Commit b8a9a11b9 (powerpc: eeh: Kill another abuse of irq_desc) is
missing some brackets .....
It's not a good idea to write patches in grumpy mode and then forget
to at least compile test them or rely on the few eyeballs discussing
that patch to spot it.....
Reported-by: fengguang.wu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: ppc <linuxppc-dev@lists.ozlabs.org>
commit 91150af3a (powerpc/eeh: Fix unbalanced enable for IRQ) is
another brilliant example of trainwreck engineering.
The patch "fixes" the issue of an unbalanced call to irq_enable()
which causes a prominent warning by checking the disabled state of the
interrupt line and call conditionally into the core code.
This is wrong in two aspects:
1) The warning is there to tell users, that they need to fix their
asymetric enable/disable patterns by finding the root cause and
solving it there.
It's definitely not meant to work around it by conditionally
calling into the core code depending on the random state of the irq
line.
Asymetric irq_disable/enable calls are a clear sign of wrong usage
of the interfaces which have to be cured at the root and not by
somehow hacking around it.
2) The abuse of core internal data structure instead of using the
proper interfaces for retrieving the information for the 'hack
around'
irq_desc is core internal and it's clear enough stated.
Replace at least the irq_desc abuse with the proper functions and add
a big fat comment why this is absurd and completely wrong.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: ppc <linuxppc-dev@lists.ozlabs.org>
Link: http://lkml.kernel.org/r/20140223212736.562906212@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No functional change
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: ppc <linuxppc-dev@lists.ozlabs.org>
Link: http://lkml.kernel.org/r/20140223212736.333718121@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The new ELFv2 little-endian ABI increases the stack redzone -- the
area below the stack pointer that can be used for storing data --
from 288 bytes to 512 bytes. This means that we need to allow more
space on the user stack when delivering a signal to a 64-bit process.
To make the code a bit clearer, we define new USER_REDZONE_SIZE and
KERNEL_REDZONE_SIZE symbols in ptrace.h. For now, we leave the
kernel redzone size at 288 bytes, since increasing it to 512 bytes
would increase the size of interrupt stack frames correspondingly.
Gcc currently only makes use of 288 bytes of redzone even when
compiling for the new little-endian ABI, and the kernel cannot
currently be compiled with the new ABI anyway.
In the future, hopefully gcc will provide an option to control the
amount of redzone used, and then we could reduce it even more.
This also changes the code in arch_compat_alloc_user_space() to
preserve the expanded redzone. It is not clear why this function would
ever be used on a 64-bit process, though.
Signed-off-by: Paul Mackerras <paulus@samba.org>
CC: <stable@vger.kernel.org> [v3.13]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The branch target should be the func addr, not the addr of func_descr_t.
So using ppc_function_entry() to generate the right target addr.
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In copy_oldmem_page, the current check using max_pfn and min_low_pfn to
decide if the page is backed or not, is not valid when the memory layout is
not continuous.
This happens when running as a QEMU/KVM guest, where RTAS is mapped higher
in the memory. In that case max_pfn points to the end of RTAS, and a hole
between the end of the kdump kernel and RTAS is not backed by PTEs. As a
consequence, the kdump kernel is crashing in copy_oldmem_page when accessing
in a direct way the pages in that hole.
This fix relies on the memblock's service memblock_is_region_memory to
check if the read page is part or not of the directly accessible memory.
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
CC: <stable@vger.kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We possiblly detect EEH errors during reboot, particularly in kexec
path, but it's impossible for device drivers and EEH core to handle
or recover them properly.
The patch registers one reboot notifier for EEH and disable EEH
subsystem during reboot. That means the EEH errors is going to be
cleared by hardware reset or second kernel during early stage of
PCI probe.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch cleans up variable eeh_subsystem_enabled so that we needn't
refer the variable directly from external. Instead, we will use
function eeh_enabled() and eeh_set_enable() to operate the variable.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We are seeing a lot of hits in the VDSO that are not resolved by perf.
A while(1) gettimeofday() loop shows the issue:
27.64% [vdso] [.] 0x000000000000060c
22.57% [vdso] [.] 0x0000000000000628
16.88% [vdso] [.] 0x0000000000000610
12.39% [vdso] [.] __kernel_gettimeofday
6.09% [vdso] [.] 0x00000000000005f8
3.58% test [.] 00000037.plt_call.gettimeofday@@GLIBC_2.18
2.94% [vdso] [.] __kernel_datapage_offset
2.90% test [.] main
We are using a stripped VDSO image which means only symbols with
relocation info can be resolved. There isn't a lot of point to
stripping the VDSO, the debug info is only about 1kB:
4680 arch/powerpc/kernel/vdso64/vdso64.so
5815 arch/powerpc/kernel/vdso64/vdso64.so.dbg
By using the unstripped image, we can resolve all the symbols in the
VDSO and the perf profile data looks much better:
76.53% [vdso] [.] __do_get_tspec
12.20% [vdso] [.] __kernel_gettimeofday
5.05% [vdso] [.] __get_datapage
3.20% test [.] main
2.92% test [.] 00000037.plt_call.gettimeofday@@GLIBC_2.18
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Guenter Roeck has got the following call trace on a p2020 board:
Kernel stack overflow in process eb3e5a00, r1=eb79df90
CPU: 0 PID: 2838 Comm: ssh Not tainted 3.13.0-rc8-juniper-00146-g19eca00 #4
task: eb3e5a00 ti: c0616000 task.ti: ef440000
NIP: c003a420 LR: c003a410 CTR: c0017518
REGS: eb79dee0 TRAP: 0901 Not tainted (3.13.0-rc8-juniper-00146-g19eca00)
MSR: 00029000 <CE,EE,ME> CR: 24008444 XER: 00000000
GPR00: c003a410 eb79df90 eb3e5a00 00000000 eb05d900 00000001 65d87646 00000000
GPR08: 00000000 020b8000 00000000 00000000 44008442
NIP [c003a420] __do_softirq+0x94/0x1ec
LR [c003a410] __do_softirq+0x84/0x1ec
Call Trace:
[eb79df90] [c003a410] __do_softirq+0x84/0x1ec (unreliable)
[eb79dfe0] [c003a970] irq_exit+0xbc/0xc8
[eb79dff0] [c000cc1c] call_do_irq+0x24/0x3c
[ef441f20] [c00046a8] do_IRQ+0x8c/0xf8
[ef441f40] [c000e7f4] ret_from_except+0x0/0x18
--- Exception: 501 at 0xfcda524
LR = 0x10024900
Instruction dump:
7c781b78 3b40000a 3a73b040 543c0024 3a800000 3b3913a0 7ef5bb78 48201bf9
5463103a 7d3b182e 7e89b92e 7c008146 <3ba00000> 7e7e9b78 48000014 57fff87f
Kernel panic - not syncing: kernel stack overflow
CPU: 0 PID: 2838 Comm: ssh Not tainted 3.13.0-rc8-juniper-00146-g19eca00 #4
Call Trace:
The reason is that we have used the wrong register to calculate the
ksp_limit in commit cbc9565ee8 (powerpc: Remove ksp_limit on ppc64).
Just fix it.
As suggested by Benjamin Herrenschmidt, also add the C prototype of the
function in the comment in order to avoid such kind of errors in the
future.
Cc: stable@vger.kernel.org # 3.12
Reported-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the support for to create a direct iommu "bypass"
window on IODA2 bridges (such as Power8) allowing to bypass iommu
page translation completely for 64-bit DMA capable devices, thus
significantly improving DMA performances.
Additionally, this adds a hook to the struct iommu_table so that
the IOMMU API / VFIO can disable the bypass when external ownership
is requested, since in that case, the device will be used by an
environment such as userspace or a KVM guest which must not be
allowed to bypass translations.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We expose a number of OF properties in the kexec and crash dump code
and these need to be big endian.
Cc: stable@vger.kernel.org # v3.13
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We would allocate one specific exception stack for each kind of
non-base exceptions for every CPU. For ppc32 the CPU hard ID is
used as the subscript to get the specific exception stack for
one CPU. But for an UP kernel, there is only one element in the
each kind of exception stack array. We would get stuck if the
CPU hard ID is not equal to '0'. So in this case we should use the
subscript '0' no matter what the CPU hard ID is.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Relocation's code is not working in little endian mode because the r_info
field, which is a 64 bits value, should be read from the right offset.
The current code is optimized to read the r_info field as a 32 bits value
starting at the middle of the double word (offset 12). When running in LE
mode, the read value is not correct since only the MSB is read.
This patch removes this optimization which consist to deal with a 32 bits
value instead of a 64 bits one. This way it works in big and little endian
mode.
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit f5c57710dd ("powerpc/eeh: Use
partial hotplug for EEH unaware drivers") introduces eeh_rmv_device,
which may grab a reference to a driver, but not release it.
