If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to the Xen path, only change the vCPU's reported state if the vCPU
was actually preempted. The reason for KVM's behavior is that for example
optimistic spinning might not be a good idea if the guest is doing repeated
exits to userspace; however, it is confusing and unlikely to make a difference,
because well-tuned guests will hardly ever exit KVM_RUN in the first place.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SVM uses a per-cpu variable to cache the current value of the
tsc scaling multiplier msr on each cpu.
Commit 1ab9287add
("KVM: X86: Add vendor callbacks for writing the TSC multiplier")
broke this caching logic.
Refactor the code so that all TSC scaling multiplier writes go through
a single function which checks and updates the cache.
This fixes the following scenario:
1. A CPU runs a guest with some tsc scaling ratio.
2. New guest with different tsc scaling ratio starts on this CPU
and terminates almost immediately.
This ensures that the short running guest had set the tsc scaling ratio just
once when it was set via KVM_SET_TSC_KHZ. Due to the bug,
the per-cpu cache is not updated.
3. The original guest continues to run, it doesn't restore the msr
value back to its own value, because the cache matches,
and thus continues to run with a wrong tsc scaling ratio.
Fixes: 1ab9287add ("KVM: X86: Add vendor callbacks for writing the TSC multiplier")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606181149.103072-1-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
hyperv_clock doesn't always give a stable test result, especially with
AMD CPUs. The test compares Hyper-V MSR clocksource (acquired either
with rdmsr() from within the guest or KVM_GET_MSRS from the host)
against rdtsc(). To increase the accuracy, increase the measured delay
(done with nop loop) by two orders of magnitude and take the mean rdtsc()
value before and after rdmsr()/KVM_GET_MSRS.
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220601144322.1968742-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently disabling dirty logging with the TDP MMU is extremely slow.
On a 96 vCPU / 96G VM backed with gigabyte pages, it takes ~200 seconds
to disable dirty logging with the TDP MMU, as opposed to ~4 seconds with
the shadow MMU.
When disabling dirty logging, zap non-leaf parent entries to allow
replacement with huge pages instead of recursing and zapping all of the
child, leaf entries. This reduces the number of TLB flushes required.
and reduces the disable dirty log time with the TDP MMU to ~3 seconds.
Opportunistically add a WARN() to catch GFNs that are mapped at a
higher level than their max level.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220525230904.1584480-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As noted (and fixed) a couple of times in the past, "=@cc<cond>" outputs
and clobbering of "cc" don't work well together. The compiler appears to
mean to reject such, but doesn't - in its upstream form - quite manage
to yet for "cc". Furthermore two similar macros don't clobber "cc", and
clobbering "cc" is pointless in asm()-s for x86 anyway - the compiler
always assumes status flags to be clobbered there.
Fixes: 989b5db215 ("x86/uaccess: Implement macros for CMPXCHG on user addresses")
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Message-Id: <485c0c0b-a3a7-0b7c-5264-7d00c01de032@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When freeing obsolete previous roots, check prev_roots as intended, not
the current root.
Signed-off-by: Shaoqin Huang <shaoqin.huang@intel.com>
Fixes: 527d5cd7ee ("KVM: x86/mmu: Zap only obsolete roots if a root shadow page is zapped")
Message-Id: <20220607005905.2933378-1-shaoqin.huang@intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A livepatch transition may stall indefinitely when a kvm vCPU is heavily
loaded. To the host, the vCPU task is a user thread which is spending a
very long time in the ioctl(KVM_RUN) syscall. During livepatch
transition, set_notify_signal() will be called on such tasks to
interrupt the syscall so that the task can be transitioned. This
interrupts guest execution, but when xfer_to_guest_mode_work() sees that
TIF_NOTIFY_SIGNAL is set but not TIF_SIGPENDING it concludes that an
exit to user mode is unnecessary, and guest execution is resumed without
transitioning the task for the livepatch.
