Considerable fixes to support CPUs without the FP/SIMD extensions,
including their presence in heterogeneous systems. Good luck finding
a 64-bit userspace that handles this.
- Modern assembly function annotations
* Start migrating our use of ENTRY() and ENDPROC() over to the
new-fangled SYM_{CODE,FUNC}_{START,END} macros, which are intended to
aid debuggers
- Kbuild
* Cleanup detection of LSE support in the assembler by introducing
'as-instr'
* Remove compressed Image files when building clean targets
- IP checksumming
* Implement optimised IPv4 checksumming routine when hardware offload
is not in use. An IPv6 version is in the works, pending testing.
- Hardware errata
* Work around Cortex-A55 erratum #1530923
- Shadow call stack
* Work around some issues with Clang's integrated assembler not liking
our perfectly reasonable assembly code
* Avoid allocating the X18 register, so that it can be used to hold the
shadow call stack pointer in future
- ACPI
* Fix ID count checking in IORT code. This may regress broken firmware
that happened to work with the old implementation, in which case we'll
have to revert it and try something else
* Fix DAIF corruption on return from GHES handler with pseudo-NMIs
- Miscellaneous
* Whitelist some CPUs that are unaffected by Spectre-v2
* Reduce frequency of ASID rollover when KPTI is compiled in but
inactive
* Reserve a couple of arch-specific PROT flags that are already used by
Sparc and PowerPC and are planned for later use with BTI on arm64
* Preparatory cleanup of our entry assembly code in preparation for
moving more of it into C later on
* Refactoring and cleanup
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl4oY+IQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNNfRB/4p3vax0hqaOnLRvmJPRXF31B8oPlivnr2u
6HCA9LkdU5IlrgaTNOJ/sQEqJAPOPCU7v49Ol0iYw0iKL1suUE7Ikui5VB6Uybqt
YbfF5UNzfXAMs2A86TF/hzqhxw+W+lpnZX8NVTuQeAODfHEGUB1HhTLfRi9INsER
wKEAuoZyuSUibxTFvji+DAq7nVRniXX7CM7tE385pxDisCMuu/7E5wOl+3EZYXWz
DTGzTbHXuVFL+UFCANFEUlAtmr3dQvPFIqAwVl/CxjRJjJ7a+/G3cYLsHFPrQCjj
qYX4kfhAeeBtqmHL7YFNWFwFs5WaT5UcQquFO665/+uCTWSJpORY
=AIh/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The changes are a real mixed bag this time around.
The only scary looking one from the diffstat is the uapi change to
asm-generic/mman-common.h, but this has been acked by Arnd and is
actually just adding a pair of comments in an attempt to prevent
allocation of some PROT values which tend to get used for
arch-specific purposes. We'll be using them for Branch Target
Identification (a CFI-like hardening feature), which is currently
under review on the mailing list.
New architecture features:
- Support for Armv8.5 E0PD, which benefits KASLR in the same way as
KPTI but without the overhead. This allows KPTI to be disabled on
CPUs that are not affected by Meltdown, even is KASLR is enabled.
- Initial support for the Armv8.5 RNG instructions, which claim to
provide access to a high bandwidth, cryptographically secure
hardware random number generator. As well as exposing these to
userspace, we also use them as part of the KASLR seed and to seed
the crng once all CPUs have come online.
- Advertise a bunch of new instructions to userspace, including
support for Data Gathering Hint, Matrix Multiply and 16-bit
floating point.
Kexec:
- Cleanups in preparation for relocating with the MMU enabled
- Support for loading crash dump kernels with kexec_file_load()
Perf and PMU drivers:
- Cleanups and non-critical fixes for a couple of system PMU drivers
FPU-less (aka broken) CPU support:
- Considerable fixes to support CPUs without the FP/SIMD extensions,
including their presence in heterogeneous systems. Good luck
finding a 64-bit userspace that handles this.
Modern assembly function annotations:
- Start migrating our use of ENTRY() and ENDPROC() over to the
new-fangled SYM_{CODE,FUNC}_{START,END} macros, which are intended
to aid debuggers
Kbuild:
- Cleanup detection of LSE support in the assembler by introducing
'as-instr'
- Remove compressed Image files when building clean targets
IP checksumming:
- Implement optimised IPv4 checksumming routine when hardware offload
is not in use. An IPv6 version is in the works, pending testing.
Hardware errata:
- Work around Cortex-A55 erratum #1530923
Shadow call stack:
- Work around some issues with Clang's integrated assembler not
liking our perfectly reasonable assembly code
- Avoid allocating the X18 register, so that it can be used to hold
the shadow call stack pointer in future
ACPI:
- Fix ID count checking in IORT code. This may regress broken
firmware that happened to work with the old implementation, in
which case we'll have to revert it and try something else
- Fix DAIF corruption on return from GHES handler with pseudo-NMIs
Miscellaneous:
- Whitelist some CPUs that are unaffected by Spectre-v2
- Reduce frequency of ASID rollover when KPTI is compiled in but
inactive
- Reserve a couple of arch-specific PROT flags that are already used
by Sparc and PowerPC and are planned for later use with BTI on
arm64
- Preparatory cleanup of our entry assembly code in preparation for
moving more of it into C later on
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (73 commits)
arm64: acpi: fix DAIF manipulation with pNMI
arm64: kconfig: Fix alignment of E0PD help text
arm64: Use v8.5-RNG entropy for KASLR seed
arm64: Implement archrandom.h for ARMv8.5-RNG
arm64: kbuild: remove compressed images on 'make ARCH=arm64 (dist)clean'
arm64: entry: Avoid empty alternatives entries
arm64: Kconfig: select HAVE_FUTEX_CMPXCHG
arm64: csum: Fix pathological zero-length calls
arm64: entry: cleanup sp_el0 manipulation
arm64: entry: cleanup el0 svc handler naming
arm64: entry: mark all entry code as notrace
arm64: assembler: remove smp_dmb macro
arm64: assembler: remove inherit_daif macro
ACPI/IORT: Fix 'Number of IDs' handling in iort_id_map()
mm: Reserve asm-generic prot flags 0x10 and 0x20 for arch use
arm64: Use macros instead of hard-coded constants for MAIR_EL1
arm64: Add KRYO{3,4}XX CPU cores to spectre-v2 safe list
arm64: kernel: avoid x18 in __cpu_soft_restart
arm64: kvm: stop treating register x18 as caller save
arm64/lib: copy_page: avoid x18 register in assembler code
...
Since commit:
d44f1b8dd7 ("arm64: KVM/mm: Move SEA handling behind a single 'claim' interface")
... the top-level APEI SEA handler has the shape:
1. current_flags = arch_local_save_flags()
2. local_daif_restore(DAIF_ERRCTX)
3. <GHES handler>
4. local_daif_restore(current_flags)
However, since commit:
4a503217ce ("arm64: irqflags: Use ICC_PMR_EL1 for interrupt masking")
... when pseudo-NMIs (pNMIs) are in use, arch_local_save_flags() will save
the PMR value rather than the DAIF flags.
The combination of these two commits means that the APEI SEA handler will
erroneously attempt to restore the PMR value into DAIF. Fix this by
factoring local_daif_save_flags() out of local_daif_save(), so that we
can consistently save DAIF in step #1, regardless of whether pNMIs are in
use.
Both commits were introduced concurrently in v5.0.
Cc: <stable@vger.kernel.org>
Fixes: 4a503217ce ("arm64: irqflags: Use ICC_PMR_EL1 for interrupt masking")
Fixes: d44f1b8dd7 ("arm64: KVM/mm: Move SEA handling behind a single 'claim' interface")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
When seeding KALSR on a system where we have architecture level random
number generation make use of that entropy, mixing it in with the seed
passed by the bootloader. Since this is run very early in init before
feature detection is complete we open code rather than use archrandom.h.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Expose the ID_AA64ISAR0.RNDR field to userspace, as the RNG system
registers are always available at EL0.
Implement arch_get_random_seed_long using RNDR. Given that the
TRNG is likely to be a shared resource between cores, and VMs,
do not explicitly force re-seeding with RNDRRS. In order to avoid
code complexity and potential issues with hetrogenous systems only
provide values after cpufeature has finalized the system capabilities.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
[Modified to only function after cpufeature has finalized the system
capabilities and move all the code into the header -- broonie]
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
[will: Advertise HWCAP via /proc/cpuinfo]
Signed-off-by: Will Deacon <will@kernel.org>
kernel_ventry will create alternative entries to potentially replace
0 instructions with 0 instructions for EL1 vectors. While this does not
cause an issue, it pointlessly takes up some bytes in the alternatives
section.
Do not generate such entries.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Julien Thierry <jthierry@redhat.com>
Signed-off-by: Will Deacon <will@kernel.org>
The kernel stashes the current task struct in sp_el0 so that this can be
acquired consistently/cheaply when required. When we take an exception
from EL0 we have to:
1) stash the original sp_el0 value
2) find the current task
3) update sp_el0 with the current task pointer
Currently steps #1 and #2 occur in one place, and step #3 a while later.
As the value of sp_el0 is immaterial between these points, let's move
them together to make the code clearer and minimize ifdeffery. This
necessitates moving the comment for MDSCR_EL1.SS.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
For most of the exception entry code, <foo>_handler() is the first C
function called from the entry assembly in entry-common.c, and external
functions handling the bulk of the logic are called do_<foo>().
For consistency, apply this scheme to el0_svc_handler and
el0_svc_compat_handler, renaming them to do_el0_svc and
do_el0_svc_compat respectively.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Almost all functions in entry-common.c are marked notrace, with
el1_undef and el1_inv being the only exceptions. We appear to have done
this on the assumption that there were no exception registers that we
needed to snapshot, and thus it was safe to run trace code that might
result in further exceptions and clobber those registers.
However, until we inherit the DAIF flags, our irq flag tracing is stale,
and this discrepancy could set off warnings in some configurations. For
example if CONFIG_DEBUG_LOCKDEP is selected and a trace function calls
into any flag-checking locking routines. Given we don't expect to
trigger el1_undef or el1_inv unless something is already wrong, any
irqflag warnigns are liable to mask the information we'd actually care
about.
Let's keep things simple and mark el1_undef and el1_inv as notrace.
Developers can trace do_undefinstr and bad_mode if they really want to
monitor these cases.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
The "silver" KRYO3XX and KRYO4XX CPU cores are not affected by Spectre
variant 2. Add them to spectre_v2 safe list to correct the spurious
ARM_SMCCC_ARCH_WORKAROUND_1 warning and vulnerability status reported
under sysfs.