That prevents a driver from being removed after it has gone through EEH
recovery.
This patch drops the reference if it was taken.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com>
Acked-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
two s390 guest features that need some handling in the host,
and all the PPC changes. The PPC changes include support for
little-endian guests and enablement for new POWER8 features.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJS6UF5AAoJEBvWZb6bTYby55kP/AgTJnyu7avN653/2aSHkjkx
KgYSMYhZPIFoY5LyZuNetXaoXFRvCykux1VYSZ6V6s35h2PZ+hdJNbHGjFYKPGTq
FQ92xQVNuWCAPxmFCjDNuDV/0BauG5y08/Orh/jpjz+GAfH43LruUQGbtXUuyJ8u
vf+yTHniU5gguqsAmodqjHUgbf+GoPJ1j7hmRoWwt8IWm7Ns3v/IK4l0p6G0h26a
RjE6aK+Tm208Yr5hD/dRAqeTbBNt3c4xub+QPsKoiEMaZBSuAOiux7D3Kx+If1gp
WsmqEQxoymihVtkZhUFO9ONLJepvmG2QwJVVyMSUW9iqxX9rraXsvVyVMwcQAhog
JuOAYxBftH07xu6Fs4eym5KvCFghM+EaJvxxt+kgnvdD4htK1+eK5trntc2zygSi
/qGiIrkqjXpkskW8kujLayF0eAU3CrZvFWveEPBfFgYiOGX/2wzJCtSm/bt9Jo0M
v60qgNFK3LNqAyeEfnm9VtlwGr6ZgsAB6DHNPX4fM5s2IBjL+qloXk/e/+aVKkW0
I3yeRdy/ExhLAab6w81JtMeR7G3YS0UNuAEVvcoxzNb5wIBY8qnpfUzTKyMxQR94
64EVpxWEYO1s55eCCyMujWrSvc+YAwhJcWHGKgC4K7mxxLD3FVyQXX6YZvgRozMX
HjQju+DToj9CskyrFlRL
=yd0Z
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Paolo Bonzini:
"Second batch of KVM updates. Some minor x86 fixes, two s390 guest
features that need some handling in the host, and all the PPC changes.
The PPC changes include support for little-endian guests and
enablement for new POWER8 features"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (45 commits)
x86, kvm: correctly access the KVM_CPUID_FEATURES leaf at 0x40000101
x86, kvm: cache the base of the KVM cpuid leaves
kvm: x86: move KVM_CAP_HYPERV_TIME outside #ifdef
KVM: PPC: Book3S PR: Cope with doorbell interrupts
KVM: PPC: Book3S HV: Add software abort codes for transactional memory
KVM: PPC: Book3S HV: Add new state for transactional memory
powerpc/Kconfig: Make TM select VSX and VMX
KVM: PPC: Book3S HV: Basic little-endian guest support
KVM: PPC: Book3S HV: Add support for DABRX register on POWER7
KVM: PPC: Book3S HV: Prepare for host using hypervisor doorbells
KVM: PPC: Book3S HV: Handle new LPCR bits on POWER8
KVM: PPC: Book3S HV: Handle guest using doorbells for IPIs
KVM: PPC: Book3S HV: Consolidate code that checks reason for wake from nap
KVM: PPC: Book3S HV: Implement architecture compatibility modes for POWER8
KVM: PPC: Book3S HV: Add handler for HV facility unavailable
KVM: PPC: Book3S HV: Flush the correct number of TLB sets on POWER8
KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs
KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers
KVM: PPC: Book3S HV: Don't set DABR on POWER8
kvm/ppc: IRQ disabling cleanup
...
The code in remove_cache_dir() is supposed to remove the "cache"
subdirectory from the sysfs directory for a CPU when that CPU is
being offlined. It tries to do this by calling kobject_put() on
the kobject for the subdirectory. However, the subdirectory only
gets removed once the last reference goes away, and the reference
being put here may well not be the last reference. That means
that the "cache" subdirectory may still exist when the offlining
operation has finished. If the same CPU subsequently gets onlined,
the code tries to add a new "cache" subdirectory. If the old
subdirectory has not yet been removed, we get a WARN_ON in the
sysfs code, with stack trace, and an error message printed on the
console. Further, we ultimately end up with an online cpu with no
"cache" subdirectory.
This fixes it by doing an explicit kobject_del() at the point where
we want the subdirectory to go away. kobject_del() removes the sysfs
directory even though the object still exists in memory. The object
will get freed at some point in the future. A subsequent onlining
operation can create a new sysfs directory, even if the old object
still exists in memory, without causing any problems.
Cc: stable@vger.kernel.org # v3.0+
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
smt-snooze-delay was designed to disable NAP state or delay the entry
to the NAP state prior to adoption of cpuidle framework. This
is per-cpu variable. With the coming of CPUIDLE framework,
states can be disabled on per-cpu basis using the cpuidle/enable
sysfs entry.
Also, with the coming of cpuidle driver each state's target residency
is per-driver unlike earlier which was per-device. Therefore,
the per-cpu sysfs smt-snooze-delay which decides the target residency
of the idle state on a particular cpu causes more confusion to the user
as we cannot have different smt-snooze-delay (target residency)
values for each cpu.
In the current code, smt-snooze-delay functionality is completely broken.
It makes sense to remove smt-snooze-delay from idle driver with the
coming of cpuidle framework.
However, sysfs files are retained as ppc64_util currently
utilises it. Once we fix ppc64_util, propose to clean
up the kernel code.
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit d31626f70b ("powerpc: Don't corrupt transactional state when
using FP/VMX in kernel") introduced a bug where the uc_link and uc_regs
fields of the ucontext_t that is created to hold the transactional
values of the registers in a 32-bit signal frame didn't get set
correctly. The reason is that we now clear the MSR_TS bits in the MSR
in save_tm_user_regs(), before the code that sets uc_link and uc_regs.
To fix this, we move the setting of uc_link and uc_regs into the same
if statement that selects whether to call save_tm_user_regs() or
save_user_regs().
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This fixes a logic error that caused a failure to update the hw breakpoint
registers when not using the hw-breakpoint interface.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
<<
Switch mpc512x to the common clock framework and adapt mpc512x
drivers to use the new clock driver. Old PPC_CLOCK code is
removed entirely since there are no users any more.
>>
Pull powerpc updates from Ben Herrenschmidt:
"So here's my next branch for powerpc. A bit late as I was on vacation
last week. It's mostly the same stuff that was in next already, I
just added two patches today which are the wiring up of lockref for
powerpc, which for some reason fell through the cracks last time and
is trivial.
The highlights are, in addition to a bunch of bug fixes:
- Reworked Machine Check handling on kernels running without a
hypervisor (or acting as a hypervisor). Provides hooks to handle
some errors in real mode such as TLB errors, handle SLB errors,
etc...
- Support for retrieving memory error information from the service
processor on IBM servers running without a hypervisor and routing
them to the memory poison infrastructure.
- _PAGE_NUMA support on server processors
- 32-bit BookE relocatable kernel support
- FSL e6500 hardware tablewalk support
- A bunch of new/revived board support
- FSL e6500 deeper idle states and altivec powerdown support
You'll notice a generic mm change here, it has been acked by the
relevant authorities and is a pre-req for our _PAGE_NUMA support"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (121 commits)
powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked()
powerpc: Add support for the optimised lockref implementation
powerpc/powernv: Call OPAL sync before kexec'ing
powerpc/eeh: Escalate error on non-existing PE
powerpc/eeh: Handle multiple EEH errors
powerpc: Fix transactional FP/VMX/VSX unavailable handlers
powerpc: Don't corrupt transactional state when using FP/VMX in kernel
powerpc: Reclaim two unused thread_info flag bits
powerpc: Fix races with irq_work
Move precessing of MCE queued event out from syscall exit path.
pseries/cpuidle: Remove redundant call to ppc64_runlatch_off() in cpu idle routines
powerpc: Make add_system_ram_resources() __init
powerpc: add SATA_MV to ppc64_defconfig
powerpc/powernv: Increase candidate fw image size
powerpc: Add debug checks to catch invalid cpu-to-node mappings
powerpc: Fix the setup of CPU-to-Node mappings during CPU online
powerpc/iommu: Don't detach device without IOMMU group
powerpc/eeh: Hotplug improvement
powerpc/eeh: Call opal_pci_reinit() on powernv for restoring config space
powerpc/eeh: Add restore_config operation
...
Add new state for transactional memory (TM) to kvm_vcpu_arch. Also add
asm-offset bits that are going to be required.