This handling of TIF_NOTIFY_SIGNAL is incorrect, as set_notify_signal()
is expected to break tasks out of interruptible kernel loops and cause
them to return to userspace. Change xfer_to_guest_mode_work() to handle
TIF_NOTIFY_SIGNAL the same as TIF_SIGPENDING, signaling to the vCPU run
loop that an exit to userpsace is needed. Any pending task_work will be
run when get_signal() is called from exit_to_user_mode_loop(), so there
is no longer any need to run task work from xfer_to_guest_mode_work().
Suggested-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Petr Mladek <pmladek@suse.com>
Signed-off-by: Seth Forshee <sforshee@digitalocean.com>
Message-Id: <20220504180840.2907296-1-sforshee@digitalocean.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A KVM device cleanup happens in either of two callbacks:
1) destroy() which is called when the VM is being destroyed;
2) release() which is called when a device fd is closed.
Most KVM devices use 1) but Book3s's interrupt controller KVM devices
(XICS, XIVE, XIVE-native) use 2) as they need to close and reopen during
the machine execution. The error handling in kvm_ioctl_create_device()
assumes destroy() is always defined which leads to NULL dereference as
discovered by Syzkaller.
This adds a checks for destroy!=NULL and adds a missing release().
This is not changing kvm_destroy_devices() as devices with defined
release() should have been removed from the KVM devices list by then.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When kernel handles the vm-exit caused by external interrupts and NMI,
it always sets kvm_intr_type to tell if it's dealing an IRQ or NMI. For
the PMI scenario, it could be IRQ or NMI.
However, intel_pt PMIs are only generated for HARDWARE perf events, and
HARDWARE events are always configured to generate NMIs. Use
kvm_handling_nmi_from_guest() to precisely identify if the intel_pt PMI
came from the guest; this avoids false positives if an intel_pt PMI/NMI
arrives while the host is handling an unrelated IRQ VM-Exit.
Fixes: db215756ae ("KVM: x86: More precisely identify NMI from guest when handling PMI")
Signed-off-by: Yanfei Xu <yanfei.xu@intel.com>
Message-Id: <20220523140821.1345605-1-yanfei.xu@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixing side effect of the so-called opportunistic change in the commit.
Fixes: dc8a9febbab0 ("KVM: selftests: x86: Fix test failure on arch lbr capable platforms")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518170118.66263-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit ddd7ed842627 ("x86/kvm: Alloc dummy async #PF token outside of
raw spinlock") leads to the following Smatch static checker warning:
arch/x86/kernel/kvm.c:212 kvm_async_pf_task_wake()
warn: sleeping in atomic context
arch/x86/kernel/kvm.c
202 raw_spin_lock(&b->lock);
203 n = _find_apf_task(b, token);
204 if (!n) {
205 /*
206 * Async #PF not yet handled, add a dummy entry for the token.
207 * Allocating the token must be down outside of the raw lock
208 * as the allocator is preemptible on PREEMPT_RT kernels.
209 */
210 if (!dummy) {
211 raw_spin_unlock(&b->lock);
--> 212 dummy = kzalloc(sizeof(*dummy), GFP_KERNEL);
^^^^^^^^^^
Smatch thinks the caller has preempt disabled. The `smdb.py preempt
kvm_async_pf_task_wake` output call tree is:
sysvec_kvm_asyncpf_interrupt() <- disables preempt
-> __sysvec_kvm_asyncpf_interrupt()
-> kvm_async_pf_task_wake()
The caller is this:
arch/x86/kernel/kvm.c
290 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
291 {
292 struct pt_regs *old_regs = set_irq_regs(regs);
293 u32 token;
294
295 ack_APIC_irq();
296
297 inc_irq_stat(irq_hv_callback_count);
298
299 if (__this_cpu_read(apf_reason.enabled)) {
300 token = __this_cpu_read(apf_reason.token);
301 kvm_async_pf_task_wake(token);
302 __this_cpu_write(apf_reason.token, 0);
303 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
304 }
305
306 set_irq_regs(old_regs);
307 }
The DEFINE_IDTENTRY_SYSVEC() is a wrapper that calls this function
from the call_on_irqstack_cond(). It's inside the call_on_irqstack_cond()
where preempt is disabled (unless it's already disabled). The
irq_enter/exit_rcu() functions disable/enable preempt.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The timer is disarmed when switching between TSC deadline and other modes;
however, the pending timer is still in-flight, so let's accurately remove
any traces of the previous mode.
