u-boot/board/freescale/t208xqds
Tom Rini 2f8a6db5d8 Finish conversion of CONFIG_SYS_CLK_FREQ to Kconfig
In order to finish moving this symbol to Kconfig for all platforms, we
need to do a few more things.  First, for all platforms that define this
to a function, introduce CONFIG_DYNAMIC_SYS_CLK_FREQ, similar to
CONFIG_DYNAMIC_DDR_CLK_FREQ and populate clock_legacy.h.  This entails
also switching all users from CONFIG_SYS_CLK_FREQ to get_board_sys_clk()
and updating a few preprocessor tests.

With that done, all platforms that define a value here can be converted
to Kconfig, and a fall-back of zero is sufficiently safe to use (and
what is used today in cases where code may or may not have this
available).  Make sure that code which calls this function includes
<clock_legacy.h> to get the prototype.

Signed-off-by: Tom Rini <trini@konsulko.com>
2021-12-27 16:20:18 -05:00
..
ddr.c common: Drop asm/global_data.h from common header 2021-02-02 15:33:42 -05:00
ddr.h SPDX: Convert all of our single license tags to Linux Kernel style 2018-05-07 09:34:12 -04:00
eth_t208xqds.c net: replace the "xfi" phy-mode with "10gbase-r" 2021-09-28 18:50:56 +03:00
Kconfig ppc: Remove T2081QDS board and ARCH_T2081 support 2021-04-10 08:04:42 -04:00
law.c SPDX: Convert all of our single license tags to Linux Kernel style 2018-05-07 09:34:12 -04:00
MAINTAINERS board/freescale: Update MAINTAINERS files 2016-08-02 09:47:34 -07:00
Makefile pci: freescale: Drop old code 2021-08-05 16:14:36 -04:00
README WS cleanup: remove excessive empty lines 2021-09-30 08:08:56 -04:00
spl.c common: Drop asm/global_data.h from common header 2021-02-02 15:33:42 -05:00
t208x_pbi.cfg pbl: use "wait" command instead of "flush" command 2016-10-14 10:21:30 -07:00
t208xqds_qixis.h SPDX: Convert all of our single license tags to Linux Kernel style 2018-05-07 09:34:12 -04:00
t208xqds.c Finish conversion of CONFIG_SYS_CLK_FREQ to Kconfig 2021-12-27 16:20:18 -05:00
t208xqds.h treewide: convert bd_t to struct bd_info by coccinelle 2020-07-17 09:30:13 -04:00
t2080_nand_rcw.cfg Txxx/RCW: Split unified RCW to RCWs for sd, spi and nand. 2016-10-14 10:21:03 -07:00
t2080_sd_rcw.cfg Txxx/RCW: Split unified RCW to RCWs for sd, spi and nand. 2016-10-14 10:21:03 -07:00
t2080_spi_rcw.cfg Txxx/RCW: Split unified RCW to RCWs for sd, spi and nand. 2016-10-14 10:21:03 -07:00
t2081_nand_rcw.cfg Txxx/RCW: Split unified RCW to RCWs for sd, spi and nand. 2016-10-14 10:21:03 -07:00
t2081_sd_rcw.cfg Txxx/RCW: Split unified RCW to RCWs for sd, spi and nand. 2016-10-14 10:21:03 -07:00
t2081_spi_rcw.cfg Txxx/RCW: Split unified RCW to RCWs for sd, spi and nand. 2016-10-14 10:21:03 -07:00
tlb.c SPDX: Convert all of our single license tags to Linux Kernel style 2018-05-07 09:34:12 -04:00

The T2080QDS is a high-performance computing evaluation, development and
test platform supporting the T2080 QorIQ Power Architecture processor.

T2080 SoC Overview
------------------
The T2080 QorIQ multicore processor combines four dual-threaded e6500 Power
Architecture processor cores with high-performance datapath acceleration
logic and network and peripheral bus interfaces required for networking,
telecom/datacom, wireless infrastructure, and mil/aerospace applications.