This also moves the existing TFHAR, TFIAR and TEXASR SPRs into a
CONFIG_PPC_TRANSACTIONAL_MEM section. This requires some code changes to
ensure we still compile with CONFIG_PPC_TRANSACTIONAL_MEM=N. Much of the added
the added #ifdefs are removed in a later patch when the bulk of the TM code is
added.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix merge conflict]
Signed-off-by: Alexander Graf <agraf@suse.de>
We create a guest MSR from scratch when delivering exceptions in
a few places. Instead of extracting LPCR[ILE] and inserting it
into MSR_LE each time, we simply create a new variable intr_msr which
contains the entire MSR to use. For a little-endian guest, userspace
needs to set the ILE (interrupt little-endian) bit in the LPCR for
each vcpu (or at least one vcpu in each virtual core).
[paulus@samba.org - removed H_SET_MODE implementation from original
version of the patch, and made kvmppc_set_lpcr update vcpu->arch.intr_msr.]
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
The DABRX (DABR extension) register on POWER7 processors provides finer
control over which accesses cause a data breakpoint interrupt. It
contains 3 bits which indicate whether to enable accesses in user,
kernel and hypervisor modes respectively to cause data breakpoint
interrupts, plus one bit that enables both real mode and virtual mode
accesses to cause interrupts. Currently, KVM sets DABRX to allow
both kernel and user accesses to cause interrupts while in the guest.
This adds support for the guest to specify other values for DABRX.
PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR
and DABRX with one call. This adds a real-mode implementation of
H_SET_XDABR, which shares most of its code with the existing H_SET_DABR
implementation. To support this, we add a per-vcpu field to store the
DABRX value plus code to get and set it via the ONE_REG interface.
For Linux guests to use this new hcall, userspace needs to add
"hcall-xdabr" to the set of strings in the /chosen/hypertas-functions
property in the device tree. If userspace does this and then migrates
the guest to a host where the kernel doesn't include this patch, then
userspace will need to implement H_SET_XDABR by writing the specified
DABR value to the DABR using the ONE_REG interface. In that case, the
old kernel will set DABRX to DABRX_USER | DABRX_KERNEL. That should
still work correctly, at least for Linux guests, since Linux guests
cope with getting data breakpoint interrupts in modes that weren't
requested by just ignoring the interrupt, and Linux guests never set
DABRX_BTI.
The other thing this does is to make H_SET_DABR and H_SET_XDABR work
on POWER8, which has the DAWR and DAWRX instead of DABR/X. Guests that
know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but
guests running in POWER7 compatibility mode will still use H_SET_[X]DABR.
For them, this adds the logic to convert DABR/X values into DAWR/X values
on POWER8.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds fields to the struct kvm_vcpu_arch to store the new
guest-accessible SPRs on POWER8, adds code to the get/set_one_reg
functions to allow userspace to access this state, and adds code to
the guest entry and exit to context-switch these SPRs between host
and guest.
Note that DPDES (Directed Privileged Doorbell Exception State) is
shared between threads on a core; hence we store it in struct
kvmppc_vcore and have the master thread save and restore it.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
On a threaded processor such as POWER7, we group VCPUs into virtual
cores and arrange that the VCPUs in a virtual core run on the same
physical core. Currently we don't enforce any correspondence between
virtual thread numbers within a virtual core and physical thread
numbers. Physical threads are allocated starting at 0 on a first-come
first-served basis to runnable virtual threads (VCPUs).
POWER8 implements a new "msgsndp" instruction which guest kernels can
use to interrupt other threads in the same core or sub-core. Since
the instruction takes the destination physical thread ID as a parameter,
it becomes necessary to align the physical thread IDs with the virtual
thread IDs, that is, to make sure virtual thread N within a virtual
core always runs on physical thread N.
This means that it's possible that thread 0, which is where we call
__kvmppc_vcore_entry, may end up running some other vcpu than the
one whose task called kvmppc_run_core(), or it may end up running
no vcpu at all, if for example thread 0 of the virtual core is
currently executing in userspace. However, we do need thread 0
to be responsible for switching the MMU -- a previous version of
this patch that had other threads switching the MMU was found to
be responsible for occasional memory corruption and machine check
interrupts in the guest on POWER7 machines.
To accommodate this, we no longer pass the vcpu pointer to
__kvmppc_vcore_entry, but instead let the assembly code load it from
the PACA. Since the assembly code will need to know the kvm pointer
and the thread ID for threads which don't have a vcpu, we move the
thread ID into the PACA and we add a kvm pointer to the virtual core
structure.
In the case where thread 0 has no vcpu to run, it still calls into
kvmppc_hv_entry in order to do the MMU switch, and then naps until
either its vcpu is ready to run in the guest, or some other thread
needs to exit the guest. In the latter case, thread 0 jumps to the
code that switches the MMU back to the host. This control flow means
that now we switch the MMU before loading any guest vcpu state.
Similarly, on guest exit we now save all the guest vcpu state before
switching the MMU back to the host. This has required substantial
code movement, making the diff rather large.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Add Intel RAPL energy counter support (Stephane Eranian)
- Clean up uprobes (Oleg Nesterov)
- Optimize ring-buffer writes (Peter Zijlstra)
Tooling side changes, user visible:
- 'perf diff':
- Add column colouring improvements (Ramkumar Ramachandra)
- 'perf kvm':
- Add guest related improvements, including allowing to specify a
directory with guest specific /proc information (Dongsheng Yang)
- Add shell completion support (Ramkumar Ramachandra)
- Add '-v' option (Dongsheng Yang)
- Support --guestmount (Dongsheng Yang)
- 'perf probe':
- Support showing source code, asking for variables to be collected
at probe time and other 'perf probe' operations that use DWARF
information.
This supports only binaries with debugging information at this
time, detached debuginfo (aka debuginfo packages) support should
come in later patches (Masami Hiramatsu)
- 'perf record':
- Rename --no-delay option to --no-buffering, better reflecting its
purpose and freeing up '--delay' to take the place of
'--initial-delay', so that 'record' and 'stat' are consistent
(Arnaldo Carvalho de Melo)
- Default the -t/--thread option to no inheritance (Adrian Hunter)
- Make per-cpu mmaps the default (Adrian Hunter)
- 'perf report':
- Improve callchain processing performance (Frederic Weisbecker)
- Retain bfd reference to lookup source line numbers, greatly
optimizing, among other use cases, 'perf report -s srcline'
(Adrian Hunter)
- Improve callchain processing performance even more (Namhyung Kim)
- Add a perf.data file header window in the 'perf report' TUI,
associated with the 'i' hotkey, providing a counterpart to the
--header option in the stdio UI (Namhyung Kim)
- 'perf script':
- Add an option in 'perf script' to print the source line number
(Adrian Hunter)
- Add --header/--header-only options to 'script' and 'report', the
default is not tho show the header info, but as this has been the
default for some time, leave a single line explaining how to
obtain that information (Jiri Olsa)
- Add options to show comm, fork, exit and mmap PERF_RECORD_ events
(Namhyung Kim)
- Print callchains and symbols if they exist (David Ahern)
- 'perf timechart'
- Add backtrace support to CPU info
- Print pid along the name
- Add support for CPU topology
- Add new option --highlight'ing threads, be it by name or, if a
numeric value is provided, that run more than given duration
(Stanislav Fomichev)
- 'perf top':
- Make 'perf top -g' refer to callchains, for consistency with
other tools (David Ahern)
- 'perf trace':
- Handle old kernels where the "raw_syscalls" tracepoints were
called plain "syscalls" (David Ahern)
- Remove thread summary coloring, by Pekka Enberg.