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
[will: tweaked commit message to remove stale mention of "gold" cores]
Signed-off-by: Will Deacon <will@kernel.org>
The code in __cpu_soft_restart() uses x18 as an arbitrary temp register,
which will shortly be disallowed. So use x8 instead.
Link: https://patchwork.kernel.org/patch/9836877/
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Sami: updated commit message]
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Will Deacon <will@kernel.org>
Cortex-A55 erratum 1530923 allows TLB entries to be allocated as a
result of a speculative AT instruction. This may happen in the middle of
a guest world switch while the relevant VMSA configuration is in an
inconsistent state, leading to erroneous content being allocated into
TLBs.
The same workaround as is used for Cortex-A76 erratum 1165522
(WORKAROUND_SPECULATIVE_AT_VHE) can be used here. Note that this
mandates the use of VHE on affected parts.
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
To match SPECULATIVE_AT_VHE let's also have a generic name for the NVHE
variant.
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Cortex-A55 is affected by a similar erratum, so rename the existing
workaround for errarum 1165522 so it can be used for both errata.
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Rather than open-code the extraction of the E0PD field from the MMFR2
register, we can use the cpuid_feature_extract_unsigned_field() helper
instead.
Acked-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Now that the decision to use non-global mappings is stored in a variable,
the check to avoid enabling them for the terminally broken ThunderX1
platform can be simplified so that it is only keyed off the MIDR value.
Acked-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Refactor the code which checks to see if we need to use non-global
mappings to use a variable instead of checking with the CPU capabilities
each time, doing the initial check for KPTI early in boot before we
start allocating memory so we still avoid transitioning to non-global
mappings in common cases.
Since this variable always matches our decision about non-global
mappings this means we can also combine arm64_kernel_use_ng_mappings()
and arm64_unmap_kernel_at_el0() into a single function, the variable
simply stores the result and the decision code is elsewhere. We could
just have the users check the variable directly but having a function
makes it clear that these uses are read-only.
The result is that we simplify the code a bit and reduces the amount of
code executed at runtime.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In preparation for integrating E0PD support with KASLR factor out the
checks for interaction between KASLR and KPTI done in boot context into
a new function kaslr_requires_kpti(), in the process clarifying the
distinction between what we do in boot context and what we do at
runtime.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Kernel Page Table Isolation (KPTI) is used to mitigate some speculation
based security issues by ensuring that the kernel is not mapped when
userspace is running but this approach is expensive and is incompatible
with SPE. E0PD, introduced in the ARMv8.5 extensions, provides an
alternative to this which ensures that accesses from userspace to the
kernel's half of the memory map to always fault with constant time,
preventing timing attacks without requiring constant unmapping and
remapping or preventing legitimate accesses.
Currently this feature will only be enabled if all CPUs in the system
support E0PD, if some CPUs do not support the feature at boot time then
the feature will not be enabled and in the unlikely event that a late
CPU is the first CPU to lack the feature then we will reject that CPU.
This initial patch does not yet integrate with KPTI, this will be dealt
with in followup patches. Ideally we could ensure that by default we
don't use KPTI on CPUs where E0PD is present.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: Fixed typo in Kconfig text]
Signed-off-by: Will Deacon <will@kernel.org>
As the Kconfig syntax gained support for $(as-instr) tests, move the LSE
gas support detection from Makefile to the main arm64 Kconfig and remove
the additional CONFIG_AS_LSE definition and check.
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
This adds basic building blocks required for ID_ISAR6 CPU register which
identifies support for various instruction implementation on AArch32 state.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-kernel@vger.kernel.org
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
[will: Ensure SPECRES is treated the same as on A64]
Signed-off-by: Will Deacon <will@kernel.org>
Export the features introduced as part of ARMv8.6 exposed in the
ID_AA64ISAR1_EL1 and ID_AA64ZFR0_EL1 registers. This introduces the
Matrix features (ARMv8.2-I8MM, ARMv8.2-F64MM and ARMv8.2-F32MM) along
with BFloat16 (Armv8.2-BF16), speculation invalidation (SPECRES) and
Data Gathering Hint (ARMv8.0-DGH).
Signed-off-by: Julien Grall <julien.grall@arm.com>
[Added other features in those registers]
Signed-off-by: Steven Price <steven.price@arm.com>
[will: Don't advertise SPECRES to userspace]
Signed-off-by: Will Deacon <will@kernel.org>
We detect the absence of FP/SIMD after an incapable CPU is brought up,
and by then we have kernel threads running already with TIF_FOREIGN_FPSTATE set
which could be set for early userspace applications (e.g, modprobe triggered
from initramfs) and init. This could cause the applications to loop forever in
do_nofity_resume() as we never clear the TIF flag, once we now know that
we don't support FP.
Fix this by making sure that we clear the TIF_FOREIGN_FPSTATE flag
for tasks which may have them set, as we would have done in the normal
case, but avoiding touching the hardware state (since we don't support any).
Also to make sure we handle the cases seemlessly we categorise the
helper functions to two :
1) Helpers for common core code, which calls into take appropriate
actions without knowing the current FPSIMD state of the CPU/task.
e.g fpsimd_restore_current_state(), fpsimd_flush_task_state(),
fpsimd_save_and_flush_cpu_state().
We bail out early for these functions, taking any appropriate actions
(e.g, clearing the TIF flag) where necessary to hide the handling
from core code.
2) Helpers used when the presence of FP/SIMD is apparent.
i.e, save/restore the FP/SIMD register state, modify the CPU/task
FP/SIMD state.
e.g,
fpsimd_save(), task_fpsimd_load() - save/restore task FP/SIMD registers
fpsimd_bind_task_to_cpu() \
- Update the "state" metadata for CPU/task.
fpsimd_bind_state_to_cpu() /
fpsimd_update_current_state() - Update the fp/simd state for the current
task from memory.
These must not be called in the absence of FP/SIMD. Put in a WARNING
to make sure they are not invoked in the absence of FP/SIMD.
KVM also uses the TIF_FOREIGN_FPSTATE flag to manage the FP/SIMD state
on the CPU. However, without FP/SIMD support we trap all accesses and
inject undefined instruction. Thus we should never "load" guest state.
Add a sanity check to make sure this is valid.
Fixes: 82e0191a1a ("arm64: Support systems without FP/ASIMD")
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Make sure we try to save/restore the vfp/fpsimd context for signal
handling only when the fp/simd support is available. Otherwise, skip
the frames.
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When fp/simd is not supported on the system, fail the operations
of FP/SIMD regsets.
Fixes: 82e0191a1a ("arm64: Support systems without FP/ASIMD")
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
We set the compat_elf_hwcap bits unconditionally on arm64 to
include the VFP and NEON support. However, the FP/SIMD unit
is optional on Arm v8 and thus could be missing. We already
handle this properly in the kernel, but still advertise to
the COMPAT applications that the VFP is available. Fix this
to make sure we only advertise when we really have them.
Fixes: 82e0191a1a ("arm64: Support systems without FP/ASIMD")
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The NO_FPSIMD capability is defined with scope SYSTEM, which implies
that the "absence" of FP/SIMD on at least one CPU is detected only
after all the SMP CPUs are brought up. However, we use the status
of this capability for every context switch. So, let us change
the scope to LOCAL_CPU to allow the detection of this capability
as and when the first CPU without FP is brought up.
Also, the current type allows hotplugged CPU to be brought up without
FP/SIMD when all the current CPUs have FP/SIMD and we have the userspace
up. Fix both of these issues by changing the capability to
BOOT_RESTRICTED_LOCAL_CPU_FEATURE.
Fixes: 82e0191a1a ("arm64: Support systems without FP/ASIMD")
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
We finalize the system wide capabilities after the SMP CPUs
are booted by the kernel. This is used as a marker for deciding
various checks in the kernel. e.g, sanity check the hotplugged
CPUs for missing mandatory features.
However there is no explicit helper available for this in the
kernel. There is sys_caps_initialised, which is not exposed.
The other closest one we have is the jump_label arm64_const_caps_ready
which denotes that the capabilities are set and the capability checks
could use the individual jump_labels for fast path. This is
performed before setting the ELF Hwcaps, which must be checked
against the new CPUs. We also perform some of the other initialization
e.g, SVE setup, which is important for the use of FP/SIMD
where SVE is supported. Normally userspace doesn't get to run
before we finish this. However the in-kernel users may
potentially start using the neon mode. So, we need to
reject uses of neon mode before we are set. Instead of defining
a new marker for the completion of SVE setup, we could simply
reuse the arm64_const_caps_ready and enable it once we have
finished all the setup. Also we could expose this to the
various users as "system_capabilities_finalized()" to make
it more meaningful than "const_caps_ready".
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
con_init in tty/vt.c will now set conswitchp to dummy_con if it's unset.
Drop it from arch setup code.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20191218214506.49252-7-nivedita@alum.mit.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 582f95835a ("arm64: entry: convert el0_sync to C") caused
the ENDPROC() annotating the end of el0_sync to be placed after the code
for el0_sync_compat. This replaced the previous annotation where it was
located after all the cases that are now converted to C, including after
the currently unannotated el0_irq_compat and el0_error_compat. Move the
annotation to the end of the function and add separate annotations for
the _compat ones.
Fixes: 582f95835a (arm64: entry: convert el0_sync to C)
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Adding crash dump support to 'kexec_file' is going to extend 'struct
kimage_arch' with more 'kexec_file'-specific members. The cleanup here
then starts to get in the way, so revert it.
This reverts commit 621516789e.
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will@kernel.org>
In commit c0d8832e78 ("arm64: Ensure the instruction emulation is
ready for userspace"), armv8_deprecated_init() was promoted to
core_initcall() but the comments were left unchanged, update it now.
Spotted by some random reading of the code.
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
[will: "can guarantee" => "guarantees"]
Signed-off-by: Will Deacon <will@kernel.org>
Broadcom Brahma-B53 CPUs do not implement ID_AA64PFR0_EL1.CSV3 but are
not susceptible to Meltdown, so add all Brahma-B53 part numbers to
kpti_safe_list[].
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Will Deacon <will@kernel.org>
When the control of the selected speculation misbehavior is unsupported,
the kernel should return ENODEV according to the documentation:
https://www.kernel.org/doc/html/v4.17/userspace-api/spec_ctrl.html
Current aarch64 implementation of SSB control sometimes returns EINVAL
which is reserved for unimplemented prctl and for violations of reserved
arguments. This change makes the aarch64 implementation consistent with
the x86 implementation and with the documentation.
Signed-off-by: Anthony Steinhauser <asteinhauser@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Enabling crash dump (kdump) includes
* prepare contents of ELF header of a core dump file, /proc/vmcore,
using crash_prepare_elf64_headers(), and
* add two device tree properties, "linux,usable-memory-range" and
"linux,elfcorehdr", which represent respectively a memory range
to be used by crash dump kernel and the header's location
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-and-reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Will Deacon <will@kernel.org>
trans_pgd_create_copy() and trans_pgd_map_page() are going to be
the basis for new shared code that handles page tables for cases
which are between kernels: kexec, and hibernate.