Fixes: 4427593258 ("KVM: x86: thoroughly disarm LAPIC timer around TSC deadline switch")
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the raw spinlock in kvm_async_pf_task_wake() before allocating the
the dummy async #PF token, the allocator is preemptible on PREEMPT_RT
kernels and must not be called from truly atomic contexts.
Opportunistically document why it's ok to loop on allocation failure,
i.e. why the function won't get stuck in an infinite loop.
Reported-by: Yajun Deng <yajun.deng@linux.dev>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Whenever x86_decode_emulated_instruction() detects a breakpoint, it
returns the value that kvm_vcpu_check_breakpoint() writes into its
pass-by-reference second argument. Unfortunately this is completely
bogus because the expected outcome of x86_decode_emulated_instruction
is an EMULATION_* value.
Then, if kvm_vcpu_check_breakpoint() does "*r = 0" (corresponding to
a KVM_EXIT_DEBUG userspace exit), it is misunderstood as EMULATION_OK
and x86_emulate_instruction() is called without having decoded the
instruction. This causes various havoc from running with a stale
emulation context.
The fix is to move the call to kvm_vcpu_check_breakpoint() where it was
before commit 4aa2691dcb ("KVM: x86: Factor out x86 instruction
emulation with decoding") introduced x86_decode_emulated_instruction().
The other caller of the function does not need breakpoint checks,
because it is invoked as part of a vmexit and the processor has already
checked those before executing the instruction that #GP'd.
This fixes CVE-2022-1852.
Reported-by: Qiuhao Li <qiuhao@sysec.org>
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 4aa2691dcb ("KVM: x86: Factor out x86 instruction emulation with decoding")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311032801.3467418-2-seanjc@google.com>
[Rewrote commit message according to Qiuhao's report, since a patch
already existed to fix the bug. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For some sev ioctl interfaces, the length parameter that is passed maybe
less than or equal to SEV_FW_BLOB_MAX_SIZE, but larger than the data
that PSP firmware returns. In this case, kmalloc will allocate memory
that is the size of the input rather than the size of the data.
Since PSP firmware doesn't fully overwrite the allocated buffer, these
sev ioctl interface may return uninitialized kernel slab memory.
Reported-by: Andy Nguyen <theflow@google.com>
Suggested-by: David Rientjes <rientjes@google.com>
Suggested-by: Peter Gonda <pgonda@google.com>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Fixes: eaf78265a4 ("KVM: SVM: Move SEV code to separate file")
Fixes: 2c07ded064 ("KVM: SVM: add support for SEV attestation command")
Fixes: 4cfdd47d6d ("KVM: SVM: Add KVM_SEV SEND_START command")
Fixes: d3d1af85e2 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command")
Fixes: eba04b20e4 ("KVM: x86: Account a variety of miscellaneous allocations")
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Peter Gonda <pgonda@google.com>
Message-Id: <20220516154310.3685678-1-Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the starting uABI size of KVM's guest FPU to 'struct kvm_xsave',
i.e. to KVM's historical uABI size. When saving FPU state for usersapce,
KVM (well, now the FPU) sets the FP+SSE bits in the XSAVE header even if
the host doesn't support XSAVE. Setting the XSAVE header allows the VM
to be migrated to a host that does support XSAVE without the new host
having to handle FPU state that may or may not be compatible with XSAVE.