- Honour -m option in 'trace', the tool was offering the option to
set the mmap size, but wasn't using it when doing the actual mmap
on the events file descriptors (Jiri Olsa)
- generic:
- Backport libtraceevent plugin support (trace-cmd repository, with
plugins for jbd2, hrtimer, kmem, kvm, mac80211, sched_switch,
function, xen, scsi, cfg80211 (Jiri Olsa)
- Print session information only if --stdio is given (Namhyung Kim)
Tooling side changes, developer visible (plumbing):
- Improve 'perf probe' exit path, release resources (Masami
Hiramatsu)
- Improve libtraceevent plugins exit path, allowing the registering
of an unregister handler to be called at exit time (Namhyung Kim)
- Add an alias to the build test makefile (make -C tools/perf
build-test) (Namhyung Kim)
- Get rid of die() and friends (good riddance!) in libtraceevent
(Namhyung Kim)
- Fix cross build problems related to pkgconfig and CROSS_COMPILE not
being propagated to the feature tests, leading to features being
tested in the host and then being enabled on the target (Mark
Rutland)
- Improve forked workload error reporting by sending the errno in the
signal data queueing integer field, using sigqueue and by doing the
signal setup in the evlist methods, removing open coded equivalents
in various tools (Arnaldo Carvalho de Melo)
- Do more auto exit cleanup chores in the 'evlist' destructor, so
that the tools don't have to all do that sequence (Arnaldo Carvalho
de Melo)
- Pack 'struct perf_session_env' and 'struct trace' (Arnaldo Carvalho
de Melo)
- Add test for building detached source tarballs (Arnaldo Carvalho de
Melo)
- Move some header files (tools/perf/ to tools/include/ to make them
available to other tools/ dwelling codebases (Namhyung Kim)
- Move logic to warn about kptr_restrict'ed kernels to separate
function in 'report' (Arnaldo Carvalho de Melo)
- Move hist browser selection code to separate function (Arnaldo
Carvalho de Melo)
- Move histogram entries collapsing to separate function (Arnaldo
Carvalho de Melo)
- Introduce evlist__for_each() & friends (Arnaldo Carvalho de Melo)
- Automate setup of FEATURE_CHECK_(C|LD)FLAGS-all variables (Jiri
Olsa)
- Move arch setup into seprate Makefile (Jiri Olsa)
- Make libtraceevent install target quieter (Jiri Olsa)
- Make tests/make output more compact (Jiri Olsa)
- Ignore generated files in feature-checks (Chunwei Chen)
- Introduce pevent_filter_strerror() in libtraceevent, similar in
purpose to libc's strerror() function (Namhyung Kim)
- Use perf_data_file methods to write output file in 'record' and
'inject' (Jiri Olsa)
- Use pr_*() functions where applicable in 'report' (Namhyumg Kim)
- Add 'machine' 'addr_location' struct to have full picture (machine,
thread, map, symbol, addr) for a (partially) resolved address,
reducing function signatures (Arnaldo Carvalho de Melo)
- Reduce code duplication in the histogram entry creation/insertion
(Arnaldo Carvalho de Melo)
- Auto allocate annotation histogram data structures (Arnaldo
Carvalho de Melo)
- No need to test against NULL before calling free, also set freed
memory in struct pointers to NULL, to help fixing use after free
bugs (Arnaldo Carvalho de Melo)
- Rename some struct DSO binary_type related members and methods, to
clarify its purpose and need for differentiation (symtab_type, ie
one is about the files .text, CFI, etc, i.e. its binary contents,
and the other is about where the symbol table came from (Arnaldo
Carvalho de Melo)
- Convert to new topic libraries, starting with an API one (sysfs,
debugfs, etc), renaming liblk in the process (Borislav Petkov)
- Get rid of some more panic() like error handling in libtraceevent.
(Namhyung Kim)
- Get rid of panic() like calls in libtraceevent (Namyung Kim)
- Start carving out symbol parsing routines (perf, just moving
routines to topic files in tools/lib/symbol/, tools that want to
use it need to integrate it directly, ie no
tools/lib/symbol/Makefile is provided (Arnaldo Carvalho de Melo)
- Assorted refactoring patches, moving code around and adding utility
evlist methods that will be used in the IPT patchset (Adrian
Hunter)
- Assorted mmap_pages handling fixes (Adrian Hunter)
- Several man pages typo fixes (Dongsheng Yang)
- Get rid of several die() calls in libtraceevent (Namhyung Kim)
- Use basename() in a more robust way, to avoid problems related to
different system library implementations for that function
(Stephane Eranian)
- Remove open coded management of short_name_allocated member (Adrian
Hunter)
- Several cleanups in the "dso" methods, constifying some parameters
and renaming some fields to clarify its purpose (Arnaldo Carvalho
de Melo)
- Add per-feature check flags, fixing libunwind related build
problems on some architectures (Jean Pihet)
- Do not disable source line lookup just because of one failure.
(Adrian Hunter)
- Several 'perf kvm' man page corrections (Dongsheng Yang)
- Correct the message in feature-libnuma checking, swowing the right
devel package names for various distros (Dongsheng Yang)
- Polish 'readn()' function and introduce its counterpart,
'writen()' (Jiri Olsa)
- Start moving timechart state from global variables to a 'perf_tool'
derived 'timechart' struct (Arnaldo Carvalho de Melo)
... and lots of fixes and improvements I forgot to list"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (282 commits)
perf tools: Remove unnecessary callchain cursor state restore on unmatch
perf callchain: Spare double comparison of callchain first entry
perf tools: Do proper comm override error handling
perf symbols: Export elf_section_by_name and reuse
perf probe: Release all dynamically allocated parameters
perf probe: Release allocated probe_trace_event if failed
perf tools: Add 'build-test' make target
tools lib traceevent: Unregister handler when xen plugin is unloaded
tools lib traceevent: Unregister handler when scsi plugin is unloaded
tools lib traceevent: Unregister handler when jbd2 plugin is is unloaded
tools lib traceevent: Unregister handler when cfg80211 plugin is unloaded
tools lib traceevent: Unregister handler when mac80211 plugin is unloaded
tools lib traceevent: Unregister handler when sched_switch plugin is unloaded
tools lib traceevent: Unregister handler when kvm plugin is unloaded
tools lib traceevent: Unregister handler when kmem plugin is unloaded
tools lib traceevent: Unregister handler when hrtimer plugin is unloaded
tools lib traceevent: Unregister handler when function plugin is unloaded
tools lib traceevent: Add pevent_unregister_print_function()
tools lib traceevent: Add pevent_unregister_event_handler()
tools lib traceevent: fix pointer-integer size mismatch
...
Pull core debug changes from Ingo Molnar:
"Currently there are two methods to set the panic_timeout: via
'panic=X' boot commandline option, or via /proc/sys/kernel/panic.
This tree adds a third panic_timeout configuration method:
configuration via Kconfig, via CONFIG_PANIC_TIMEOUT=X - useful to
distros that generally want their kernel defaults to come with the
.config.
CONFIG_PANIC_TIMEOUT defaults to 0, which was the previous default
value of panic_timeout.
Doing that unearthed a few arch trickeries regarding arch-special
panic_timeout values and related complications - hopefully all
resolved to the satisfaction of everyone"
* 'core-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
powerpc: Clean up panic_timeout usage
MIPS: Remove panic_timeout settings
panic: Make panic_timeout configurable
Race conditions are theoretically possible between the PCI device addition
and removal in the PPC64 PCI error recovery driver and the generic PCI bus
rescan and device removal that can be triggered via sysfs.
To avoid those race conditions make PPC64 PCI error recovery driver use
global PCI rescan-remove locking around PCI device addition and removal.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
For one PCI error relevant OPAL event, we possibly have multiple
EEH errors for that. For example, multiple frozen PEs detected on
different PHBs. Unfortunately, we didn't cover the case. The patch
enumarates the return value from eeh_ops::next_error() and change
eeh_handle_special_event() and eeh_ops::next_error() to handle all
existing EEH errors.
As Ben pointed out, we needn't list_for_each_entry_safe() since we
are not deleting any PHB from the hose_list and the EEH serialized
lock should be held while purging EEH events. The patch covers those
suggestions as well.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, if a process starts a transaction and then takes an
exception because the FPU, VMX or VSX unit is unavailable to it,
we end up corrupting any FP/VMX/VSX state that was valid before
the interrupt. For example, if the process starts a transaction
with the FPU available to it but VMX unavailable, and then does
a VMX instruction inside the transaction, the FP state gets
corrupted.
Loading up the desired state generally involves doing a reclaim
and a recheckpoint. To avoid corrupting already-valid state, we have
to be careful not to reload that state from the thread_struct
between the reclaim and the recheckpoint (since the thread_struct
values are stale by now), and we have to reload that state from
the transact_fp/vr arrays after the recheckpoint to get back the
current transactional values saved there by the reclaim.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, when we have a process using the transactional memory
facilities on POWER8 (that is, the processor is in transactional
or suspended state), and the process enters the kernel and the
kernel then uses the floating-point or vector (VMX/Altivec) facility,
we end up corrupting the user-visible FP/VMX/VSX state. This
happens, for example, if a page fault causes a copy-on-write
operation, because the copy_page function will use VMX to do the
copy on POWER8. The test program below demonstrates the bug.
The bug happens because when FP/VMX state for a transactional process
is stored in the thread_struct, we store the checkpointed state in
.fp_state/.vr_state and the transactional (current) state in
.transact_fp/.transact_vr. However, when the kernel wants to use
FP/VMX, it calls enable_kernel_fp() or enable_kernel_altivec(),
which saves the current state in .fp_state/.vr_state. Furthermore,
when we return to the user process we return with FP/VMX/VSX
disabled. The next time the process uses FP/VMX/VSX, we don't know
which set of state (the current register values, .fp_state/.vr_state,
or .transact_fp/.transact_vr) we should be using, since we have no
way to tell if we are still in the same transaction, and if not,
whether the previous transaction succeeded or failed.
Thus it is necessary to strictly adhere to the rule that if FP has
been enabled at any point in a transaction, we must keep FP enabled
for the user process with the current transactional state in the
FP registers, until we detect that it is no longer in a transaction.