T2080 includes the following functions and features:
 - Four dual-threads 64-bit Power architecture e6500 cores, up to 1.8GHz
 - 2MB L2 cache and 512KB CoreNet platform cache (CPC)
 - Hierarchical interconnect fabric
 - One 32-/64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
 - Data Path Acceleration Architecture (DPAA) incorporating acceleration
 - 16 SerDes lanes up to 10.3125 GHz
 - 8 Ethernet interfaces, supporting combinations of the following:
   - Up to four 10 Gbps Ethernet MACs
   - Up to eight 1 Gbps Ethernet MACs
   - Up to four 2.5 Gbps Ethernet MACs
 - High-speed peripheral interfaces
   - Four PCI Express controllers (two PCIe 2.0 and two PCIe 3.0 with SR-IOV)
   - Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz
 - Additional peripheral interfaces
   - Two serial ATA (SATA 2.0) controllers
   - Two high-speed USB 2.0 controllers with integrated PHY
   - Enhanced secure digital host controller (SD/SDHC/SDXC/eMMC)
   - Enhanced serial peripheral interface (eSPI)
   - Four I2C controllers
   - Four 2-pin UARTs or two 4-pin UARTs
   - Integrated Flash Controller supporting NAND and NOR flash
 - Three eight-channel DMA engines
 - Support for hardware virtualization and partitioning enforcement
 - QorIQ Platform's Trust Architecture 2.0

Differences between T2080 and T2081
-----------------------------------
  Feature		T2080	 T2081
  1G Ethernet numbers:  8	 6
  10G Ethernet numbers: 4	 2
  SerDes lanes:		16	 8
  Serial RapidIO,RMan:  2	 no
  SATA Controller:	2	 no
  Aurora:		yes	 no
  SoC Package:		896-pins 780-pins


T2080QDS feature overview
-------------------------
Processor:
 - T2080 SoC integrating four 64-bit dual-threads e6500 cores up to 1.8GHz
Memory:
 - Single memory controller capable of supporting DDR3 and DDR3-LV devices
 - Two DDR3 DIMMs up to 4GB, Dual rank @ 2133MT/s and ECC support
Ethernet interfaces:
 - Two 1Gbps RGMII on-board ports
 - Four 10GBase-R on-board cages
 - 1Gbps/2.5Gbps SGMII Riser card
 - 10Gbps XAUI Riser card
Accelerator:
 - DPAA components consist of FMan, BMan, QMan, PME, DCE and SEC
SerDes:
 - 16 lanes up to 10.3125GHz
 - Supports Aurora debug, PEX, SATA, SGMII, sRIO, HiGig, 10GBase-R and XAUI
IFC:
 - 128MB NOR Flash, 512MB NAND Flash, PromJet debug port and FPGA
eSPI:
 - Three SPI flash (16MB N25Q128A + 16MB EN25S64 + 512KB SST25WF040)
USB:
 - Two USB2.0 ports with internal PHY (one Type-A + one micro Type-AB)
PCIE:
 - Four PCI Express controllers (two PCIe 2.0 and two PCIe 3.0 with SR-IOV)
SATA:
 - Two SATA 2.0 ports on-board
SRIO:
 - Two Serial RapidIO 2.0 ports up to 5 GHz
eSDHC:
 - Supports SD/SDHC/SDXC/eMMC Card
I2C:
 - Four I2C controllers.
UART:
 - Dual 4-pins UART serial ports
System Logic:
 - QIXIS-II FPGA system controll
Debug Features:
 - Support Legacy, COP/JTAG, Aurora, Event and EVT
10GBase-R:
 - 10GBase-R is supported on T2080QDS through Lane A/B/C/D on Serdes 1 routed to
 a on-board SFP+ cages, which to house optical module (fiber cable) or
 direct attach cable(copper), the copper cable is used to emulate
 10GBASE-KR scenario.
 So, for 10GBase-R usage, there are two scenarios, one will use fiber cable,
 another will use copper cable. An hwconfig env "fsl_10gkr_copper" is
 introduced to indicate a 10GBase-R port will use copper cable, and U-Boot
 will fixup the dtb accordingly.
 It's used as: fsl_10gkr_copper:<10g_mac_name>
 The <10g_mac_name> can be fm1_10g1, fm1_10g2, fm1_10g3, fm1_10g4, they
 do not have to be coexist in hwconfig. If a MAC is listed in the env
 "fsl_10gkr_copper", it will use copper cable, otherwise, fiber cable
 will be used by default.
 for ex. set "fsl_10gkr_copper:fm1_10g1,fm1_10g2,fm1_10g3,fm1_10g4" in
 hwconfig, then both four 10GBase-R ports will use copper cable.
 set "fsl_10gkr_copper:fm1_10g1,fm1_10g2" in hwconfig, then first two
 10GBase-R ports will use copper cable, the other two 10GBase-R ports will use
 fiber cable.
1000BASE-KX(1G-KX):
 - T2080QDS can support 1G-KX by using SGMII protocol, but serdes lane
 runs in 1G-KX mode. By default, the lane runs in SGMII mode, to set a lane
 in 1G-KX mode, need to set corresponding bit in SerDes Protocol Configuration
 Register 1 (PCCR1), and U-Boot fixup the dtb for kernel to do proper
 initialization.
 Hwconfig "fsl_1gkx" is used to indicate a lane runs in 1G-KX mode, MAC
 1/2/5/6/9/10 are available for 1G-KX, MAC 3/4 run in RGMII mode. To set a
 MAC to use 1G-KX mode, set its' corresponding env in "fsl_1gkx", 'fm1_1g1'
 stands for MAC 1, 'fm1_1g2' stands for MAC 2, etc.
 For ex. set "fsl_1gkx:fm1_1g1,fm1_1g2,fm1_1g5,fm1_1g6,fm1_1g9,fm1_1g10" in
 hwconfig, MAC 1/2/5/6/9/10 will use 1G-KX mode.