Setting the uABI size to the host's default size results in out-of-bounds
writes (setting the FP+SSE bits) and data corruption (that is thankfully
caught by KASAN) when running on hosts without XSAVE, e.g. on Core2 CPUs.
WARN if the default size is larger than KVM's historical uABI size; all
features that can push the FPU size beyond the historical size must be
opt-in.
==================================================================
BUG: KASAN: slab-out-of-bounds in fpu_copy_uabi_to_guest_fpstate+0x86/0x130
Read of size 8 at addr ffff888011e33a00 by task qemu-build/681
CPU: 1 PID: 681 Comm: qemu-build Not tainted 5.18.0-rc5-KASAN-amd64 #1
Hardware name: /DG35EC, BIOS ECG3510M.86A.0118.2010.0113.1426 01/13/2010
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x45
print_report.cold+0x45/0x575
kasan_report+0x9b/0xd0
fpu_copy_uabi_to_guest_fpstate+0x86/0x130
kvm_arch_vcpu_ioctl+0x72a/0x1c50 [kvm]
kvm_vcpu_ioctl+0x47f/0x7b0 [kvm]
__x64_sys_ioctl+0x5de/0xc90
do_syscall_64+0x31/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Allocated by task 0:
(stack is not available)
The buggy address belongs to the object at ffff888011e33800
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 0 bytes to the right of
512-byte region [ffff888011e33800, ffff888011e33a00)
The buggy address belongs to the physical page:
page:0000000089cd4adb refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x11e30
head:0000000089cd4adb order:2 compound_mapcount:0 compound_pincount:0
flags: 0x4000000000010200(slab|head|zone=1)
raw: 4000000000010200 dead000000000100 dead000000000122 ffff888001041c80
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888011e33900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff888011e33980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff888011e33a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
^
ffff888011e33a80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888011e33b00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Disabling lock debugging due to kernel taint
Fixes: be50b2065d ("kvm: x86: Add support for getting/setting expanded xstate buffer")
Fixes: c60427dd50 ("x86/fpu: Add uabi_size to guest_fpu")
Reported-by: Zdenek Kaspar <zkaspar82@gmail.com>
Cc: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Zdenek Kaspar <zkaspar82@gmail.com>
Message-Id: <20220504001219.983513-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
-----BEGIN PGP SIGNATURE-----
iQIyBAABCgAdFiEEZdn75s5e6LHDQ+f/rUjsVaLHLAcFAmKHGu8ACgkQrUjsVaLH
LAe1sQ/40ltbl/v0cW+zkuUOem+apmJMhtoCfh2Pv00yUYftUNw01Uu+NN04T70x
PYwbu0O8j4dgIFNRPU7VQBVI+fJydkgEr3kpk8UOCCGKiE0NAcFoQv70ngPObc4W
L425i2RviZuQUXLTFsoLOb246p8V8lkfbEQKqWksFEROYWFbdNKmaLpfVqq3Bia2
+G8L2OyAHGjUXgIdOnflZHxowJg4ueGob3iH+4AhZNUpIQYtlKSfi/eo0vmzf5Uz
bD35o6y4G7NnZJyZoKb3QAEt0WQ55YDsNN62XrULQ7GEuWnpez+Jhw3jtrAr59Q7
m8n93NMKKJ9CbnsspFJ+4nHCd2Gb4i99Py70IW6Ro22DL8KRrLDv2ZQi3dJCGrAT
MtER+12coglkgjhDmLn6MMEjWkgbXXxQCEs4OQ8VMORtHAsOQEszu5TCEnihXr2q
+uUZ5O0G6eDowctOVMTdqVMtj1u1AT7fZ68evvk4omNnoFWjkQzd4sVPNDJtK+nC
7mA9IUyC2LSvr/oNNpcuIZsKU6OzQUQ5ISTMpbP/HJInFcvYbJTl0I8UcvjzlImo
81CZTUQOY9kQE+VUTHcGqPr0TjN/YlfF//koiCfeTycN0jbRZZ9rpcRQ38R8sDsS
yy7JQqwpi/x8me9ldt5r19ky5zMlCKpnQfGX6ws+umhqVEHBKw==
=Xznv
-----END PGP SIGNATURE-----
Merge tag 'kvm-riscv-5.19-1' of https://github.com/kvm-riscv/linux into HEAD
KVM/riscv changes for 5.19
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
aTwPZAQ7
=mh7W
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
On Arch LBR capable platforms, LBR_FMT in perf capability msr is 0x3f,
so the last format test will fail. Use a true invalid format(0x30) for
the test if it's running on these platforms. Opportunistically change