Similarly for VMX; once enabled it must stay enabled until the
process is no longer transactional.
In order to keep this rule, we add a new thread_info flag which we
test when returning from the kernel to userspace, called TIF_RESTORE_TM.
This flag indicates that there is FP/VMX/VSX state to be restored
before entering userspace, and when it is set the .tm_orig_msr field
in the thread_struct indicates what state needs to be restored.
The restoration is done by restore_tm_state(). The TIF_RESTORE_TM
bit is set by new giveup_fpu/altivec_maybe_transactional helpers,
which are called from enable_kernel_fp/altivec, giveup_vsx, and
flush_fp/altivec_to_thread instead of giveup_fpu/altivec.
The other thing to be done is to get the transactional FP/VMX/VSX
state from .fp_state/.vr_state when doing reclaim, if that state
has been saved there by giveup_fpu/altivec_maybe_transactional.
Having done this, we set the FP/VMX bit in the thread's MSR after
reclaim to indicate that that part of the state is now valid
(having been reclaimed from the processor's checkpointed state).
Finally, in the signal handling code, we move the clearing of the
transactional state bits in the thread's MSR a bit earlier, before
calling flush_fp_to_thread(), so that we don't unnecessarily set
the TIF_RESTORE_TM bit.
This is the test program:
/* Michael Neuling 4/12/2013
*
* See if the altivec state is leaked out of an aborted transaction due to
* kernel vmx copy loops.
*
* gcc -m64 htm_vmxcopy.c -o htm_vmxcopy
*
*/
/* We don't use all of these, but for reference: */
int main(int argc, char *argv[])
{
long double vecin = 1.3;
long double vecout;
unsigned long pgsize = getpagesize();
int i;
int fd;
int size = pgsize*16;
char tmpfile[] = "/tmp/page_faultXXXXXX";
char buf[pgsize];
char *a;
uint64_t aborted = 0;
fd = mkstemp(tmpfile);
assert(fd >= 0);
memset(buf, 0, pgsize);
for (i = 0; i < size; i += pgsize)
assert(write(fd, buf, pgsize) == pgsize);
unlink(tmpfile);
a = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
assert(a != MAP_FAILED);
asm __volatile__(
"lxvd2x 40,0,%[vecinptr] ; " // set 40 to initial value
TBEGIN
"beq 3f ;"
TSUSPEND
"xxlxor 40,40,40 ; " // set 40 to 0
"std 5, 0(%[map]) ;" // cause kernel vmx copy page
TABORT
TRESUME
TEND
"li %[res], 0 ;"
"b 5f ;"
"3: ;" // Abort handler
"li %[res], 1 ;"
"5: ;"
"stxvd2x 40,0,%[vecoutptr] ; "
: [res]"=r"(aborted)
: [vecinptr]"r"(&vecin),
[vecoutptr]"r"(&vecout),
[map]"r"(a)
: "memory", "r0", "r3", "r4", "r5", "r6", "r7");
if (aborted && (vecin != vecout)){
printf("FAILED: vector state leaked on abort %f != %f\n",
(double)vecin, (double)vecout);
exit(1);
}
munmap(a, size);
close(fd);
printf("PASSED!\n");
return 0;
}
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If we set irq_work on a processor and immediately afterward, before the
irq work has a chance to be processed, we change the decrementer value,
we can seriously delay the handling of that irq_work.
Fix it by checking in a few places for pending irq work, first before
changing the decrementer in decrementer_set_next_event() and after
changing it in the same function and in timer_interrupt().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Huge Dickins reported an issue that b5ff4211a8
"powerpc/book3s: Queue up and process delayed MCE events" breaks the
PowerMac G5 boot. This patch fixes it by moving the mce even processing
away from syscall exit, which was wrong to do that in first place, and
using irq work framework to delay processing of mce event.
Reported-by: Hugh Dickins <hughd@google.com
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some devices, for example PCI root port, don't have IOMMU table and
group. We needn't detach them from their IOMMU group. Otherwise, it
potentially incurs kernel crash because of referring NULL IOMMU group
as following backtrace indicates:
.iommu_group_remove_device+0x74/0x1b0
.iommu_bus_notifier+0x94/0xb4
.notifier_call_chain+0x78/0xe8
.__blocking_notifier_call_chain+0x7c/0xbc
.blocking_notifier_call_chain+0x38/0x48
.device_del+0x50/0x234
.pci_remove_bus_device+0x88/0x138
.pci_stop_and_remove_bus_device+0x2c/0x40
.pcibios_remove_pci_devices+0xcc/0xfc
.pcibios_remove_pci_devices+0x3c/0xfc
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When EEH error comes to one specific PCI device before its driver
is loaded, we will apply hotplug to recover the error. During the
plug time, the PCI device will be probed and its driver is loaded.
Then we wrongly calls to the error handlers if the driver supports
EEH explicitly.
The patch intends to fix by introducing flag EEH_DEV_NO_HANDLER and
set it before we remove the PCI device. In turn, we can avoid wrongly
calls the error handlers of the PCI device after its driver loaded.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
After reset on the specific PE or PHB, we never configure AER
correctly on PowerNV platform. We needn't care it on pSeries
platform. The patch introduces additional EEH operation eeh_ops::
restore_config() so that we have chance to configure AER correctly
for PowerNV platform.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
The one instance where we add an include for init.h covers off
a case where that file was implicitly getting it from another
header which itself didn't need it.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull powerpc fix from Ben Herrenschmidt:
"Here's one regression fix for 3.13 that I would appreciate if you
could still pull in. It was an "interesting" one to debug, basically
it's an old bug that got somewhat "exposed" by new code breaking the
boot on PA Semi boards (yes, it does appear that some people are still
using these!)"
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
powerpc: Check return value of instance-to-package OF call
On PA-Semi firmware, the instance-to-package callback doesn't seem
to be implemented. We didn't check for error, however, thus
subsequently passed the -1 value returned into stdout_node to
thins like prom_getprop etc...
Thus caused the firmware to load values around 0 (physical) internally
as node structures. It somewhat "worked" as long as we had a NULL in the
right place (address 8) at the beginning of the kernel, we didn't "see"
the bug. But commit 5c0484e25e
"powerpc: Endian safe trampoline" changed the kernel entry point causing
that old bug to now cause a crash early during boot.
This fixes booting on PA-Semi board by properly checking the return
value from instance-to-package.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Olof Johansson <olof@lixom.net>
---
the setup before the change was
- arch/powerpc/Kconfig had the PPC_CLOCK option, off by default
- depending on the PPC_CLOCK option the arch/powerpc/kernel/clock.c file
was built, which implements the clk.h API but always returns -ENOSYS
unless a platform registers specific callbacks
- the MPC52xx platform selected PPC_CLOCK but did not register any
callbacks, thus all clk.h API calls keep resulting in -ENOSYS errors
(which is OK, all peripheral drivers deal with the situation)
- the MPC512x platform selected PPC_CLOCK and registered specific
callbacks implemented in arch/powerpc/platforms/512x/clock.c, thus
provided real support for the clock API
- no other powerpc platform did select PPC_CLOCK
the situation after the change is
- the MPC512x platform implements the COMMON_CLK interface, and thus the
PPC_CLOCK approach in arch/powerpc/platforms/512x/clock.c has become
obsolete
- the MPC52xx platform still lacks genuine support for the clk.h API
while this is not a change against the previous situation (the error
code returned from COMMON_CLK stubs differs but every call still
results in an error)
- with all references gone, the arch/powerpc/kernel/clock.c wrapper and
the PPC_CLOCK option have become obsolete, as did the clk_interface.h
header file
the switch from PPC_CLOCK to COMMON_CLK is done for all platforms within
the same commit such that multiplatform kernels (the combination of 512x
and 52xx within one executable) keep working
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Anatolij Gustschin <agust@denx.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Gerhard Sittig <gsi@denx.de>
Signed-off-by: Anatolij Gustschin <agust@denx.de>
On Freescale e6500 cores EPCR[DGTMI] controls whether guest supervisor
state can execute TLB management instructions. If EPCR[DGTMI]=0
tlbwe and tlbilx are allowed to execute normally in the guest state.
A hypervisor may choose to virtualize TLB1 and for this purpose it
may use IPROT to protect the entries for being invalidated by the
guest. However, because tlbwe and tlbilx execution in the guest state
are sharing the same bit, it is not possible to have a scenario where
tlbwe is allowed to be executed in guest state and tlbilx traps. When
guest TLB management instructions are allowed to be executed in guest
state the guest cannot use tlbilx to invalidate TLB1 guest entries.
Linux is using tlbilx in the boot code to invalidate the temporary
entries it creates when initializing the MMU. The patch is replacing
the usage of tlbilx in initialization code with tlbwe with VALID bit
cleared.