Note: Eventually, get_safe_page() will be moved into a function pointer
passed via argument, but for now keep it as is.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
[will: Keep these functions static until kexec needs them]
Signed-off-by: Will Deacon <will@kernel.org>
There is PMD_SECT_RDONLY that is used in pud_* function which is confusing.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
create_safe_exec_page() allocates a safe page and maps it at a
specific location, also this function returns the physical address
of newly allocated page.
The destination VA, and PA are specified in arguments: dst_addr,
phys_dst_addr
However, within the function it uses "dst" which has unsigned long
type, but is actually a pointers in the current virtual space. This
is confusing to read.
Rename dst to more appropriate page (page that is created), and also
change its time to "void *"
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Usually, gotos are used to handle cleanup after exception, but in case of
create_safe_exec_page and swsusp_arch_resume there are no clean-ups. So,
simply return the errors directly.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
create_safe_exec_page() uses hibernate's allocator to create a set of page
table to map a single page that will contain the relocation code.
Remove the allocator related arguments, and use get_safe_page directly, as
it is done in other local functions in this file to simplify function
prototype.
Removing this function pointer makes it easier to refactor the code later.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Matthias Brugger <mbrugger@suse.com>
Signed-off-by: Will Deacon <will@kernel.org>
ttbr0 should be set to the beginning of pgdp, however, currently
in create_safe_exec_page it is set to pgdp after pgd_offset_raw(),
which works by accident.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Currently, dtb_mem is enabled only when CONFIG_KEXEC_FILE is
enabled. This adds ugly ifdefs to c files.
Always enabled dtb_mem, when it is not used, it is NULL.
Change the dtb_mem to phys_addr_t, as it is a physical address.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Will Deacon <will@kernel.org>
The kexec_image_info() outputs all the necessary information about the
upcoming kexec. The extra debug printfs in machine_kexec() are not
needed.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Will Deacon <will@kernel.org>
HiSilicon Taishan v110 CPUs didn't implement CSV2 field of the
ID_AA64PFR0_EL1, but spectre-v2 is mitigated by hardware, so
whitelist the MIDR in the safe list.
Signed-off-by: Wei Li <liwei391@huawei.com>
[hanjun: re-write the commit log]
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by CONFIG_PREEMPT_RT.
Both PREEMPT and PREEMPT_RT require the same functionality which today
depends on CONFIG_PREEMPT.
Switch the Kconfig dependency, entry code and preemption handling over
to use CONFIG_PREEMPTION. Add PREEMPT_RT output in show_stack().
[bigeasy: +traps.c, Kconfig]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20191015191821.11479-3-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- ZONE_DMA32 initialisation fix when memblocks fall entirely within the
first GB (used by ZONE_DMA in 5.5 for Raspberry Pi 4).
- Couple of ftrace fixes following the FTRACE_WITH_REGS patchset.
- access_ok() fix for the Tagged Address ABI when called from from a
kernel thread (asynchronous I/O): the kthread does not have the TIF
flags of the mm owner, so untag the user address unconditionally.
- KVM compute_layout() called before the alternatives code patching.
- Minor clean-ups.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl3qdr8ACgkQa9axLQDI
XvEKNA/9FWyqesV612qaFkhTFCg0f6byLP4wQf0ZqcZf74L5J6zeUCIc7Mqgdno3
jWROZNAW69gOYfwHxcBNyPVBpbAcx3k3WBBRWRJPnnJmeQk0oBLVdRziqdGKLxfw
GhhWGsndnpxDOmyBJOWxZLemZjKFqYX3dhQ9Zi6pvkZgAeFEtIESw6S/iqf42nWL
1o/LgyQ5kjR6eto1OVW9QOQ83/TlXXlbsvoNwNFGghX1yHjQ6mZ3LITbiFdrbFlT
FLLwsqlsPzDQcKagszTEHZTbXBf0RojKXWh3HKSEnmPwpacestvLJcKHTD9mtDmY
Z+rLfyiolZmXoNU9LT6uGTzVD4cRWfzz6eHSYHiufM1UztGSV+dOhIqfPuEOLEu3
2Xf8sKmQMtuICgbol6Q6ISrjXKH/UNvK2CuuuJSNmOHDlyHKvNfJtoyEhZ5rHUpT
HQy0qxDCEU7rFCP7clOD/94EGA8gYrV8j5NauY8/VsLpRCMBwoLNglI049qJydaZ
jL9dPxo+GG7kh7S8VmYwBKtPhqlDNFCzw/HmBBURFhkM1j0nCNt5dKHx+kdLNurg
nbzRvJ+W42eDze2lmVf33eOfrAy2MfcGr+VuJ5QdmL30bQENCemPrreIy+VnVVR8
ydeK3lyknJjmX4q8a5o/URsAKvk13crwimNPa0OSoYzDKmWd8SA=
=vhnZ
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- ZONE_DMA32 initialisation fix when memblocks fall entirely within the
first GB (used by ZONE_DMA in 5.5 for Raspberry Pi 4).
- Couple of ftrace fixes following the FTRACE_WITH_REGS patchset.
- access_ok() fix for the Tagged Address ABI when called from from a
kernel thread (asynchronous I/O): the kthread does not have the TIF
flags of the mm owner, so untag the user address unconditionally.
- KVM compute_layout() called before the alternatives code patching.
- Minor clean-ups.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: entry: refine comment of stack overflow check
arm64: ftrace: fix ifdeffery
arm64: KVM: Invoke compute_layout() before alternatives are applied
arm64: Validate tagged addresses in access_ok() called from kernel threads
arm64: mm: Fix column alignment for UXN in kernel_page_tables
arm64: insn: consistently handle exit text
arm64: mm: Fix initialisation of DMA zones on non-NUMA systems
Stack overflow checking can be done by testing sp & (1 << THREAD_SHIFT)
only for the stacks are aligned to (2 << THREAD_SHIFT) with size of
(1 << THREAD_SIZE), and this is the case when CONFIG_VMAP_STACK is set.
Fix the code comment to avoid confusion.
Cc: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Heyi Guo <guoheyi@huawei.com>
[catalin.marinas@arm.com: Updated comment following Mark's suggestion]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When I tweaked the ftrace entry assembly in commit:
3b23e4991f ("arm64: implement ftrace with regs")
... my ifdeffery tweaks left ftrace_graph_caller undefined for
CONFIG_DYNAMIC_FTRACE && CONFIG_FUNCTION_GRAPH_TRACER when ftrace is
based on mcount.
The kbuild test robot reported that this issue is detected at link time:
| arch/arm64/kernel/entry-ftrace.o: In function `skip_ftrace_call':
| arch/arm64/kernel/entry-ftrace.S:238: undefined reference to `ftrace_graph_caller'
| arch/arm64/kernel/entry-ftrace.S:238:(.text+0x3c): relocation truncated to fit: R_AARCH64_CONDBR19 against undefined symbol
| `ftrace_graph_caller'
| arch/arm64/kernel/entry-ftrace.S:243: undefined reference to `ftrace_graph_caller'
| arch/arm64/kernel/entry-ftrace.S:243:(.text+0x54): relocation truncated to fit: R_AARCH64_CONDBR19 against undefined symbol
| `ftrace_graph_caller'
This patch fixes the ifdeffery so that the mcount version of
ftrace_graph_caller doesn't depend on CONFIG_DYNAMIC_FTRACE. At the same
time, a redundant #else is removed from the ifdeffery for the
patchable-function-entry version of ftrace_graph_caller.
Fixes: 3b23e4991f ("arm64: implement ftrace with regs")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Torsten Duwe <duwe@lst.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
compute_layout() is invoked as part of an alternative fixup under
stop_machine(). This function invokes get_random_long() which acquires a
sleeping lock on -RT which can not be acquired in this context.
Rename compute_layout() to kvm_compute_layout() and invoke it before
stop_machine() applies the alternatives. Add a __init prefix to
kvm_compute_layout() because the caller has it, too (and so the code can be
discarded after boot).
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A kernel built with KASAN && FTRACE_WITH_REGS && !MODULES, produces a
boot-time splat in the bowels of ftrace:
| [ 0.000000] ftrace: allocating 32281 entries in 127 pages
| [ 0.000000] ------------[ cut here ]------------
| [ 0.000000] WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:2019 ftrace_bug+0x27c/0x328
| [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.4.0-rc3-00008-g7f08ae53a7e3 #13
| [ 0.000000] Hardware name: linux,dummy-virt (DT)
| [ 0.000000] pstate: 60000085 (nZCv daIf -PAN -UAO)
| [ 0.000000] pc : ftrace_bug+0x27c/0x328
| [ 0.000000] lr : ftrace_init+0x640/0x6cc
| [ 0.000000] sp : ffffa000120e7e00
| [ 0.000000] x29: ffffa000120e7e00 x28: ffff00006ac01b10
| [ 0.000000] x27: ffff00006ac898c0 x26: dfffa00000000000
| [ 0.000000] x25: ffffa000120ef290 x24: ffffa0001216df40
| [ 0.000000] x23: 000000000000018d x22: ffffa0001244c700
| [ 0.000000] x21: ffffa00011bf393c x20: ffff00006ac898c0
| [ 0.000000] x19: 00000000ffffffff x18: 0000000000001584
| [ 0.000000] x17: 0000000000001540 x16: 0000000000000007
| [ 0.000000] x15: 0000000000000000 x14: ffffa00010432770
| [ 0.000000] x13: ffff940002483519 x12: 1ffff40002483518
| [ 0.000000] x11: 1ffff40002483518 x10: ffff940002483518
| [ 0.000000] x9 : dfffa00000000000 x8 : 0000000000000001
| [ 0.000000] x7 : ffff940002483519 x6 : ffffa0001241a8c0
| [ 0.000000] x5 : ffff940002483519 x4 : ffff940002483519
| [ 0.000000] x3 : ffffa00011780870 x2 : 0000000000000001
| [ 0.000000] x1 : 1fffe0000d591318 x0 : 0000000000000000
| [ 0.000000] Call trace:
| [ 0.000000] ftrace_bug+0x27c/0x328
| [ 0.000000] ftrace_init+0x640/0x6cc
| [ 0.000000] start_kernel+0x27c/0x654
| [ 0.000000] random: get_random_bytes called from print_oops_end_marker+0x30/0x60 with crng_init=0
| [ 0.000000] ---[ end trace 0000000000000000 ]---
| [ 0.000000] ftrace faulted on writing
| [ 0.000000] [<ffffa00011bf393c>] _GLOBAL__sub_D_65535_0___tracepoint_initcall_level+0x4/0x28
| [ 0.000000] Initializing ftrace call sites
| [ 0.000000] ftrace record flags: 0
| [ 0.000000] (0)
| [ 0.000000] expected tramp: ffffa000100b3344
This is due to an unfortunate combination of several factors.