the file name to reflect the tests actually carried out.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Message-Id: <20220512084046.105479-1-weijiang.yang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit ec0671d568 ("KVM: LAPIC: Delay trace_kvm_wait_lapic_expire
tracepoint to after vmexit", 2019-06-04), trace_kvm_wait_lapic_expire
was moved after guest_exit_irqoff() because invoking tracepoints within
kvm_guest_enter/kvm_guest_exit caused a lockdep splat.
These days this is not necessary, because commit 87fa7f3e98 ("x86/kvm:
Move context tracking where it belongs", 2020-07-09) restricted
the RCU extended quiescent state to be closer to vmentry/vmexit.
Moving the tracepoint back to __kvm_wait_lapic_expire is more accurate,
because it will be reported even if vcpu_enter_guest causes multiple
vmentries via the IPI/Timer fast paths, and it allows the removal of
advance_expire_delta.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650961551-38390-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check that suppression is not indicated on injection of a key checked
protection exception caused by a memop after it already modified guest
memory, as that violates the definition of suppression.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20220512131019.2594948-3-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
If user space uses a memop to emulate an instruction and that
memop fails, the execution of the instruction ends.
Instruction execution can end in different ways, one of which is
suppression, which requires that the instruction execute like a no-op.
A writing memop that spans multiple pages and fails due to key
protection may have modified guest memory, as a result, the likely
correct ending is termination. Therefore, do not indicate a
suppressing instruction ending in this case.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20220512131019.2594948-2-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Adds some selftests to test ioctl error paths of the uv-uapi.
The Kconfig S390_UV_UAPI must be selected and the Ultravisor facility
must be available. The test can be executed by non-root, however, the
uvdevice special file /dev/uv must be accessible for reading and
writing which may imply root privileges.
./test-uv-device
TAP version 13
1..6
# Starting 6 tests from 3 test cases.
# RUN uvio_fixture.att.fault_ioctl_arg ...
# OK uvio_fixture.att.fault_ioctl_arg
ok 1 uvio_fixture.att.fault_ioctl_arg
# RUN uvio_fixture.att.fault_uvio_arg ...
# OK uvio_fixture.att.fault_uvio_arg
ok 2 uvio_fixture.att.fault_uvio_arg
# RUN uvio_fixture.att.inval_ioctl_cb ...
# OK uvio_fixture.att.inval_ioctl_cb
ok 3 uvio_fixture.att.inval_ioctl_cb
# RUN uvio_fixture.att.inval_ioctl_cmd ...
# OK uvio_fixture.att.inval_ioctl_cmd
ok 4 uvio_fixture.att.inval_ioctl_cmd
# RUN attest_fixture.att_inval_request ...
# OK attest_fixture.att_inval_request
ok 5 attest_fixture.att_inval_request
# RUN attest_fixture.att_inval_addr ...
# OK attest_fixture.att_inval_addr
ok 6 attest_fixture.att_inval_addr
# PASSED: 6 / 6 tests passed.
# Totals: pass:6 fail:0 xfail:0 xpass:0 skip:0 error:0
Signed-off-by: Steffen Eiden <seiden@linux.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20220510144724.3321985-3-seiden@linux.ibm.com>
Link: https://lore.kernel.org/kvm/20220510144724.3321985-3-seiden@linux.ibm.com/
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
This patch adds a new miscdevice to expose some Ultravisor functions
to userspace. Userspace can send IOCTLs to the uvdevice that will then
emit a corresponding Ultravisor Call and hands the result over to
userspace. The uvdevice is available if the Ultravisor Call facility is
present.
