I hit a bug in which we started a CSA with an action frame,
but the AP changed its mind and didn't change the beacon.
The CSA wasn't cancelled and we lost the connection.
The beacons were ignored because they never changed: they
never contained any CSA IE. Because they never changed, the
CRC of the beacon didn't change either which made us ignore
the beacons instead of processing them.
Now what happens is:
1) beacon has CRC X and it is valid. No CSA IE in the beacon
2) as long as beacon's CRC X, don't process their IEs
3) rx action frame with CSA
4) invalidate the beacon's CRC
5) rx beacon, CRC is still X, but now it is invalid
6) process the beacon, detect there is no CSA IE
7) abort CSA
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
Signed-off-by: Luca Coelho <luciano.coelho@intel.com>
Link: https://lore.kernel.org/r/iwlwifi.20201206145305.83470b8407e6.I739b907598001362744692744be15335436b8351@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
When we set up a TDLS station, we set sta->sta.bandwidth solely based
on the capabilities, because the "what's the current bandwidth" check
is bypassed and only applied for other types of stations.
This leads to the unfortunate scenario that the sta->sta.bandwidth is
160 MHz if both stations support it, but we never actually configure
this bandwidth unless the AP is already using 160 MHz; even for wider
bandwidth support we only go up to 80 MHz (at least right now.)
For iwlwifi, this can also lead to firmware asserts, telling us that
we've configured the TX rates for a higher bandwidth than is actually
available due to the PHY configuration.
For non-TDLS, we check against the interface's requested bandwidth,
but we explicitly skip this check for TDLS to cope with the wider BW
case. Change this to
(a) still limit to the TDLS peer's own chandef, which gets factored
into the overall PHY configuration we request from the driver,
and
(b) limit it to when the TDLS peer is authorized, because it's only
factored into the channel context in this case.
Fixes: 504871e602 ("mac80211: fix bandwidth computation for TDLS peers")
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Luca Coelho <luciano.coelho@intel.com>
Link: https://lore.kernel.org/r/iwlwifi.20201206145305.fcc7d29c4590.I11f77e9e25ddf871a3c8d5604650c763e2c5887a@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
syzbot discovered a bug in which an OOB access was being made because
an unsuitable key_idx value was wrongly considered to be acceptable
while deleting a key in nl80211_del_key().
Since we don't know the cipher at the time of deletion, if
cfg80211_validate_key_settings() were to be called directly in
nl80211_del_key(), even valid keys would be wrongly determined invalid,
and deletion wouldn't occur correctly.
For this reason, a new function - cfg80211_valid_key_idx(), has been
created, to determine if the key_idx value provided is valid or not.
cfg80211_valid_key_idx() is directly called in 2 places -
nl80211_del_key(), and cfg80211_validate_key_settings().
Reported-by: syzbot+49d4cab497c2142ee170@syzkaller.appspotmail.com
Tested-by: syzbot+49d4cab497c2142ee170@syzkaller.appspotmail.com
Suggested-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Anant Thazhemadam <anant.thazhemadam@gmail.com>
Link: https://lore.kernel.org/r/20201204215825.129879-1-anant.thazhemadam@gmail.com
Cc: stable@vger.kernel.org
[also disallow IGTK key IDs if no IGTK cipher is supported]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Don't populate the const array bws on the stack but instead it
static. Makes the object code smaller by 80 bytes:
Before:
text data bss dec hex filename
85694 16865 1216 103775 1955f ./net/wireless/reg.o
After:
text data bss dec hex filename
85518 16961 1216 103695 1950f ./net/wireless/reg.o
(gcc version 10.2.0)
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Link: https://lore.kernel.org/r/20201116181636.362729-1-colin.king@canonical.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
The WLAN device may exist yet not be usable. This can happen
when the WLAN device is controllable by both the host and
some platform internal component.
We need some arbritration that is vendor specific, but when
the device is not available for the host, we need to reflect
this state towards the user space.
Add a reason field to the rfkill object (and event) so that
userspace can know why the device is in rfkill: because some
other platform component currently owns the device, or
because the actual hw rfkill signal is asserted.