Building with KASAN results in the compiler generating anonymous
functions to register/unregister global variables against the shadow
memory. These functions are placed in .text.startup/.text.exit, and
given mangled names like _GLOBAL__sub_{I,D}_65535_0_$OTHER_SYMBOL. The
kernel linker script places these in .init.text and .exit.text
respectively, which are both discarded at runtime as part of initmem.
Building with FTRACE_WITH_REGS uses -fpatchable-function-entry=2, which
also instruments KASAN's anonymous functions. When these are discarded
with the rest of initmem, ftrace removes dangling references to these
call sites.
Building without MODULES implicitly disables STRICT_MODULE_RWX, and
causes arm64's patch_map() function to treat any !core_kernel_text()
symbol as something that can be modified in-place. As core_kernel_text()
is only true for .text and .init.text, with the latter depending on
system_state < SYSTEM_RUNNING, we'll treat .exit.text as something that
can be patched in-place. However, .exit.text is mapped read-only.
Hence in this configuration the ftrace init code blows up while trying
to patch one of the functions generated by KASAN.
We could try to filter out the call sites in .exit.text rather than
initializing them, but this would be inconsistent with how we handle
.init.text, and requires hooking into core bits of ftrace. The behaviour
of patch_map() is also inconsistent today, so instead let's clean that
up and have it consistently handle .exit.text.
This patch teaches patch_map() to handle .exit.text at init time,
preventing the boot-time splat above. The flow of patch_map() is
reworked to make the logic clearer and minimize redundant
conditionality.
Fixes: 3b23e4991f ("arm64: implement ftrace with regs")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Torsten Duwe <duwe@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- Cross-arch changes to move the linker sections for NOTES and
EXCEPTION_TABLE into the RO_DATA area, where they belong on most
architectures. (Kees Cook)
- Switch the x86 linker fill byte from x90 (NOP) to 0xcc (INT3), to
trap jumps into the middle of those padding areas instead of
sliding execution. (Kees Cook)
- A thorough cleanup of symbol definitions within x86 assembler code.
The rather randomly named macros got streamlined around a
(hopefully) straightforward naming scheme:
SYM_START(name, linkage, align...)
SYM_END(name, sym_type)
SYM_FUNC_START(name)
SYM_FUNC_END(name)
SYM_CODE_START(name)
SYM_CODE_END(name)
SYM_DATA_START(name)
SYM_DATA_END(name)
etc - with about three times of these basic primitives with some
label, local symbol or attribute variant, expressed via postfixes.
No change in functionality intended. (Jiri Slaby)
- Misc other changes, cleanups and smaller fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
x86/entry/64: Remove pointless jump in paranoid_exit
x86/entry/32: Remove unused resume_userspace label
x86/build/vdso: Remove meaningless CFLAGS_REMOVE_*.o
m68k: Convert missed RODATA to RO_DATA
x86/vmlinux: Use INT3 instead of NOP for linker fill bytes
x86/mm: Report actual image regions in /proc/iomem
x86/mm: Report which part of kernel image is freed
x86/mm: Remove redundant address-of operators on addresses
xtensa: Move EXCEPTION_TABLE to RO_DATA segment
powerpc: Move EXCEPTION_TABLE to RO_DATA segment
parisc: Move EXCEPTION_TABLE to RO_DATA segment
microblaze: Move EXCEPTION_TABLE to RO_DATA segment
ia64: Move EXCEPTION_TABLE to RO_DATA segment
h8300: Move EXCEPTION_TABLE to RO_DATA segment
c6x: Move EXCEPTION_TABLE to RO_DATA segment
arm64: Move EXCEPTION_TABLE to RO_DATA segment
alpha: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Actually use _etext for the end of the text segment
vmlinux.lds.h: Allow EXCEPTION_TABLE to live in RO_DATA
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAl3bpjoACgkQUqAMR0iA
lPJJDA/+IJT4YCRp2TwV2jvIs0QzvXZrzEsxgCLibLE85mYTJgoQBD3W1bH2eyjp
T/9U0Zh5PGr/84cHd4qiMxzo+5Olz930weG59NcO4RJBSr671aRYs5tJqwaQAZDR
wlwaob5S28vUmjPxKulvxv6V3FdI79ZE9xrCOCSTQvz4iCLsGOu+Dn/qtF64pImX
M/EXzPMBrByiQ8RTM4Ege8JoBqiCZPDG9GR3KPXIXQwEeQgIoeYxwRYakxSmSzz8
W8NduFCbWavg/yHhghHikMiyOZeQzAt+V9k9WjOBTle3TGJegRhvjgI7508q3tXe
jQTMGATBOPkIgFaZz7eEn/iBa3jZUIIOzDY93RYBmd26aBvwKLOma/Vkg5oGYl0u
ZK+CMe+/xXl7brQxQ6JNsQhbSTjT+746LvLJlCvPbbPK9R0HeKNhsdKpGY3ugnmz
VAnOFIAvWUHO7qx+J+EnOo5iiPpcwXZj4AjrwVrs/x5zVhzwQ+4DSU6rbNn0O1Ak
ELrBqCQkQzh5kqK93jgMHeWQ9EOUp1Lj6PJhTeVnOx2x8tCOi6iTQFFrfdUPlZ6K
2DajgrFhti4LvwVsohZlzZuKRm5EuwReLRSOn7PU5qoSm5rcouqMkdlYG/viwyhf
mTVzEfrfemrIQOqWmzPrWEXlMj2mq8oJm4JkC+jJ/+HsfK4UU8I=
=QCEy
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk
Pull printk updates from Petr Mladek:
- Allow to print symbolic error names via new %pe modifier.
- Use pr_warn() instead of the remaining pr_warning() calls. Fix
formatting of the related lines.
- Add VSPRINTF entry to MAINTAINERS.
* tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: (32 commits)
checkpatch: don't warn about new vsprintf pointer extension '%pe'
MAINTAINERS: Add VSPRINTF
tools lib api: Renaming pr_warning to pr_warn
ASoC: samsung: Use pr_warn instead of pr_warning
lib: cpu_rmap: Use pr_warn instead of pr_warning
trace: Use pr_warn instead of pr_warning
dma-debug: Use pr_warn instead of pr_warning
vgacon: Use pr_warn instead of pr_warning
fs: afs: Use pr_warn instead of pr_warning
sh/intc: Use pr_warn instead of pr_warning
scsi: Use pr_warn instead of pr_warning
platform/x86: intel_oaktrail: Use pr_warn instead of pr_warning
platform/x86: asus-laptop: Use pr_warn instead of pr_warning
platform/x86: eeepc-laptop: Use pr_warn instead of pr_warning
oprofile: Use pr_warn instead of pr_warning
of: Use pr_warn instead of pr_warning
macintosh: Use pr_warn instead of pr_warning
idsn: Use pr_warn instead of pr_warning
ide: Use pr_warn instead of pr_warning
crypto: n2: Use pr_warn instead of pr_warning
...
- Data abort report and injection
- Steal time support
- GICv4 performance improvements
- vgic ITS emulation fixes
- Simplify FWB handling
- Enable halt polling counters
- Make the emulated timer PREEMPT_RT compliant
s390:
- Small fixes and cleanups
- selftest improvements
- yield improvements
PPC:
- Add capability to tell userspace whether we can single-step the guest.
- Improve the allocation of XIVE virtual processor IDs
- Rewrite interrupt synthesis code to deliver interrupts in virtual
mode when appropriate.
- Minor cleanups and improvements.
x86:
- XSAVES support for AMD
- more accurate report of nested guest TSC to the nested hypervisor
- retpoline optimizations
- support for nested 5-level page tables
- PMU virtualization optimizations, and improved support for nested
PMU virtualization
- correct latching of INITs for nested virtualization
- IOAPIC optimization
- TSX_CTRL virtualization for more TAA happiness
- improved allocation and flushing of SEV ASIDs
- many bugfixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJd27PMAAoJEL/70l94x66DspsH+gPc6YWtKJFJH58Zj8NrNh6y
t0FwDFcvUa51+m4jaY4L5Y8+zqu1dZFnPPhFGqNWpxrjCEvE/glQJv3BiUX06Seh
aYUHNymGoYCTJOHaaGhV+NlgQaDuZOCOkIsOLAPehyFd1KojwB+FRC0xmO6aROPw
9yQgYrKuK1UUn5HwxBNrMS4+Xv+2iKv/9sTnq1G4W2qX2NZQg84LVPg1zIdkCh3D
3GOvoCBEk3ivQqjmdE7rP/InPr0XvW0b6TFhchIk8J6jEIQFHsmOUefiTvTxsIHV
OKAZwvyeYPrYHA/aDZpaBmY2aR0ydfKDUQcviNIJoF1vOktGs0hvl3VbsmG8QCg=
=OSI1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- data abort report and injection
- steal time support
- GICv4 performance improvements
- vgic ITS emulation fixes
- simplify FWB handling
- enable halt polling counters
- make the emulated timer PREEMPT_RT compliant
s390:
- small fixes and cleanups
- selftest improvements
- yield improvements
PPC:
- add capability to tell userspace whether we can single-step the
guest
- improve the allocation of XIVE virtual processor IDs
- rewrite interrupt synthesis code to deliver interrupts in virtual
mode when appropriate.
- minor cleanups and improvements.
x86:
- XSAVES support for AMD
- more accurate report of nested guest TSC to the nested hypervisor
- retpoline optimizations
- support for nested 5-level page tables
- PMU virtualization optimizations, and improved support for nested
PMU virtualization
- correct latching of INITs for nested virtualization
- IOAPIC optimization
- TSX_CTRL virtualization for more TAA happiness
- improved allocation and flushing of SEV ASIDs
- many bugfixes and cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
kvm: nVMX: Relax guest IA32_FEATURE_CONTROL constraints
KVM: x86: Grab KVM's srcu lock when setting nested state
KVM: x86: Open code shared_msr_update() in its only caller
KVM: Fix jump label out_free_* in kvm_init()
KVM: x86: Remove a spurious export of a static function
KVM: x86: create mmu/ subdirectory
KVM: nVMX: Remove unnecessary TLB flushes on L1<->L2 switches when L1 use apic-access-page
KVM: x86: remove set but not used variable 'called'
KVM: nVMX: Do not mark vmcs02->apic_access_page as dirty when unpinning
KVM: vmx: use MSR_IA32_TSX_CTRL to hard-disable TSX on guest that lack it
KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionality
KVM: x86: implement MSR_IA32_TSX_CTRL effect on CPUID
KVM: x86: do not modify masked bits of shared MSRs
KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES
KVM: PPC: Book3S HV: XIVE: Fix potential page leak on error path
KVM: PPC: Book3S HV: XIVE: Free previous EQ page when setting up a new one
KVM: nVMX: Assume TLB entries of L1 and L2 are tagged differently if L0 use EPT
KVM: x86: Unexport kvm_vcpu_reload_apic_access_page()
KVM: nVMX: add CR4_LA57 bit to nested CR4_FIXED1
KVM: nVMX: Use semi-colon instead of comma for exit-handlers initialization
...