Linux is also using tlbilx in other contexts (like huge pages or
indirect entries) but removing the tlbilx from the initialization code
offers the possibility to have scenarios under hypervisor which are
not using huge pages or indirect entries.
Signed-off-by: Diana Craciun <Diana.Craciun@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
There are a few things that make the existing hw tablewalk handlers
unsuitable for e6500:
- Indirect entries go in TLB1 (though the resulting direct entries go in
TLB0).
- It has threads, but no "tlbsrx." -- so we need a spinlock and
a normal "tlbsx". Because we need this lock, hardware tablewalk
is mandatory on e6500 unless we want to add spinlock+tlbsx to
the normal bolted TLB miss handler.
- TLB1 has no HES (nor next-victim hint) so we need software round robin
(TODO: integrate this round robin data with hugetlb/KVM)
- The existing tablewalk handlers map half of a page table at a time,
because IBM hardware has a fixed 1MiB indirect page size. e6500
has variable size indirect entries, with a minimum of 2MiB.
So we can't do the half-page indirect mapping, and even if we
could it would be less efficient than mapping the full page.
- Like on e5500, the linear mapping is bolted, so we don't need the
overhead of supporting nested tlb misses.
Note that hardware tablewalk does not work in rev1 of e6500.
We do not expect to support e6500 rev1 in mainline Linux.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
When booting above the 64M for a secondary cpu, we also face the
same issue as the boot cpu that the PAGE_OFFSET map two different
physical address for the init tlb and the final map. So we have to use
switch_to_as1/restore_to_as0 between the conversion of these two
maps. When restoring to as0 for a secondary cpu, we only need to
return to the caller. So add a new parameter for function
restore_to_as0 for this purpose.
Use LOAD_REG_ADDR_PIC to get the address of variables which may
be used before we set the final map in cams for the secondary cpu.
Move the setting of cams a bit earlier in order to avoid the
unnecessary using of LOAD_REG_ADDR_PIC.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
This is always true for a non-relocatable kernel. Otherwise the kernel
would get stuck. But for a relocatable kernel, it seems a little
complicated. When booting a relocatable kernel, we just align the
kernel start addr to 64M and map the PAGE_OFFSET from there. The
relocation will base on this virtual address. But if this address
is not the same as the memstart_addr, we will have to change the
map of PAGE_OFFSET to the real memstart_addr and do another relocation
again.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
[scottwood@freescale.com: make offset long and non-negative in simple case]
Signed-off-by: Scott Wood <scottwood@freescale.com>
For a relocatable kernel since it can be loaded at any place, there
is no any relation between the kernel start addr and the memstart_addr.
So we can't calculate the memstart_addr from kernel start addr. And
also we can't wait to do the relocation after we get the real
memstart_addr from device tree because it is so late. So introduce
a new function we can use to get the first memblock address and size
in a very early stage (before machine_init).
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
We use the tlb1 entries to map low mem to the kernel space. In the
current code, it assumes that the first tlb entry would cover the
kernel image. But this is not true for some special cases, such as
when we run a relocatable kernel above the 64M or set
CONFIG_KERNEL_START above 64M. So we choose to switch to address
space 1 before setting these tlb entries.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
This is based on the codes in the head_44x.S. The difference is that
the init tlb size we used is 64M. With this patch we can only load the
kernel at address between memstart_addr ~ memstart_addr + 64M. We will
fix this restriction in the following patches.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Move the codes which translate a effective address to physical address
to a separate function. So it can be reused by other code.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
The e500v1 doesn't implement the MAS7, so we should avoid to access
this register on that implementations. In the current kernel, the
access to MAS7 are protected by either CONFIG_PHYS_64BIT or
MMU_FTR_BIG_PHYS. Since some code are executed before the code
patching, we have to use CONFIG_PHYS_64BIT in these cases.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Add a sys interface to enable/diable pw20 state or altivec idle, and
control the wait entry time.
Enable/Disable interface:
0, disable. 1, enable.
/sys/devices/system/cpu/cpuX/pw20_state
/sys/devices/system/cpu/cpuX/altivec_idle
Set wait time interface:(Nanosecond)
/sys/devices/system/cpu/cpuX/pw20_wait_time
/sys/devices/system/cpu/cpuX/altivec_idle_wait_time
Example: Base on TBfreq is 41MHZ.
1~48(ns): TB[63]
49~97(ns): TB[62]
98~195(ns): TB[61]
196~390(ns): TB[60]
391~780(ns): TB[59]
781~1560(ns): TB[58]
...
Signed-off-by: Wang Dongsheng <dongsheng.wang@freescale.com>
[scottwood@freescale.com: change ifdef]
Signed-off-by: Scott Wood <scottwood@freescale.com>
This modifies kvmppc_load_fp and kvmppc_save_fp to use the generic
FP/VSX and VMX load/store functions instead of open-coding the
FP/VSX/VMX load/store instructions. Since kvmppc_load/save_fp don't
follow C calling conventions, we make them private symbols within
book3s_hv_rmhandlers.S.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This uses struct thread_fp_state and struct thread_vr_state to store
the floating-point, VMX/Altivec and VSX state, rather than flat arrays.
This makes transferring the state to/from the thread_struct simpler
and allows us to unify the get/set_one_reg implementations for the
VSX registers.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
kvm_hypercall() have nothing KVM specific, so renamed to epapr_hypercall().
Also this in moved to arch/powerpc/include/asm/epapr_hcalls.h
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Using hardware features make core automatically enter PW20 state.
Set a TB count to hardware, the effective count begins when PW10
is entered. When the effective period has expired, the core will
proceed from PW10 to PW20 if no exit conditions have occurred during
the period.
Signed-off-by: Wang Dongsheng <dongsheng.wang@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Each core's AltiVec unit may be placed into a power savings mode
by turning off power to the unit. Core hardware will automatically
power down the AltiVec unit after no AltiVec instructions have
executed in N cycles. The AltiVec power-control is triggered by hardware.
Signed-off-by: Wang Dongsheng <dongsheng.wang@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
This fixes a build break that was probably introduced with the removal
of -Wa,-me500 (commit f49596a4cf), where
the assembler refuses to recognize SPRG4-7 with a generic PPC target.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Dongsheng Wang <dongsheng.wang@freescale.com>
Cc: Anton Vorontsov <avorontsov@mvista.com>
Reviewed-by: Wang Dongsheng <dongsheng.wang@freescale.com>
Tested-by: Wang Dongsheng <dongsheng.wang@freescale.com>
The e500 SPE floating-point emulation code clears existing exceptions
(__FPU_FPSCR &= ~FP_EX_MASK;) before ORing in the exceptions from the
emulated operation. However, these exception bits are the "sticky",
cumulative exception bits, and should only be cleared by the user
program setting SPEFSCR, not implicitly by any floating-point
instruction (whether executed purely by the hardware or emulated).
The spurious clearing of these bits shows up as missing exceptions in
glibc testing.
Fixing this, however, is not as simple as just not clearing the bits,
because while the bits may be from previous floating-point operations
(in which case they should not be cleared), the processor can also set
the sticky bits itself before the interrupt for an exception occurs,
and this can happen in cases when IEEE 754 semantics are that the
sticky bit should not be set. Specifically, the "invalid" sticky bit
is set in various cases with non-finite operands, where IEEE 754
semantics do not involve raising such an exception, and the
"underflow" sticky bit is set in cases of exact underflow, whereas
IEEE 754 semantics are that this flag is set only for inexact
underflow. Thus, for correct emulation the kernel needs to know the
setting of these two sticky bits before the instruction being
emulated.
When a floating-point operation raises an exception, the kernel can
note the state of the sticky bits immediately afterwards. Some
<fenv.h> functions that affect the state of these bits, such as
fesetenv and feholdexcept, need to use prctl with PR_GET_FPEXC and
PR_SET_FPEXC anyway, and so it is natural to record the state of those
bits during that call into the kernel and so avoid any need for a
separate call into the kernel to inform it of a change to those bits.
Thus, the interface I chose to use (in this patch and the glibc port)
is that one of those prctl calls must be made after any userspace
change to those sticky bits, other than through a floating-point
operation that traps into the kernel anyway. feclearexcept and
fesetexceptflag duly make those calls, which would not be required
were it not for this issue.
The previous EGLIBC port, and the uClibc code copied from it, is
fundamentally broken as regards any use of prctl for floating-point
exceptions because it didn't use the PR_FP_EXC_SW_ENABLE bit in its
prctl calls (and did various worse things, such as passing a pointer
when prctl expected an integer). If you avoid anything where prctl is
used, the clearing of sticky bits still means it will never give
anything approximating correct exception semantics with existing
kernels. I don't believe the patch makes things any worse for
existing code that doesn't try to inform the kernel of changes to
sticky bits - such code may get incorrect exceptions in some cases,
but it would have done so anyway in other cases.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
LRAT (Logical to Real Address Translation) present in MMU v2 provides hardware
translation from a logical page number (LPN) to a real page number (RPN) when
tlbwe is executed by a guest or when a page table translation occurs from a
guest virtual address.