Capable userspace can now determine the reason for the rfkill
and possibly do some negotiation on a side band channel using
a proprietary protocol to gain ownership on the device in case
the device is owned by some other component. When the host
gains ownership on the device, the kernel can remove the
RFKILL_HARD_BLOCK_NOT_OWNER reason and the hw rfkill state
will be off. Then, the userspace can bring the device up and
start normal operation.
The rfkill_event structure is enlarged to include the additional
byte, it is now 9 bytes long. Old user space will ask to read
only 8 bytes so that the kernel can know not to feed them with
more data. When the user space writes 8 bytes, new kernels will
just read what is present in the file descriptor. This new byte
is read only from the userspace standpoint anyway.
If a new user space uses an old kernel, it'll ask to read 9 bytes
but will get only 8, and it'll know that it didn't get the new
state. When it'll write 9 bytes, the kernel will again ignore
this new byte which is read only from the userspace standpoint.
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
Link: https://lore.kernel.org/r/20201104134641.28816-1-emmanuel.grumbach@intel.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
fsnotify_parent() used to send two separate events to backends when a
parent inode is watching children and the child inode is also watching.
In an attempt to avoid duplicate events in fanotify, we unified the two
backend callbacks to a single callback and handled the reporting of the
two separate events for the relevant backends (inotify and dnotify).
However the handling is buggy and can result in inotify and dnotify
listeners receiving events of the type they never asked for or spurious
events.
The problem is the unified event callback with two inode marks (parent and
child) is called when any of the parent and child inodes are watched and
interested in the event, but the parent inode's mark that is interested
in the event on the child is not necessarily the one we are currently
reporting to (it could belong to a different group).
So before reporting the parent or child event flavor to backend we need
to check that the mark is really interested in that event flavor.
The semantics of INODE and CHILD marks were hard to follow and made the
logic more complicated than it should have been. Replace it with INODE
and PARENT marks semantics to hopefully make the logic more clear.
Thanks to Hugh Dickins for spotting a bug in the earlier version of this
patch.
Fixes: 497b0c5a7c ("fsnotify: send event to parent and child with single callback")
CC: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20201202120713.702387-4-amir73il@gmail.com
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
During init, vbus_vsafe0v does not get updated till the first
connect as a sink. This causes TCPM to be stuck in SRC_ATTACH_WAIT
state while booting with a sink (For instance: a headset) connected.
[ 1.429168] Start toggling
[ 1.439907] CC1: 0 -> 0, CC2: 0 -> 0 [state TOGGLING, polarity 0, disconnected]
[ 1.445242] CC1: 0 -> 0, CC2: 0 -> 0 [state TOGGLING, polarity 0, disconnected]
[ 53.358528] CC1: 0 -> 0, CC2: 0 -> 2 [state TOGGLING, polarity 0, connected]
[ 53.358564] state change TOGGLING -> SRC_ATTACH_WAIT [rev1 NONE_AMS]
Fix this by updating vbus_vsafe0v based on vbus_present status
on boot.
Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Badhri Jagan Sridharan <badhri@google.com>
Link: https://lore.kernel.org/r/20201211071911.2205197-1-badhri@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The bitreverse helper is almost always built into the kernel,
but in a rare randconfig build it is possible to hit a case
in which it is a loadable module while the atmel-i2c driver
is built-in:
arm-linux-gnueabi-ld: drivers/crypto/atmel-i2c.o: in function `atmel_i2c_checksum':
atmel-i2c.c:(.text+0xa0): undefined reference to `byte_rev_table'
Add one more 'select' statement to prevent this.
Fixes: 11105693fa ("crypto: atmel-ecc - introduce Microchip / Atmel ECC driver")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for the AES/SM4 crypto engine included in the Offload and
Crypto Subsystem (OCS) of the Intel Keem Bay SoC, thus enabling
hardware-acceleration for the following transformations:
- ecb(aes), cbc(aes), ctr(aes), cts(cbc(aes)), gcm(aes) and cbc(aes);
supported for 128-bit and 256-bit keys.
- ecb(sm4), cbc(sm4), ctr(sm4), cts(cbc(sm4)), gcm(sm4) and cbc(sm4);
supported for 128-bit keys.