- On ARMv8 CPUs without hardware updates of the access flag, avoid
failing cow_user_page() on PFN mappings if the pte is old. The patches
introduce an arch_faults_on_old_pte() macro, defined as false on x86.
When true, cow_user_page() makes the pte young before attempting
__copy_from_user_inatomic().
- Covert the synchronous exception handling paths in
arch/arm64/kernel/entry.S to C.
- FTRACE_WITH_REGS support for arm64.
- ZONE_DMA re-introduced on arm64 to support Raspberry Pi 4
- Several kselftest cases specific to arm64, together with a MAINTAINERS
update for these files (moved to the ARM64 PORT entry).
- Workaround for a Neoverse-N1 erratum where the CPU may fetch stale
instructions under certain conditions.
- Workaround for Cortex-A57 and A72 errata where the CPU may
speculatively execute an AT instruction and associate a VMID with the
wrong guest page tables (corrupting the TLB).
- Perf updates for arm64: additional PMU topologies on HiSilicon
platforms, support for CCN-512 interconnect, AXI ID filtering in the
IMX8 DDR PMU, support for the CCPI2 uncore PMU in ThunderX2.
- GICv3 optimisation to avoid a heavy barrier when accessing the
ICC_PMR_EL1 register.
- ELF HWCAP documentation updates and clean-up.
- SMC calling convention conduit code clean-up.
- KASLR diagnostics printed during boot
- NVIDIA Carmel CPU added to the KPTI whitelist
- Some arm64 mm clean-ups: use generic free_initrd_mem(), remove stale
macro, simplify calculation in __create_pgd_mapping(), typos.
- Kconfig clean-ups: CMDLINE_FORCE to depend on CMDLINE, choice for
endinanness to help with allmodconfig.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl3YJswACgkQa9axLQDI
XvFwYg//aTGhNLew3ADgW2TYal7LyqetRROixPBrzqHLu2A8No1+QxHMaKxpZVyf
pt25tABuLtPHql3qBzE0ltmfbLVsPj/3hULo404EJb9HLRfUnVGn7gcPkc+p4YAr
IYkYPXJbk6OlJ84vI+4vXmDEF12bWCqamC9qZ+h99qTpMjFXFO17DSJ7xQ8Xic3A
HHgCh4uA7gpTVOhLxaS6KIw+AZNYwvQxLXch2+wj6agbGX79uw9BeMhqVXdkPq8B
RTDJpOdS970WOT4cHWOkmXwsqqGRqgsgyu+bRUJ0U72+0y6MX0qSHIUnVYGmNc5q
Dtox4rryYLvkv/hbpkvjgVhv98q3J1mXt/CalChWB5dG4YwhJKN2jMiYuoAvB3WS
6dR7Dfupgai9gq1uoKgBayS2O6iFLSa4g58vt3EqUBqmM7W7viGFPdLbuVio4ycn
CNF2xZ8MZR6Wrh1JfggO7Hc11EJdSqESYfHO6V/pYB4pdpnqJLDoriYHXU7RsZrc
HvnrIvQWKMwNbqBvpNbWvK5mpBMMX2pEienA3wOqKNH7MbepVsG+npOZTVTtl9tN
FL0ePb/mKJu/2+gW8ntiqYn7EzjKprRmknOiT2FjWWo0PxgJ8lumefuhGZZbaOWt
/aTAeD7qKd/UXLKGHF/9v3q4GEYUdCFOXP94szWVPyLv+D9h8L8=
=TPL9
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Apart from the arm64-specific bits (core arch and perf, new arm64
selftests), it touches the generic cow_user_page() (reviewed by
Kirill) together with a macro for x86 to preserve the existing
behaviour on this architecture.
Summary:
- On ARMv8 CPUs without hardware updates of the access flag, avoid
failing cow_user_page() on PFN mappings if the pte is old. The
patches introduce an arch_faults_on_old_pte() macro, defined as
false on x86. When true, cow_user_page() makes the pte young before
attempting __copy_from_user_inatomic().
- Covert the synchronous exception handling paths in
arch/arm64/kernel/entry.S to C.
- FTRACE_WITH_REGS support for arm64.
- ZONE_DMA re-introduced on arm64 to support Raspberry Pi 4
- Several kselftest cases specific to arm64, together with a
MAINTAINERS update for these files (moved to the ARM64 PORT entry).
- Workaround for a Neoverse-N1 erratum where the CPU may fetch stale
instructions under certain conditions.
- Workaround for Cortex-A57 and A72 errata where the CPU may
speculatively execute an AT instruction and associate a VMID with
the wrong guest page tables (corrupting the TLB).
- Perf updates for arm64: additional PMU topologies on HiSilicon
platforms, support for CCN-512 interconnect, AXI ID filtering in
the IMX8 DDR PMU, support for the CCPI2 uncore PMU in ThunderX2.
- GICv3 optimisation to avoid a heavy barrier when accessing the
ICC_PMR_EL1 register.
- ELF HWCAP documentation updates and clean-up.
- SMC calling convention conduit code clean-up.
- KASLR diagnostics printed during boot
- NVIDIA Carmel CPU added to the KPTI whitelist
- Some arm64 mm clean-ups: use generic free_initrd_mem(), remove
stale macro, simplify calculation in __create_pgd_mapping(), typos.
- Kconfig clean-ups: CMDLINE_FORCE to depend on CMDLINE, choice for
endinanness to help with allmodconfig"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits)
arm64: Kconfig: add a choice for endianness
kselftest: arm64: fix spelling mistake "contiguos" -> "contiguous"
arm64: Kconfig: make CMDLINE_FORCE depend on CMDLINE
MAINTAINERS: Add arm64 selftests to the ARM64 PORT entry
arm64: kaslr: Check command line before looking for a seed
arm64: kaslr: Announce KASLR status on boot
kselftest: arm64: fake_sigreturn_misaligned_sp
kselftest: arm64: fake_sigreturn_bad_size
kselftest: arm64: fake_sigreturn_duplicated_fpsimd
kselftest: arm64: fake_sigreturn_missing_fpsimd
kselftest: arm64: fake_sigreturn_bad_size_for_magic0
kselftest: arm64: fake_sigreturn_bad_magic
kselftest: arm64: add helper get_current_context
kselftest: arm64: extend test_init functionalities
kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
kselftest: arm64: mangle_pstate_invalid_daif_bits
kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
kselftest: arm64: extend toplevel skeleton Makefile
drivers/perf: hisi: update the sccl_id/ccl_id for certain HiSilicon platform
arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
...
- Allow non-ISV data aborts to be reported to userspace
- Allow injection of data aborts from userspace
- Expose stolen time to guests
- GICv4 performance improvements
- vgic ITS emulation fixes
- Simplify FWB handling
- Enable halt pool counters
- Make the emulated timer PREEMPT_RT compliant
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl3VZ0EPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDwikQAJ/lQT97zEKV3dnpD/jjmEic/3QvTGljS4p+
pbwZAzyoSMc09lAK2pkaGRRc7euPnp4uLdRS4SenToVzmUQCzuxpQEEMdV/wjp4V
WLQ1WnTEAhYkm7k5MVo4uy3eD7nVWHWXgfQJvzL4EYZ5R/gd9NzBrnAc6LLV6hp9
0eLXIYrGFa1GESzF6P6sBDJhYpqVUcQlTI8I43kZH3iCC4+OsBxIkhHREZYsELhW
MZJIM9ZCskg2tvPC4UysaFiGjBYUJNJ0V+fFOrhyGzludP8i8rNRwgA60mznwvNw
V4N6/gLlkGK7nLqP+noUcU2wTBnIu389TcWWsX47CuDUzawCd8Fb9kX2zYauQSyS
ujE0uzoo/nhPFysh9OVVeLUZ6o/wotXoMp2t32t1c5h9N1hISEJvAWavMxTY6KzF
NEn9hWFjNcgBoArz9GKn9p2nBQpCDvu+2SlI4nL/qgZ7lPC4O3U1uq9myCOLj/gu
Can/u5EAwgyIBDVcEPHV+vP2GjyeERdXprGiG2VJTYlbHsdjgISTR+5Fy32KdGlP
YygeZxJtzretr3AYsWqD6Mri30FDSoYy9rUOWBpa+ZHbJPac0M+uKOqntV1OxPX9
QUkmNEdJcDr8fkcKxnEZ/MaZxFTGPp4vfhiT4A7dUkWTFq7ajvGo8IwN1d7PvWxS
LFMij1Js
=SxBH
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for Linux 5.5:
- Allow non-ISV data aborts to be reported to userspace
- Allow injection of data aborts from userspace
- Expose stolen time to guests
- GICv4 performance improvements
- vgic ITS emulation fixes
- Simplify FWB handling
- Enable halt pool counters
- Make the emulated timer PREEMPT_RT compliant
Conflicts:
include/uapi/linux/kvm.h
* for-next/elf-hwcap-docs:
: Update the arm64 ELF HWCAP documentation
docs/arm64: cpu-feature-registers: Rewrite bitfields that don't follow [e, s]
docs/arm64: cpu-feature-registers: Documents missing visible fields
docs/arm64: elf_hwcaps: Document HWCAP_SB
docs/arm64: elf_hwcaps: sort the HWCAP{, 2} documentation by ascending value
* for-next/smccc-conduit-cleanup:
: SMC calling convention conduit clean-up
firmware: arm_sdei: use common SMCCC_CONDUIT_*
firmware/psci: use common SMCCC_CONDUIT_*
arm: spectre-v2: use arm_smccc_1_1_get_conduit()
arm64: errata: use arm_smccc_1_1_get_conduit()
arm/arm64: smccc/psci: add arm_smccc_1_1_get_conduit()
* for-next/zone-dma:
: Reintroduction of ZONE_DMA for Raspberry Pi 4 support
arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
dma/direct: turn ARCH_ZONE_DMA_BITS into a variable
arm64: Make arm64_dma32_phys_limit static
arm64: mm: Fix unused variable warning in zone_sizes_init
mm: refresh ZONE_DMA and ZONE_DMA32 comments in 'enum zone_type'
arm64: use both ZONE_DMA and ZONE_DMA32
arm64: rename variables used to calculate ZONE_DMA32's size
arm64: mm: use arm64_dma_phys_limit instead of calling max_zone_dma_phys()
* for-next/relax-icc_pmr_el1-sync:
: Relax ICC_PMR_EL1 (GICv3) accesses when ICC_CTLR_EL1.PMHE is clear
arm64: Document ICC_CTLR_EL3.PMHE setting requirements
arm64: Relax ICC_PMR_EL1 accesses when ICC_CTLR_EL1.PMHE is clear
* for-next/double-page-fault:
: Avoid a double page fault in __copy_from_user_inatomic() if hw does not support auto Access Flag
mm: fix double page fault on arm64 if PTE_AF is cleared
x86/mm: implement arch_faults_on_old_pte() stub on x86
arm64: mm: implement arch_faults_on_old_pte() on arm64
arm64: cpufeature: introduce helper cpu_has_hw_af()
* for-next/misc:
: Various fixes and clean-ups
arm64: kpti: Add NVIDIA's Carmel core to the KPTI whitelist
arm64: mm: Remove MAX_USER_VA_BITS definition
arm64: mm: simplify the page end calculation in __create_pgd_mapping()
arm64: print additional fault message when executing non-exec memory
arm64: psci: Reduce the waiting time for cpu_psci_cpu_kill()
arm64: pgtable: Correct typo in comment
arm64: docs: cpu-feature-registers: Document ID_AA64PFR1_EL1
arm64: cpufeature: Fix typos in comment
arm64/mm: Poison initmem while freeing with free_reserved_area()
arm64: use generic free_initrd_mem()
arm64: simplify syscall wrapper ifdeffery
* for-next/kselftest-arm64-signal:
: arm64-specific kselftest support with signal-related test-cases
kselftest: arm64: fake_sigreturn_misaligned_sp
kselftest: arm64: fake_sigreturn_bad_size
kselftest: arm64: fake_sigreturn_duplicated_fpsimd
kselftest: arm64: fake_sigreturn_missing_fpsimd