Add LRAT error exception handler to Booke3E 64-bit kernel and the basic KVM
handler to avoid build breakage. This is a prerequisite for KVM LRAT support
that will follow.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Pull powerpc fixes from Ben Herrenschmidt:
"A bit more endian problems found during testing of 3.13 and a few
other simple fixes and regressions fixes"
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
powerpc: Fix alignment of secondary cpu spin vars
powerpc: Align p_end
powernv/eeh: Add buffer for P7IOC hub error data
powernv/eeh: Fix possible buffer overrun in ioda_eeh_phb_diag()
powerpc: Make 64-bit non-VMX __copy_tofrom_user bi-endian
powerpc: Make unaligned accesses endian-safe for powerpc
powerpc: Fix bad stack check in exception entry
powerpc/512x: dts: disable MPC5125 usb module
powerpc/512x: dts: remove misplaced IRQ spec from 'soc' node (5125)
Merge a pile of fixes that went into the "merge" branch (3.13-rc's) such
as Anton Little Endian fixes.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The SLB save area is shared with the hypervisor and is defined
as big endian, so we need to byte swap on little endian builds.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch updates the generic iommu backend code to use the
it_page_shift field to determine the iommu page size instead of
using hardcoded values.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds a it_page_shift field to struct iommu_table and
initiliases it to 4K for all platforms.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The powerpc iommu uses a hardcoded page size of 4K. This patch changes
the name of the IOMMU_PAGE_* macros to reflect the hardcoded values. A
future patch will use the existing names to support dynamic page
sizes.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With recent machine check patch series changes, The exception vectors
starting from 0x4300 are now overflowing with allyesconfig. Fix that by
moving machine_check_common and machine_check_handle_early code out of
that region to make enough room for exception vector area.
Fixes this build error reportes by Stephen:
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:958: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:959: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:983: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:984: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1003: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1013: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1014: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1015: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1016: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1017: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1018: Error: attempt to move .org backwards
[Moved the code further down as it introduced link errors due to too long
relative branches to the masked interrupts handlers from the exception
prologs. Also removed the useless feature section --BenH
]
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit 5c0484e25e ('powerpc: Endian safe trampoline') resulted in
losing proper alignment of the spinlock variables used when booting
secondary CPUs, causing some quite odd issues with failing to boot on
PA Semi-based systems.
This showed itself on ppc64_defconfig, but not on pasemi_defconfig,
so it had gone unnoticed when I initially tested the LE patch set.
Fix is to add explicit alignment instead of relying on good luck. :)
[ It appears that there is a different issue with PA Semi systems
however this fix is definitely correct so applying anyway -- BenH
]
Fixes: 5c0484e25e ('powerpc: Endian safe trampoline')
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=67811
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
p_end is an 8 byte value embedded in the text section. This means it
is only 4 byte aligned when it should be 8 byte aligned. Fix this
by adding an explicit alignment.
This fixes an issue where POWER7 little endian builds with
CONFIG_RELOCATABLE=y fail to boot.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
These interfaces:
pcibios_resource_to_bus(struct pci_dev *dev, *bus_region, *resource)
pcibios_bus_to_resource(struct pci_dev *dev, *resource, *bus_region)
took a pci_dev, but they really depend only on the pci_bus. And we want to
use them in resource allocation paths where we have the bus but not a
device, so this patch converts them to take the pci_bus instead of the
pci_dev:
pcibios_resource_to_bus(struct pci_bus *bus, *bus_region, *resource)
pcibios_bus_to_resource(struct pci_bus *bus, *resource, *bus_region)
In fact, with standard PCI-PCI bridges, they only depend on the host
bridge, because that's the only place address translation occurs, but
we aren't going that far yet.
[bhelgaas: changelog]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
We don't use PACATOC for PR. Avoid updating HOST_R2 with PR
KVM mode when both HV and PR are enabled in the kernel. Without this we
get the below crash
(qemu)
Unable to handle kernel paging request for data at address 0xffffffffffff8310
Faulting instruction address: 0xc00000000001d5a4
cpu 0x2: Vector: 300 (Data Access) at [c0000001dc53aef0]
pc: c00000000001d5a4: .vtime_delta.isra.1+0x34/0x1d0
lr: c00000000001d760: .vtime_account_system+0x20/0x60
sp: c0000001dc53b170
msr: 8000000000009032
dar: ffffffffffff8310
dsisr: 40000000
current = 0xc0000001d76c62d0
paca = 0xc00000000fef1100 softe: 0 irq_happened: 0x01
pid = 4472, comm = qemu-system-ppc
enter ? for help
[c0000001dc53b200] c00000000001d760 .vtime_account_system+0x20/0x60
[c0000001dc53b290] c00000000008d050 .kvmppc_handle_exit_pr+0x60/0xa50
[c0000001dc53b340] c00000000008f51c kvm_start_lightweight+0xb4/0xc4
[c0000001dc53b510] c00000000008cdf0 .kvmppc_vcpu_run_pr+0x150/0x2e0
[c0000001dc53b9e0] c00000000008341c .kvmppc_vcpu_run+0x2c/0x40
[c0000001dc53ba50] c000000000080af4 .kvm_arch_vcpu_ioctl_run+0x54/0x1b0
[c0000001dc53bae0] c00000000007b4c8 .kvm_vcpu_ioctl+0x478/0x730
[c0000001dc53bca0] c0000000002140cc .do_vfs_ioctl+0x4ac/0x770
[c0000001dc53bd80] c0000000002143e8 .SyS_ioctl+0x58/0xb0
[c0000001dc53be30] c000000000009e58 syscall_exit+0x0/0x98
Signed-off-by: Alexander Graf <agraf@suse.de>
A couple more device tree properties that need byte swapping.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
cpu_to_core_id() is missing a byteswap:
cat /sys/devices/system/cpu/cpu63/topology/core_id
201326592
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
During on LE boot we see:
Partition configured for 1073741824 cpus, operating system maximum is 2048.
Clearly missing a byteswap here.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There is a bug in using ptrace to access FPRs via PTRACE_PEEKUSR /
PTRACE_POKEUSR. In effect, trying to access any of the FPRs always
really accesses FPR0, which does seriously break debugging :-)
The problem seems to have been introduced by commit 3ad26e5c44
(Merge branch 'for-kvm' into next).
[ It is indeed a merge conflict between Paul's FPU/VSX state rework
and my LE patches - Anton ]
Signed-off-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit ce11e48b7f ("KVM: PPC: E500: Add
userspace debug stub support") added "struct thread_struct" to the
stack of kvmppc_vcpu_run(). thread_struct is 1152 bytes on my build,
compared to 48 bytes for the recently-introduced "struct debug_reg".
Use the latter instead.
This fixes the following error:
cc1: warnings being treated as errors
arch/powerpc/kvm/booke.c: In function 'kvmppc_vcpu_run':
arch/powerpc/kvm/booke.c:760:1: error: the frame size of 1424 bytes is larger than 1024 bytes
make[2]: *** [arch/powerpc/kvm/booke.o] Error 1
make[1]: *** [arch/powerpc/kvm] Error 2
make[1]: *** Waiting for unfinished jobs....
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The current logic sets the kdump base to min of 2G or ppc64_rma_size/2.
On PowerNV kernel the first memory block 'memory@0' can be very large,
equal to the DIMM size with ppc64_rma_size value capped to 1G. Hence on
PowerNV, kdump base is set to 512M resulting kdump to fail while allocating
paca array. This is because, paca need its memory from RMA region capped
at 256M (see allocate_pacas()).
This patch lowers the kdump base cap to 128M so that kdump kernel can
successfully get memory below 256M for paca allocation.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
A kernel configured with PPC_EARLY_DEBUG_BOOTX=y but PPC_PMAC=n and
PPC_MAPLE=n will fail to link:
btext.c:(.text+0x2d0fc): undefined reference to `.rmci_off'
btext.c:(.text+0x2d214): undefined reference to `.rmci_on'
Fix it by making the build of rmci_on/off() depend on
PPC_EARLY_DEBUG_BOOTX, which also enable the only code that uses them.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, the slb_shadow buffer is our largest symbol:
[jk@pablo linux]$ nm --size-sort -r -S obj/vmlinux | head -1
c000000000da0000 0000000000040000 d slb_shadow
- we allocate 128 bytes per cpu; so 256k with NR_CPUS=2048. As we have
constant initialisers, it's allocated in .text, causing a larger vmlinux
image. We may also allocate unecessary slb_shadow buffers (> no. pacas),
since we use the build-time NR_CPUS rather than the run-time nr_cpu_ids.