System Memory map
----------------

Start Address  End Address      Description			Size
0xF_FFDF_0000  0xF_FFDF_0FFF    IFC - CPLD			4KB
0xF_FF80_0000  0xF_FF80_FFFF    IFC - NAND Flash		64KB
0xF_FE00_0000  0xF_FEFF_FFFF    CCSRBAR				16MB
0xF_F803_0000  0xF_F803_FFFF    PCI Express 4 I/O Space		64KB
0xF_F802_0000  0xF_F802_FFFF    PCI Express 3 I/O Space		64KB
0xF_F801_0000  0xF_F801_FFFF    PCI Express 2 I/O Space		64KB
0xF_F800_0000  0xF_F800_FFFF    PCI Express 1 I/O Space		64KB
0xF_F600_0000  0xF_F7FF_FFFF    Queue manager software portal	32MB
0xF_F400_0000  0xF_F5FF_FFFF    Buffer manager software portal	32MB
0xF_E800_0000  0xF_EFFF_FFFF    IFC - NOR Flash			128MB
0xF_0000_0000  0xF_003F_FFFF    DCSR				4MB
0xC_4000_0000  0xC_4FFF_FFFF    PCI Express 4 Mem Space		256MB
0xC_3000_0000  0xC_3FFF_FFFF    PCI Express 3 Mem Space		256MB
0xC_2000_0000  0xC_2FFF_FFFF    PCI Express 2 Mem Space		256MB
0xC_0000_0000  0xC_1FFF_FFFF    PCI Express 1 Mem Space		512MB
0x0_0000_0000  0x0_ffff_ffff    DDR				4GB