kselftest: arm64: fake_sigreturn_bad_size_for_magic0
kselftest: arm64: fake_sigreturn_bad_magic
kselftest: arm64: add helper get_current_context
kselftest: arm64: extend test_init functionalities
kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
kselftest: arm64: mangle_pstate_invalid_daif_bits
kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
kselftest: arm64: extend toplevel skeleton Makefile
* for-next/kaslr-diagnostics:
: Provide diagnostics on boot for KASLR
arm64: kaslr: Check command line before looking for a seed
arm64: kaslr: Announce KASLR status on boot
Now that we print diagnostics at boot the reason why we do not initialise
KASLR matters. Currently we check for a seed before we check if the user
has explicitly disabled KASLR on the command line which will result in
misleading diagnostics so reverse the order of those checks. We still
parse the seed from the DT early so that if the user has both provided a
seed and disabled KASLR on the command line we still mask the seed on
the command line.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently the KASLR code is silent at boot unless it forces on KPTI in
which case a message will be printed for that. This can lead to users
incorrectly believing their system has the feature enabled when it in
fact does not, and if they notice the problem the lack of any
diagnostics makes it harder to understand the problem. Add an initcall
which prints a message showing the status of KASLR during boot to make
the status clear.
This is particularly useful in cases where we don't have a seed. It
seems to be a relatively common error for system integrators and
administrators to enable KASLR in their configuration but not provide
the seed at runtime, often due to seed provisioning breaking at some
later point after it is initially enabled and verified.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Support for additional PMU topologies on HiSilicon platforms
- Support for CCN-512 interconnect PMU
- Support for AXI ID filtering in the IMX8 DDR PMU
- Support for the CCPI2 uncore PMU in ThunderX2
- Driver cleanup to use devm_platform_ioremap_resource()
* for-next/perf:
drivers/perf: hisi: update the sccl_id/ccl_id for certain HiSilicon platform
perf/imx_ddr: Dump AXI ID filter info to userspace
docs/perf: Add AXI ID filter capabilities information
perf/imx_ddr: Add driver for DDR PMU in i.MX8MPlus
perf/imx_ddr: Add enhanced AXI ID filter support
bindings: perf: imx-ddr: Add new compatible string
docs/perf: Add explanation for DDR_CAP_AXI_ID_FILTER_ENHANCED quirk
arm64: perf: Simplify the ARMv8 PMUv3 event attributes
drivers/perf: Add CCPI2 PMU support in ThunderX2 UNCORE driver.
Documentation: perf: Update documentation for ThunderX2 PMU uncore driver
Documentation: Add documentation for CCN-512 DTS binding
perf: arm-ccn: Enable stats for CCN-512 interconnect
perf/smmuv3: use devm_platform_ioremap_resource() to simplify code
perf/arm-cci: use devm_platform_ioremap_resource() to simplify code
perf/arm-ccn: use devm_platform_ioremap_resource() to simplify code
perf: xgene: use devm_platform_ioremap_resource() to simplify code
perf: hisi: use devm_platform_ioremap_resource() to simplify code
Now that we no longer refer to mod->arch.ftrace_trampolines in the body
of ftrace_make_call(), we can use IS_ENABLED() rather than ifdeffery,
and make the code easier to follow. Likewise in ftrace_make_nop().
Let's do so.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
This patch implements FTRACE_WITH_REGS for arm64, which allows a traced
function's arguments (and some other registers) to be captured into a
struct pt_regs, allowing these to be inspected and/or modified. This is
a building block for live-patching, where a function's arguments may be
forwarded to another function. This is also necessary to enable ftrace
and in-kernel pointer authentication at the same time, as it allows the
LR value to be captured and adjusted prior to signing.
Using GCC's -fpatchable-function-entry=N option, we can have the
compiler insert a configurable number of NOPs between the function entry
point and the usual prologue. This also ensures functions are AAPCS
compliant (e.g. disabling inter-procedural register allocation).
For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the
following:
| unsigned long bar(void);
|
| unsigned long foo(void)
| {
| return bar() + 1;
| }
... to:
| <foo>:
| nop
| nop
| stp x29, x30, [sp, #-16]!
| mov x29, sp
| bl 0 <bar>
| add x0, x0, #0x1
| ldp x29, x30, [sp], #16
| ret
This patch builds the kernel with -fpatchable-function-entry=2,
prefixing each function with two NOPs. To trace a function, we replace
these NOPs with a sequence that saves the LR into a GPR, then calls an
ftrace entry assembly function which saves this and other relevant
registers:
| mov x9, x30
| bl <ftrace-entry>
Since patchable functions are AAPCS compliant (and the kernel does not
use x18 as a platform register), x9-x18 can be safely clobbered in the
patched sequence and the ftrace entry code.
There are now two ftrace entry functions, ftrace_regs_entry (which saves
all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is
allocated for each within modules.
Signed-off-by: Torsten Duwe <duwe@suse.de>
[Mark: rework asm, comments, PLTs, initialization, commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Julien Thierry <jthierry@redhat.com>
Cc: Will Deacon <will@kernel.org>
So that assembly code can more easily manipulate the FP (x29) within a
pt_regs, add an S_FP asm-offsets definition.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
For FTRACE_WITH_REGS, we're going to want to generate a MOV (register)
instruction as part of the callsite intialization. As MOV (register) is
an alias for ORR (shifted register), we can generate this with
aarch64_insn_gen_logical_shifted_reg(), but it's somewhat verbose and
difficult to read in-context.
Add a aarch64_insn_gen_move_reg() wrapper for this case so that we can
write callers in a more straightforward way.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Currently we lazily-initialize a module's ftrace PLT at runtime when we
install the first ftrace call. To do so we have to apply a number of
sanity checks, transiently mark the module text as RW, and perform an
IPI as part of handling Neoverse-N1 erratum #1542419.
We only expect the ftrace trampoline to point at ftrace_caller() (AKA
FTRACE_ADDR), so let's simplify all of this by intializing the PLT at
module load time, before the module loader marks the module RO and
performs the intial I-cache maintenance for the module.
Thus we can rely on the module having been correctly intialized, and can
simplify the runtime work necessary to install an ftrace call in a
module. This will also allow for the removal of module_disable_ro().
Tested by forcing ftrace_make_call() to use the module PLT, and then
loading up a module after setting up ftrace with:
| echo ":mod:<module-name>" > set_ftrace_filter;
| echo function > current_tracer;
| modprobe <module-name>
Since FTRACE_ADDR is only defined when CONFIG_DYNAMIC_FTRACE is
selected, we wrap its use along with most of module_init_ftrace_plt()
with ifdeffery rather than using IS_ENABLED().
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
When we load a module, we have to perform some special work for a couple
of named sections. To do this, we iterate over all of the module's
sections, and perform work for each section we recognize.
To make it easier to handle the unexpected absence of a section, and to
make the section-specific logic easer to read, let's factor the section
search into a helper. Similar is already done in the core module loader,
and other architectures (and ideally we'd unify these in future).
If we expect a module to have an ftrace trampoline section, but it
doesn't have one, we'll now reject loading the module. When
ARM64_MODULE_PLTS is selected, any correctly built module should have
one (and this is assumed by arm64's ftrace PLT code) and the absence of
such a section implies something has gone wrong at build time.
Subsequent patches will make use of the new helper.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Since the EXCEPTION_TABLE is read-only, collapse it into RO_DATA. Also
removes the redundant ALIGN, which is already present at the end of the
RO_DATA macro.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Will Deacon <will@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-19-keescook@chromium.org
For each PMU event, there is a ARMV8_EVENT_ATTR(xx, XX) and
&armv8_event_attr_xx.attr.attr. Let's redefine the ARMV8_EVENT_ATTR
to simplify the armv8_pmuv3_event_attrs.
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
[will: Dropped unnecessary array syntax]
Signed-off-by: Will Deacon <will@kernel.org>
The Broadcom Brahma-B53 core is susceptible to the issue described by
ARM64_ERRATUM_843419 so this commit enables the workaround to be applied
when executing on that core.
Since there are now multiple entries to match, we must convert the
existing ARM64_ERRATUM_843419 into an erratum list and use
cpucap_multi_entry_cap_matches to match our entries.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Will Deacon <will@kernel.org>
Add the Brahma-B53 CPU (all versions) to the whitelists of CPUs for the
SSB and spectre v2 mitigations.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Will Deacon <will@kernel.org>
The Broadcom Brahma-B53 core is susceptible to the issue described by
ARM64_ERRATUM_845719 so this commit enables the workaround to be applied
when executing on that core.