Userspace can call the Retrieve Attestation Measurement
Ultravisor Call using IOCTLs on the uvdevice.
The uvdevice will do some sanity checks first.
Then, copy the request data to kernel space, build the UVCB,
perform the UV call, and copy the result back to userspace.
Signed-off-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/kvm/20220516113335.338212-1-seiden@linux.ibm.com/
Message-Id: <20220516113335.338212-1-seiden@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com> (whitespace and tristate fixes, pick)
We update KVM RISC-V maintainers entry to include appropriate KVM
selftests directories so that RISC-V related KVM selftests patches
are CC'ed to KVM RISC-V mailing list.
Signed-off-by: Anup Patel <anup@brainfault.org>
Currently, there is no provision for vmm (qemu-kvm or kvmtool) to
query about multiple-letter ISA extensions. The config register
is only used for base single letter ISA extensions.
A new ISA extension register is added that will allow the vmm
to query about any ISA extension one at a time. It is enabled for
both single letter or multi-letter ISA extensions. The ISA extension
register is useful to if the vmm requires to retrieve/set single
extension while the config register should be used if all the base
ISA extension required to retrieve or set.
For any multi-letter ISA extensions, the new register interface
must be used.
Signed-off-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
On RISC-V platforms with hardware VMID support, we share same
VMID for all VCPUs of a particular Guest/VM. This means we might
have stale G-stage TLB entries on the current Host CPU due to
some other VCPU of the same Guest which ran previously on the
current Host CPU.
To cleanup stale TLB entries, we simply flush all G-stage TLB
entries by VMID whenever underlying Host CPU changes for a VCPU.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
The generic KVM has support for VCPU requests which can be used
to do arch-specific work in the run-loop. We introduce remote
HFENCE functions which will internally use VCPU requests instead
of host SBI calls.
Advantages of doing remote HFENCEs as VCPU requests are:
1) Multiple VCPUs of a Guest may be running on different Host CPUs
so it is not always possible to determine the Host CPU mask for
doing Host SBI call. For example, when VCPU X wants to do HFENCE
on VCPU Y, it is possible that VCPU Y is blocked or in user-space
(i.e. vcpu->cpu < 0).
2) To support nested virtualization, we will be having a separate
shadow G-stage for each VCPU and a common host G-stage for the
entire Guest/VM. The VCPU requests based remote HFENCEs helps
us easily synchronize the common host G-stage and shadow G-stage
of each VCPU without any additional IPI calls.
This is also a preparatory patch for upcoming nested virtualization
support where we will be having a shadow G-stage page table for
each Guest VCPU.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Currently, the KVM_MAX_VCPUS value is 16384 for RV64 and 128
for RV32.
The KVM_MAX_VCPUS value is too high for RV64 and too low for
RV32 compared to other architectures (e.g. x86 sets it to 1024
and ARM64 sets it to 512). The too high value of KVM_MAX_VCPUS
on RV64 also leads to VCPU mask on stack consuming 2KB.
We set KVM_MAX_VCPUS to 1024 for both RV64 and RV32 to be
aligned other architectures.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Various __kvm_riscv_hfence_xyz() functions implemented in the
kvm/tlb.S are equivalent to corresponding HFENCE.GVMA instructions
and we don't have range based local HFENCE functions.