We could move this to the bss, but then we still have the NR_CPUS vs
nr_cpu_ids potential for overallocation.
This change dynamically allocates the slb_shadow array, during
initialise_pacas(). At a cost of 104 bytes of text, we save 256k of
data:
[jk@pablo linux]$ size obj/vmlinux{.orig,}
text data bss dec hex filename
9202795 5244676 1169576 15617047 ee4c17 obj/vmlinux.orig
9202899 4982532 1169576 15355007 ea4c7f obj/vmlinux
Tested on pseries.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The only external user of slb_shadow is the pseries lpar code, and it
can access through the paca array instead.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In order to support concurrent adapter firmware download
to SR-IOV adapters on pSeries, each VF will see an EEH event
where the slot will remain in the unavailable state for
the duration of the adapter firmware update, which can take
as long as 5 minutes. Extend the EEH recovery timeout to
account for this.
Signed-off-by: Brian King <brking@linux.vnet.ibm.com>
Acked-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current implementation of IOMMU on sPAPR does not use iommu_ops
and therefore does not call IOMMU API's bus_set_iommu() which
1) sets iommu_ops for a bus
2) registers a bus notifier
Instead, PCI devices are added to IOMMU groups from
subsys_initcall_sync(tce_iommu_init) which does basically the same
thing without using iommu_ops callbacks.
However Freescale PAMU driver (https://lkml.org/lkml/2013/7/1/158)
implements iommu_ops and when tce_iommu_init is called, every PCI device
is already added to some group so there is a conflict.
This patch does 2 things:
1. removes the loop in which PCI devices were added to groups and
adds explicit iommu_add_device() calls to add devices as soon as they get
the iommu_table pointer assigned to them.
2. moves a bus notifier to powernv code in order to avoid conflict with
the notifier from Freescale driver.
iommu_add_device() and iommu_del_device() are public now.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add basic error handling in machine check exception handler.
- If MSR_RI isn't set, we can not recover.
- Check if disposition set to OpalMCE_DISPOSITION_RECOVERED.
- Check if address at fault is inside kernel address space, if not then send
SIGBUS to process if we hit exception when in userspace.
- If address at fault is not provided then and if we get a synchronous machine
check while in userspace then kill the task.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When machine check real mode handler can not continue into host kernel
in V mode, it returns from the interrupt and we loose MCE event which
never gets logged. In such a situation queue up the MCE event so that
we can log it later when we get back into host kernel with r1 pointing to
kernel stack e.g. during syscall exit.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Now that we handle machine check in linux, the MCE decoding should also
take place in linux host. This info is crucial to log before we go down
in case we can not handle the machine check errors. This patch decodes
and populates a machine check event which contain high level meaning full
MCE information.
We do this in real mode C code with ME bit on. The MCE information is still
available on emergency stack (in pt_regs structure format). Even if we take
another exception at this point the MCE early handler will allocate a new
stack frame on top of current one. So when we return back here we still have
our MCE information safe on current stack.
We use per cpu buffer to save high level MCE information. Each per cpu buffer
is an array of machine check event structure indexed by per cpu counter
mce_nest_count. The mce_nest_count is incremented every time we enter
machine check early handler in real mode to get the current free slot
(index = mce_nest_count - 1). The mce_nest_count is decremented once the
MCE info is consumed by virtual mode machine exception handler.
This patch provides save_mce_event(), get_mce_event() and release_mce_event()
generic routines that can be used by machine check handlers to populate and
retrieve the event. The routine release_mce_event() will free the event slot so
that it can be reused. Caller can invoke get_mce_event() with a release flag
either to release the event slot immediately OR keep it so that it can be
fetched again. The event slot can be also released anytime by invoking
release_mce_event().
This patch also updates kvm code to invoke get_mce_event to retrieve generic
mce event rather than paca->opal_mce_evt.
The KVM code always calls get_mce_event() with release flags set to false so
that event is available for linus host machine
If machine check occurs while we are in guest, KVM tries to handle the error.
If KVM is able to handle MC error successfully, it enters the guest and
delivers the machine check to guest. If KVM is not able to handle MC error, it
exists the guest and passes the control to linux host machine check handler
which then logs MC event and decides how to handle it in linux host. In failure
case, KVM needs to make sure that the MC event is available for linux host to
consume. Hence KVM always calls get_mce_event() with release flags set to false
and later it invokes release_mce_event() only if it succeeds to handle error.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch handles the memory errors on power8. If we get a machine check
exception due to SLB or TLB errors, then flush SLBs/TLBs and reload SLBs to
recover.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If we get a machine check exception due to SLB or TLB errors, then flush
SLBs/TLBs and reload SLBs to recover. We do this in real mode before turning
on MMU. Otherwise we would run into nested machine checks.
If we get a machine check when we are in guest, then just flush the
SLBs and continue. This patch handles errors for power7. The next
patch will handle errors for power8
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch introduces flush_tlb operation in cpu_spec structure. This will
help us to invoke appropriate CPU-side flush tlb routine. This patch
adds the foundation to invoke CPU specific flush routine for respective
architectures. Currently this patch introduce flush_tlb for p7 and p8.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the early machine check function pointer in cputable for
CPU specific early machine check handling. The early machine handle routine
will be called in real mode to handle SLB and TLB errors. We can not reuse
the existing machine_check hook because it is always invoked in kernel
virtual mode and we would already be in trouble if we get SLB or TLB errors.
This patch just sets up a mechanism to invoke CPU specific handler. The
subsequent patches will populate the function pointer.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We can get machine checks from any context. We need to make sure that
we handle all of them correctly. If we are coming from hypervisor user-space,
we can continue in host kernel in virtual mode to deliver the MC event.
If we got woken up from power-saving mode then we may come in with one of
the following state:
a. No state loss
b. Supervisor state loss
c. Hypervisor state loss
For (a) and (b), we go back to nap again. State (c) is fatal, keep spinning.
For all other context which we not sure of queue up the MCE event and return
from the interrupt.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Move machine check entry point into Linux. So far we were dependent on
firmware to decode MCE error details and handover the high level info to OS.
This patch introduces early machine check routine that saves the MCE
information (srr1, srr0, dar and dsisr) to the emergency stack. We allocate
stack frame on emergency stack and set the r1 accordingly. This allows us to be
prepared to take another exception without loosing context. One thing to note
here that, if we get another machine check while ME bit is off then we risk a
checkstop. Hence we restrict ourselves to save only MCE information and
register saved on PACA_EXMC save are before we turn the ME bit on. We use
paca->in_mce flag to differentiate between first entry and nested machine check
entry which helps proper use of emergency stack. We increment paca->in_mce
every time we enter in early machine check handler and decrement it while
leaving. When we enter machine check early handler first time (paca->in_mce ==
0), we are sure nobody is using MC emergency stack and allocate a stack frame
at the start of the emergency stack. During subsequent entry (paca->in_mce >
0), we know that r1 points inside emergency stack and we allocate separate
stack frame accordingly. This prevents us from clobbering MCE information
during nested machine checks.
The early machine check handler changes are placed under CPU_FTR_HVMODE
section. This makes sure that the early machine check handler will get executed
only in hypervisor kernel.
This is the code flow:
Machine Check Interrupt
|
V
0x200 vector ME=0, IR=0, DR=0
|
V
+-----------------------------------------------+
|machine_check_pSeries_early: | ME=0, IR=0, DR=0
| Alloc frame on emergency stack |
| Save srr1, srr0, dar and dsisr on stack |
+-----------------------------------------------+
|
(ME=1, IR=0, DR=0, RFID)
|
V
machine_check_handle_early ME=1, IR=0, DR=0
|
V
+-----------------------------------------------+
| machine_check_early (r3=pt_regs) | ME=1, IR=0, DR=0
| Things to do: (in next patches) |
| Flush SLB for SLB errors |
| Flush TLB for TLB errors |
| Decode and save MCE info |
+-----------------------------------------------+
|
(Fall through existing exception handler routine.)
|
V
machine_check_pSerie ME=1, IR=0, DR=0
|
(ME=1, IR=1, DR=1, RFID)
|
V
machine_check_common ME=1, IR=1, DR=1
.
.
.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch introduces exclusive emergency stack for machine check exception.
We use emergency stack to handle machine check exception so that we can save
MCE information (srr1, srr0, dar and dsisr) before turning on ME bit and be
ready for re-entrancy. This helps us to prevent clobbering of MCE information
in case of nested machine checks.
The reason for using emergency stack over normal kernel stack is that the
machine check might occur in the middle of setting up a stack frame which may
result into improper use of kernel stack.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>