Since there are now multiple entries to match, we must convert the
existing ARM64_ERRATUM_845719 into an erratum list.
Signed-off-by: Doug Berger <opendmb@gmail.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Will Deacon <will@kernel.org>
The Kryo cores share errata 1009 with Falkor, so add their model
definitions and enable it for them as well.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
[will: Update entry in silicon-errata.rst]
Signed-off-by: Will Deacon <will@kernel.org>
With the introduction of 'cce360b54ce6 ("arm64: capabilities: Filter the
entries based on a given mask")' the Qualcomm Falkor/Kryo errata 1003 is
no long applied.
The result of not applying errata 1003 is that MSM8996 runs into various
RCU stalls and fails to boot most of the times.
Give 1003 a "type" to ensure they are not filtered out in
update_cpu_capabilities().
Fixes: cce360b54c ("arm64: capabilities: Filter the entries based on a given mask")
Cc: stable@vger.kernel.org
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Will Deacon <will@kernel.org>
Move the synchronous exception paths from entry.S into a C file to
improve the code readability.
* for-next/entry-s-to-c:
arm64: entry-common: don't touch daif before bp-hardening
arm64: Remove asmlinkage from updated functions
arm64: entry: convert el0_sync to C
arm64: entry: convert el1_sync to C
arm64: add local_daif_inherit()
arm64: Add prototypes for functions called by entry.S
arm64: remove __exception annotations
Similarly to erratum 1165522 that affects Cortex-A76, A57 and A72
respectively suffer from errata 1319537 and 1319367, potentially
resulting in TLB corruption if the CPU speculates an AT instruction
while switching guests.
The fix is slightly more involved since we don't have VHE to help us
here, but the idea is the same: when switching a guest in, we must
prevent any speculated AT from being able to parse the page tables
until S2 is up and running. Only at this stage can we allow AT to take
place.
For this, we always restore the guest sysregs first, except for its
SCTLR and TCR registers, which must be set with SCTLR.M=1 and
TCR.EPD{0,1} = {1, 1}, effectively disabling the PTW and TLB
allocation. Once S2 is setup, we restore the guest's SCTLR and
TCR. Similar things must be done on TLB invalidation...
* 'kvm-arm64/erratum-1319367' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms:
arm64: Enable and document ARM errata 1319367 and 1319537
arm64: KVM: Prevent speculative S1 PTW when restoring vcpu context
arm64: KVM: Disable EL1 PTW when invalidating S2 TLBs
arm64: KVM: Reorder system register restoration and stage-2 activation
arm64: Add ARM64_WORKAROUND_1319367 for all A57 and A72 versions
Neoverse-N1 cores with the 'COHERENT_ICACHE' feature may fetch stale
instructions when software depends on prefetch-speculation-protection
instead of explicit synchronization. [0]
The workaround is to trap I-Cache maintenance and issue an
inner-shareable TLBI. The affected cores have a Coherent I-Cache, so the
I-Cache maintenance isn't necessary. The core tells user-space it can
skip it with CTR_EL0.DIC. We also have to trap this register to hide the
bit forcing DIC-aware user-space to perform the maintenance.
To avoid trapping all cache-maintenance, this workaround depends on
a firmware component that only traps I-cache maintenance from EL0 and
performs the workaround.
For user-space, the kernel's work is to trap CTR_EL0 to hide DIC, and
produce a fake IminLine. EL3 traps the now-necessary I-Cache maintenance
and performs the inner-shareable-TLBI that makes everything better.
[0] https://developer.arm.com/docs/sden885747/latest/arm-neoverse-n1-mp050-software-developer-errata-notice
* for-next/neoverse-n1-stale-instr:
arm64: Silence clang warning on mismatched value/register sizes
arm64: compat: Workaround Neoverse-N1 #1542419 for compat user-space
arm64: Fake the IminLine size on systems affected by Neoverse-N1 #1542419
arm64: errata: Hide CTR_EL0.DIC on systems affected by Neoverse-N1 #1542419
The previous patches mechanically transformed the assembly version of
entry.S to entry-common.c for synchronous exceptions.
The C version of local_daif_restore() doesn't quite do the same thing
as the assembly versions if pseudo-NMI is in use. In particular,
| local_daif_restore(DAIF_PROCCTX_NOIRQ)
will still allow pNMI to be delivered. This is not the behaviour
do_el0_ia_bp_hardening() and do_sp_pc_abort() want as it should not
be possible for the PMU handler to run as an NMI until the bp-hardening
sequence has run.
The bp-hardening calls were placed where they are because this was the
first C code to run after the relevant exceptions. As we've now moved
that point earlier, move the checks and calls earlier too.
This makes it clearer that this stuff runs before any kind of exception,
and saves modifying PSTATE twice.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that the callers of these functions have moved into C, they no longer
need the asmlinkage annotation. Remove it.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This is largely a 1-1 conversion of asm to C, with a couple of caveats.
The el0_sync{_compat} switches explicitly handle all the EL0 debug
cases, so el0_dbg doesn't have to try to bail out for unexpected EL1
debug ESR values. This also means that an unexpected vector catch from
AArch32 is routed to el0_inv.
We *could* merge the native and compat switches, which would make the
diffstat negative, but I've tried to stay as close to the existing
assembly as possible for the moment.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[split out of a bigger series, added nokprobes. removed irq trace
calls as the C helpers do this. renamed el0_dbg's use of FAR]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch converts the EL1 sync entry assembly logic to C code.
Doing this will allow us to make changes in a slightly more
readable way. A case in point is supporting kernel-first RAS.
do_sea() should be called on the CPU that took the fault.
Largely the assembly code is converted to C in a relatively
straightforward manner.
Since all sync sites share a common asm entry point, the ASM_BUG()
instances are no longer required for effective backtraces back to
assembly, and we don't need similar BUG() entries.
The ESR_ELx.EC codes for all (supported) debug exceptions are now
checked in the el1_sync_handler's switch statement, which renders the
check in el1_dbg redundant. This both simplifies the el1_dbg handler,
and makes the EL1 exception handling more robust to
currently-unallocated ESR_ELx.EC encodings.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[split out of a bigger series, added nokprobes, moved prototypes]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since commit 7326749801 ("arm64: unwind: reference pt_regs via embedded
stack frame") arm64 has not used the __exception annotation to dump
the pt_regs during stack tracing. in_exception_text() has no callers.
This annotation is only used to blacklist kprobes, it means the same as
__kprobes.
Section annotations like this require the functions to be grouped
together between the start/end markers, and placed according to
the linker script. For kprobes we also have NOKPROBE_SYMBOL() which
logs the symbol address in a section that kprobes parses and
blacklists at boot.
Using NOKPROBE_SYMBOL() instead lets kprobes publish the list of
blacklisted symbols, and saves us from having an arm64 specific
spelling of __kprobes.
do_debug_exception() already has a NOKPROBE_SYMBOL() annotation.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Clang reports a warning on the __tlbi(aside1is, 0) macro expansion since
the value size does not match the register size specified in the inline
asm. Construct the ASID value using the __TLBI_VADDR() macro.
Fixes: 222fc0c850 ("arm64: compat: Workaround Neoverse-N1 #1542419 for compat user-space")
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Compat user-space is unable to perform ICIMVAU instructions from
user-space. Instead it uses a compat-syscall. Add the workaround for
Neoverse-N1 #1542419 to this code path.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Systems affected by Neoverse-N1 #1542419 support DIC so do not need to
perform icache maintenance once new instructions are cleaned to the PoU.
For the errata workaround, the kernel hides DIC from user-space, so that
the unnecessary cache maintenance can be trapped by firmware.
To reduce the number of traps, produce a fake IminLine value based on
PAGE_SIZE.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cores affected by Neoverse-N1 #1542419 could execute a stale instruction
when a branch is updated to point to freshly generated instructions.
To workaround this issue we need user-space to issue unnecessary
icache maintenance that we can trap. Start by hiding CTR_EL0.DIC.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In cases like suspend-to-disk and suspend-to-ram, a large number of CPU
cores need to be shut down. At present, the CPU hotplug operation is
serialised, and the CPU cores can only be shut down one by one. In this
process, if PSCI affinity_info() does not return LEVEL_OFF quickly,
cpu_psci_cpu_kill() needs to wait for 10ms. If hundreds of CPU cores
need to be shut down, it will take a long time.
Normally, there is no need to wait 10ms in cpu_psci_cpu_kill(). So
change the wait interval from 10 ms to max 1 ms and use usleep_range()
instead of msleep() for more accurate timer.
In addition, reducing the time interval will increase the messages
output, so remove the "Retry ..." message, instead, track time and
output to the the sucessful message.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Enable paravirtualization features when running under a hypervisor
supporting the PV_TIME_ST hypercall.
For each (v)CPU, we ask the hypervisor for the location of a shared
page which the hypervisor will use to report stolen time to us. We set
pv_time_ops to the stolen time function which simply reads the stolen
value from the shared page for a VCPU. We guarantee single-copy
atomicity using READ_ONCE which means we can also read the stolen
time for another VCPU than the currently running one while it is
potentially being updated by the hypervisor.
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Rather than directly choosing which function to use based on
psci_ops.conduit, use the new arm_smccc_1_1 wrapper instead.
In some cases we still need to do some operations based on the
conduit, but the code duplication is removed.
No functional change.
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Rework the EL2 vector hardening that is only selected for A57 and A72
so that the table can also be used for ARM64_WORKAROUND_1319367.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
As said in commit f2c2cbcc35 ("powerpc: Use pr_warn instead of
pr_warning"), removing pr_warning so all logging messages use a
consistent <prefix>_warn style. Let's do it.
Link: http://lkml.kernel.org/r/20191018031850.48498-2-wangkefeng.wang@huawei.com
To: linux-kernel@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Workaround for Cavium/Marvell ThunderX2 erratum #219.
* errata/tx2-219:
arm64: Allow CAVIUM_TX2_ERRATUM_219 to be selected
arm64: Avoid Cavium TX2 erratum 219 when switching TTBR
arm64: Enable workaround for Cavium TX2 erratum 219 when running SMT
arm64: KVM: Trap VM ops when ARM64_WORKAROUND_CAVIUM_TX2_219_TVM is set
Sign-extending TTBR1 addresses when converting to an untagged address
breaks the documented POSIX semantics for mlock() in some obscure error
cases where we end up returning -EINVAL instead of -ENOMEM as a direct
result of rewriting the upper address bits.
Rework the untagged_addr() macro to preserve the upper address bits for
TTBR1 addresses and only clear the tag bits for user addresses. This
matches the behaviour of the 'clear_address_tag' assembly macro, so
rename that and align the implementations at the same time so that they
use the same instruction sequences for the tag manipulation.