This patch provides complete set of local HFENCE functions which
supports range based TLB invalidation and supports HFENCE.VVMA
based functions. This is also a preparatory patch for upcoming
Svinval support in KVM RISC-V.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
We should treat SBI HFENCE calls as NOPs until nested virtualization
is supported by KVM RISC-V. This will help us test booting a hypervisor
under KVM RISC-V.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
The two-stage address translation defined by the RISC-V privileged
specification defines: VS-stage (guest virtual address to guest
physical address) programmed by the Guest OS and G-stage (guest
physical addree to host physical address) programmed by the
hypervisor.
To align with above terminology, we replace "stage2" with "gstage"
and "Stage2" with "G-stage" name everywhere in KVM RISC-V sources.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Currently, we simply hang using "while (1) ;" upon any unexpected
guest traps because the default guest trap handler is guest_hang().
The above approach is not useful to anyone because KVM selftests
users will only see a hung application upon any unexpected guest
trap.
This patch improves unexpected guest trap handling for KVM RISC-V
selftests by doing the following:
1) Return to host user-space
2) Dump VCPU registers
3) Die using TEST_ASSERT(0, ...)
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Tested-by: Mayuresh Chitale <mchitale@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
* kvm-arm64/its-save-restore-fixes-5.19:
: .
: Tighten the ITS save/restore infrastructure to fail early rather
: than late. Patches courtesy of Rocardo Koller.
: .
KVM: arm64: vgic: Undo work in failed ITS restores
KVM: arm64: vgic: Do not ignore vgic_its_restore_cte failures
KVM: arm64: vgic: Add more checks when restoring ITS tables
KVM: arm64: vgic: Check that new ITEs could be saved in guest memory
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/misc-5.19:
: .
: Misc fixes and general improvements for KVMM/arm64:
:
: - Better handle out of sequence sysregs in the global tables
:
: - Remove a couple of unnecessary loads from constant pool
:
: - Drop unnecessary pKVM checks
:
: - Add all known M1 implementations to the SEIS workaround
:
: - Cleanup kerneldoc warnings
: .
KVM: arm64: vgic-v3: List M1 Pro/Max as requiring the SEIS workaround
KVM: arm64: pkvm: Don't mask already zeroed FEAT_SVE
KVM: arm64: pkvm: Drop unnecessary FP/SIMD trap handler
KVM: arm64: nvhe: Eliminate kernel-doc warnings
KVM: arm64: Avoid unnecessary absolute addressing via literals
KVM: arm64: Print emulated register table name when it is unsorted
KVM: arm64: Don't BUG_ON() if emulated register table is unsorted
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/per-vcpu-host-pmu-data:
: .
: Pass the host PMU state in the vcpu to avoid the use of additional
: shared memory between EL1 and EL2 (this obviously only applies
: to nVHE and Protected setups).
:
: Patches courtesy of Fuad Tabba.
: .
KVM: arm64: pmu: Restore compilation when HW_PERF_EVENTS isn't selected
KVM: arm64: Reenable pmu in Protected Mode
KVM: arm64: Pass pmu events to hyp via vcpu
KVM: arm64: Repack struct kvm_pmu to reduce size
KVM: arm64: Wrapper for getting pmu_events
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/psci-suspend:
: .
: Add support for PSCI SYSTEM_SUSPEND and allow userspace to
: filter the wake-up events.
:
: Patches courtesy of Oliver.
: .
Documentation: KVM: Fix title level for PSCI_SUSPEND
selftests: KVM: Test SYSTEM_SUSPEND PSCI call
selftests: KVM: Refactor psci_test to make it amenable to new tests
selftests: KVM: Use KVM_SET_MP_STATE to power off vCPU in psci_test
selftests: KVM: Create helper for making SMCCC calls
selftests: KVM: Rename psci_cpu_on_test to psci_test
KVM: arm64: Implement PSCI SYSTEM_SUSPEND
KVM: arm64: Add support for userspace to suspend a vCPU
KVM: arm64: Return a value from check_vcpu_requests()
KVM: arm64: Rename the KVM_REQ_SLEEP handler
KVM: arm64: Track vCPU power state using MP state values
KVM: arm64: Dedupe vCPU power off helpers
KVM: arm64: Don't depend on fallthrough to hide SYSTEM_RESET2
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/hcall-selection:
: .