The driver passes crypto manager self-tests, including the extra tests
(CRYPTO_MANAGER_EXTRA_TESTS=y).
Signed-off-by: Mike Healy <mikex.healy@intel.com>
Co-developed-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Acked-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The code for the legacy RTC and the RTC class based update are pretty much
the same. Consolidate the common parts into one function and just invoke
the actual setter functions.
For RTC class based devices the update code checks whether the offset is
valid for the device, which is usually not the case for the first
invocation. If it's not the same it stores the correct offset and lets the
caller try again. That's not much different from the previous approach
where the first invocation had a pretty low probability to actually hit the
allowed window.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.355743355@linutronix.de
The current RTC set_offset_nsec value is not really intuitive to
understand.
tsched twrite(t2.tv_sec - 1) t2 (seconds increment)
The offset is calculated from twrite based on the assumption that t2 -
twrite == 1s. That means for the MC146818 RTC the offset needs to be
negative so that the write happens 500ms before t2.
It's easier to understand when the whole calculation is based on t2. That
avoids negative offsets and the meaning is obvious:
t2 - twrite: The time defined by the chip when seconds increment
after the write.
twrite - tsched: The time for the transport to the point where the chip
is updated.
==> set_offset_nsec = t2 - tsched
ttransport = twrite - tsched
tRTCinc = t2 - twrite
==> set_offset_nsec = ttransport + tRTCinc
tRTCinc is a chip property and can be obtained from the data sheet.
ttransport depends on how the RTC is connected. It is close to 0 for
directly accessible RTCs. For RTCs behind a slow bus, e.g. i2c, it's the
time required to send the update over the bus. This can be estimated or
even calibrated, but that's a different problem.
Adjust the implementation and update comments accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.263204937@linutronix.de
Miroslav reported that the periodic RTC synchronization in the NTP code
fails more often than not to hit the specified update window.
The reason is that the code uses delayed_work to schedule the update which
needs to be in thread context as the underlying RTC might be connected via
a slow bus, e.g. I2C. In the update function it verifies whether the
current time is correct vs. the requirements of the underlying RTC.
But delayed_work is using the timer wheel for scheduling which is
inaccurate by design. Depending on the distance to the expiry the wheel
gets less granular to allow batching and to avoid the cascading of the
original timer wheel. See 500462a9de ("timers: Switch to a non-cascading
wheel") and the code for further details.
The code already deals with this by splitting the 660 seconds period into a
long 659 seconds timer and then retrying with a smaller delta.
But looking at the actual granularities of the timer wheel (which depend on
the HZ configuration) the 659 seconds timer ends up in an outer wheel level
and is affected by a worst case granularity of:
HZ Granularity
1000 32s
250 16s
100 40s
So the initial timer can be already off by max 12.5% which is not a big
issue as the period of the sync is defined as ~11 minutes.
The fine grained second attempt schedules to the desired update point with
a timer expiring less than a second from now. Depending on the actual delta
and the HZ setting even the second attempt can end up in outer wheel levels
which have a large enough granularity to make the correctness check fail.
As this is a fundamental property of the timer wheel there is no way to
make this more accurate short of iterating in one jiffies steps towards the
update point.
Switch it to an hrtimer instead which schedules the actual update work. The
hrtimer will expire precisely (max 1 jiffie delay when high resolution
timers are not available). The actual scheduling delay of the work is the
same as before.
The update is triggered from do_adjtimex() which is a bit racy but not much
more racy than it was before:
if (ntp_synced())
queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
which is racy when the work is currently executed and has not managed to
reschedule itself.
This becomes now:
if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
queue_work(system_power_efficient_wq, &sync_work, 0);
which is racy when the hrtimer has expired and the work is currently
executed and has not yet managed to rearm the hrtimer.
Not a big problem as it just schedules work for nothing.
The new implementation has a safe guard in place to catch the case where
the hrtimer is queued on entry to the work function and avoids an extra
update attempt of the RTC that way.
Reported-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Miroslav Lichvar <mlichvar@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.062910520@linutronix.de