Link: https://lore.kernel.org/stable/20191014162651.GF19200@arrakis.emea.arm.com/
Reported-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Preempting from IRQ-return means that the task has its PSTATE saved
on the stack, which will get restored when the task is resumed and does
the actual IRQ return.
However, enabling some CPU features requires modifying the PSTATE. This
means that, if a task was scheduled out during an IRQ-return before all
CPU features are enabled, the task might restore a PSTATE that does not
include the feature enablement changes once scheduled back in.
* Task 1:
PAN == 0 ---| |---------------
| |<- return from IRQ, PSTATE.PAN = 0
| <- IRQ |
+--------+ <- preempt() +--
^
|
reschedule Task 1, PSTATE.PAN == 1
* Init:
--------------------+------------------------
^
|
enable_cpu_features
set PSTATE.PAN on all CPUs
Worse than this, since PSTATE is untouched when task switching is done,
a task missing the new bits in PSTATE might affect another task, if both
do direct calls to schedule() (outside of IRQ/exception contexts).
Fix this by preventing preemption on IRQ-return until features are
enabled on all CPUs.
This way the only PSTATE values that are saved on the stack are from
synchronous exceptions. These are expected to be fatal this early, the
exception is BRK for WARN_ON(), but as this uses do_debug_exception()
which keeps IRQs masked, it shouldn't call schedule().
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
[james: Replaced a really cool hack, with an even simpler static key in C.
expanded commit message with Julien's cover-letter ascii art]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The GICv3 architecture specification is incredibly misleading when it
comes to PMR and the requirement for a DSB. It turns out that this DSB
is only required if the CPU interface sends an Upstream Control
message to the redistributor in order to update the RD's view of PMR.
This message is only sent when ICC_CTLR_EL1.PMHE is set, which isn't
the case in Linux. It can still be set from EL3, so some special care
is required. But the upshot is that in the (hopefuly large) majority
of the cases, we can drop the DSB altogether.
This relies on a new static key being set if the boot CPU has PMHE
set. The drawback is that this static key has to be exported to
modules.
Cc: Will Deacon <will@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There is a bug in create_safe_exec_page(), when page table is allocated
it is not checked that table is allocated successfully:
But it is dereferenced in: pgd_none(READ_ONCE(*pgdp)). Check that
allocation was successful.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Will Deacon <will@kernel.org>
If CONFIG_ARM64_SVE=n then we fail to report ID_AA64ZFR0_EL1 as 0 when
read by userspace, despite being required by the architecture. Although
this is theoretically a change in ABI, userspace will first check for
the presence of SVE via the HWCAP or the ID_AA64PFR0_EL1.SVE field
before probing the ID_AA64ZFR0_EL1 register. Given that these are
reported correctly for this configuration, we can safely tighten up the
current behaviour.
Ensure ID_AA64ZFR0_EL1 is treated as RAZ when CONFIG_ARM64_SVE=n.
Signed-off-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Fixes: 06a916feca ("arm64: Expose SVE2 features for userspace")
Signed-off-by: Will Deacon <will@kernel.org>
Now that we have common definitions for SMCCC conduits, move the SDEI
code over to them, and remove the SDEI-specific definitions.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have arm_smccc_1_1_get_conduit(), we can hide the PSCI
implementation details from the arm64 cpu errata code, so let's do so.
As arm_smccc_1_1_get_conduit() implicitly checks that the SMCCC version
is at least SMCCC_VERSION_1_1, we no longer need to check this
explicitly where switch statements have a default case, e.g. in
has_ssbd_mitigation().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There are no return value checking when using kzalloc() and kcalloc() for
memory allocation. so add it.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Will Deacon <will@kernel.org>
As a PRFM instruction racing against a TTBR update can have undesirable
effects on TX2, NOP-out such PRFM on cores that are affected by
the TX2-219 erratum.
Cc: <stable@vger.kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
It appears that the only case where we need to apply the TX2_219_TVM
mitigation is when the core is in SMT mode. So let's condition the
enabling on detecting a CPU whose MPIDR_EL1.Aff0 is non-zero.
Cc: <stable@vger.kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
For consistency with CROSS_COMPILE_COMPAT, mechanically rename COMPATCC
to CC_COMPAT so that specifying aspects of the compat vDSO toolchain in
the environment isn't needlessly confusing.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Directly passing the '--target' option to clang by appending to
COMPATCC does not work if COMPATCC has been specified explicitly as
an argument to Make unless the 'override' directive is used, which is
ugly and different to what is done in the top-level Makefile.
Move the '--target' option for clang out of COMPATCC and into
VDSO_CAFLAGS, where it will be picked up when compiling and assembling
the 32-bit vDSO under clang.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
KBUILD_CPPFLAGS is defined differently depending on whether the main
compiler is clang or not. This means that it is not possible to build
the compat vDSO with GCC if the rest of the kernel is built with clang.
Define VDSO_CPPFLAGS directly to break this dependency and allow a clang
kernel to build a compat vDSO with GCC:
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- \
CROSS_COMPILE_COMPAT=arm-linux-gnueabihf- CC=clang \
COMPATCC=arm-linux-gnueabihf-gcc
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
There's no need to export COMPATCC, so just define it locally in the
vdso32/Makefile, which is the only place where it is used.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The jump labels are not used in vdso32 since it is not possible to run
runtime patching on them.
Remove the configuration option from the Makefile.
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Older versions of binutils (prior to 2.24) do not support the "ISHLD"
option for memory barrier instructions, which leads to a build failure
when assembling the vdso32 library.
Add a compilation time mechanism that detects if binutils supports those
instructions and configure the kernel accordingly.
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Moving over to the generic C implementation of the vDSO inadvertently
left some stale files behind which are no longer used. Remove them.
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The .config file and the generated include/config/auto.conf can
end up out of sync after a set of commands since
CONFIG_CROSS_COMPILE_COMPAT_VDSO is not updated correctly.
The sequence can be reproduced as follows:
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- defconfig
[...]
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- menuconfig
[set CONFIG_CROSS_COMPILE_COMPAT_VDSO="arm-linux-gnueabihf-"]
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-
Which results in:
arch/arm64/Makefile:62: CROSS_COMPILE_COMPAT not defined or empty,
the compat vDSO will not be built
even though the compat vDSO has been built:
$ file arch/arm64/kernel/vdso32/vdso.so
arch/arm64/kernel/vdso32/vdso.so: ELF 32-bit LSB pie executable, ARM,
EABI5 version 1 (SYSV), dynamically linked,
BuildID[sha1]=c67f6c786f2d2d6f86c71f708595594aa25247f6, stripped
A similar case that involves changing the configuration parameter
multiple times can be reconducted to the same family of problems.
Remove the use of CONFIG_CROSS_COMPILE_COMPAT_VDSO altogether and
instead rely on the cross-compiler prefix coming from the environment
via CROSS_COMPILE_COMPAT, much like we do for the rest of the kernel.
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
CPUs affected by Neoverse-N1 #1542419 may execute a stale instruction if
it was recently modified. The affected sequence requires freshly written
instructions to be executable before a branch to them is updated.
There are very few places in the kernel that modify executable text,
all but one come with sufficient synchronisation:
* The module loader's flush_module_icache() calls flush_icache_range(),
which does a kick_all_cpus_sync()
* bpf_int_jit_compile() calls flush_icache_range().
* Kprobes calls aarch64_insn_patch_text(), which does its work in
stop_machine().
* static keys and ftrace both patch between nops and branches to
existing kernel code (not generated code).
The affected sequence is the interaction between ftrace and modules.
The module PLT is cleaned using __flush_icache_range() as the trampoline
shouldn't be executable until we update the branch to it.
Drop the double-underscore so that this path runs kick_all_cpus_sync()
too.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Commit bd82d4bd21 ("arm64: Fix incorrect irqflag restore for priority
masking") added a macro to the entry.S call paths that leave the
PSTATE.I bit set. This tells the pPNMI masking logic that interrupts
are masked by the CPU, not by the PMR. This value is read back by
local_daif_save().
Commit bd82d4bd21 added this call to el0_svc, as el0_svc_handler
is called with interrupts masked. el0_svc_compat was missed, but should
be covered in the same way as both of these paths end up in
el0_svc_common(), which expects to unmask interrupts.
Fixes: bd82d4bd21 ("arm64: Fix incorrect irqflag restore for priority masking")
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Signed-off-by: Will Deacon <will@kernel.org>
The HWCAP framework will detect a new capability based on the sanitized
version of the ID registers.
Sanitization is based on a whitelist, so any field not described will end
up to be zeroed.
At the moment, ID_AA64ISAR1_EL1.FRINTTS is not described in
ftr_id_aa64isar1. This means the field will be zeroed and therefore the
userspace will not be able to see the HWCAP even if the hardware
supports the feature.
This can be fixed by describing the field in ftr_id_aa64isar1.
Fixes: ca9503fc9e ("arm64: Expose FRINT capabilities to userspace")
Signed-off-by: Julien Grall <julien.grall@arm.com>
Cc: mark.brown@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The system which has SVE feature crashed because of
the memory pointed by task->thread.sve_state was destroyed
by someone.
That is because sve_state is freed while the forking the
child process. The child process has the pointer of sve_state
which is same as the parent's because the child's task_struct
is copied from the parent's one. If the copy_process()
fails as an error on somewhere, for example, copy_creds(),
then the sve_state is freed even if the parent is alive.
The flow is as follows.
copy_process
p = dup_task_struct
=> arch_dup_task_struct
*dst = *src; // copy the entire region.
:
retval = copy_creds
if (retval < 0)
goto bad_fork_free;
:
bad_fork_free:
...
delayed_free_task(p);
=> free_task
=> arch_release_task_struct
=> fpsimd_release_task
=> __sve_free
=> kfree(task->thread.sve_state);
// free the parent's sve_state
Move child's sve_state = NULL and clearing TIF_SVE flag
to arch_dup_task_struct() so that the child doesn't free the
parent's one.
There is no need to wait until copy_process() to clear TIF_SVE for
dst, because the thread flags for dst are initialized already by
copying the src task_struct.
This change simplifies the code, so get rid of comments that are no
longer needed.
As a note, arm64 used to have thread_info on the stack. So it
would not be possible to clear TIF_SVE until the stack is initialized.
From commit c02433dd6d ("arm64: split thread_info from task stack"),
the thread_info is part of the task, so it should be valid to modify
the flag from arch_dup_task_struct().
Cc: stable@vger.kernel.org # 4.15.x-
Fixes: bc0ee47603 ("arm64/sve: Core task context handling")
Signed-off-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Reported-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Suggested-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>