: Introduce a new set of virtual sysregs for userspace to
: select the hypercalls it wants to see exposed to the guest.
:
: Patches courtesy of Raghavendra and Oliver.
: .
KVM: arm64: Fix hypercall bitmap writeback when vcpus have already run
KVM: arm64: Hide KVM_REG_ARM_*_BMAP_BIT_COUNT from userspace
Documentation: Fix index.rst after psci.rst renaming
selftests: KVM: aarch64: Add the bitmap firmware registers to get-reg-list
selftests: KVM: aarch64: Introduce hypercall ABI test
selftests: KVM: Create helper for making SMCCC calls
selftests: KVM: Rename psci_cpu_on_test to psci_test
tools: Import ARM SMCCC definitions
Docs: KVM: Add doc for the bitmap firmware registers
Docs: KVM: Rename psci.rst to hypercalls.rst
KVM: arm64: Add vendor hypervisor firmware register
KVM: arm64: Add standard hypervisor firmware register
KVM: arm64: Setup a framework for hypercall bitmap firmware registers
KVM: arm64: Factor out firmware register handling from psci.c
Signed-off-by: Marc Zyngier <maz@kernel.org>
We generally want to disallow hypercall bitmaps being changed
once vcpus have already run. But we must allow the write if
the written value is unchanged so that userspace can rewrite
the register file on reboot, for example.
Without this, a QEMU-based VM will fail to reboot correctly.
The original code was correct, and it is me that introduced
the regression.
Fixes: 05714cab7d ("KVM: arm64: Setup a framework for hypercall bitmap firmware registers")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Failed ITS restores should clean up all state restored until the
failure. There is some cleanup already present when failing to restore
some tables, but it's not complete. Add the missing cleanup.
Note that this changes the behavior in case of a failed restore of the
device tables.
restore ioctl:
1. restore collection tables
2. restore device tables
With this commit, failures in 2. clean up everything created so far,
including state created by 1.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-5-ricarkol@google.com
Restoring a corrupted collection entry (like an out of range ID) is
being ignored and treated as success. More specifically, a
vgic_its_restore_cte failure is treated as success by
vgic_its_restore_collection_table. vgic_its_restore_cte uses positive
and negative numbers to return error, and +1 to return success. The
caller then uses "ret > 0" to check for success.
Fix this by having vgic_its_restore_cte only return negative numbers on
error. Do this by changing alloc_collection return codes to only return
negative numbers on error.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-4-ricarkol@google.com
Try to improve the predictability of ITS save/restores (and debuggability
of failed ITS saves) by failing early on restore when trying to read
corrupted tables.
Restoring the ITS tables does some checks for corrupted tables, but not as
many as in a save: an overflowing device ID will be detected on save but
not on restore. The consequence is that restoring a corrupted table won't
be detected until the next save; including the ITS not working as expected
after the restore. As an example, if the guest sets tables overlapping
each other, which would most likely result in some corrupted table, this is
what we would see from the host point of view:
guest sets base addresses that overlap each other
save ioctl
restore ioctl
save ioctl (fails)
Ideally, we would like the first save to fail, but overlapping tables could
actually be intended by the guest. So, let's at least fail on the restore
with some checks: like checking that device and event IDs don't overflow
their tables.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-3-ricarkol@google.com
Try to improve the predictability of ITS save/restores by failing
commands that would lead to failed saves. More specifically, fail any
command that adds an entry into an ITS table that is not in guest
memory, which would otherwise lead to a failed ITS save ioctl. There
are already checks for collection and device entries, but not for
ITEs. Add the corresponding check for the ITT when adding ITEs.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-2-ricarkol@google.com