128M NOR Flash memory Map
-------------------------
Start Address   End Address	Definition			Max size
0xEFF40000	0xEFFFFFFF	U-Boot (current bank)		768KB
0xEFF20000	0xEFF3FFFF	U-Boot env (current bank)	128KB
0xEFF00000	0xEFF1FFFF	FMAN Ucode (current bank)	128KB
0xED300000	0xEFEFFFFF	rootfs (alt bank)		44MB
0xEC800000	0xEC8FFFFF	Hardware device tree (alt bank)	1MB
0xEC020000	0xEC7FFFFF	Linux.uImage (alt bank)		7MB + 875KB
0xEC000000	0xEC01FFFF	RCW (alt bank)			128KB
0xEBF40000	0xEBFFFFFF	U-Boot (alt bank)		768KB
0xEBF20000	0xEBF3FFFF	U-Boot env (alt bank)		128KB
0xEBF00000	0xEBF1FFFF	FMAN ucode (alt bank)		128KB
0xE9300000	0xEBEFFFFF	rootfs (current bank)		44MB
0xE8800000	0xE88FFFFF	Hardware device tree (cur bank)	1MB
0xE8020000	0xE86FFFFF	Linux.uImage (current bank)	7MB + 875KB
0xE8000000	0xE801FFFF	RCW (current bank)		128KB


Software configurations and board settings
------------------------------------------
1. NOR boot:
   a. build NOR boot image
	$  make T2080QDS_config
	$  make
   b. program u-boot.bin image to NOR flash
	=> tftp 1000000 u-boot.bin
	=> pro off all;era eff40000 efffffff;cp.b 1000000 eff40000 $filesize
	set SW1[1:8] = '00010011', SW2[1] = '1', SW6[1:4] = '0000' for NOR boot

   Switching between default bank0 and alternate bank4 on NOR flash
   To change boot source to vbank4:
	by software:   run command 'qixis_reset altbank' in U-Boot.
	by DIP-switch: set SW6[1:4] = '0100'

   To change boot source to vbank0:
	by software:   run command 'qixis_reset' in U-Boot.
	by DIP-Switch: set SW6[1:4] = '0000'

2. NAND Boot:
   a. build PBL image for NAND boot
	$ make T2080QDS_NAND_config
	$ make
   b. program u-boot-with-spl-pbl.bin to NAND flash
	=> tftp 1000000 u-boot-with-spl-pbl.bin
	=> nand erase 0 $filesize
	=> nand write 1000000 0 $filesize
	set SW1[1:8] = '10000010', SW2[1] = '0' and SW6[1:4] = '1001' for NAND boot

3. SPI Boot:
   a. build PBL image for SPI boot
	$ make T2080QDS_SPIFLASH_config
	$ make
   b. program u-boot-with-spl-pbl.bin to SPI flash
	=> tftp 1000000 u-boot-with-spl-pbl.bin
	=> sf probe 0
	=> sf erase 0 f0000
	=> sf write 1000000 0 $filesize
	set SW1[1:8] = '00100010', SW2[1] ='1' for SPI boot

4. SD Boot:
   a. build PBL image for SD boot
	$ make T2080QDS_SDCARD_config
	$ make
   b. program u-boot-with-spl-pbl.bin to SD/MMC card
	=> tftp 1000000 u-boot-with-spl-pbl.bin
	=> mmc write 1000000 8 0x800
	=> tftp 1000000 fsl_fman_ucode_T2080_xx.bin
	=> mmc write 1000000 0x820 80
	set SW1[1:8] = '00100000', SW2[1] = '0' for SD boot


2-stage NAND/SPI/SD boot loader
-------------------------------
PBL initializes the internal CPC-SRAM and copy SPL(160K) to SRAM.
SPL further initializes DDR using SPD and environment variables
and copy U-Boot(768 KB) from NAND/SPI/SD device to DDR.
Finally SPL transers control to U-Boot for futher booting.

SPL has following features:
 - Executes within 256K
 - No relocation required

Run time view of SPL framework
-------------------------------------------------
|Area		   | Address			|
-------------------------------------------------
|SecureBoot header | 0xFFFC0000 (32KB)		|
-------------------------------------------------
|GD, BD		   | 0xFFFC8000 (4KB)		|
-------------------------------------------------
|ENV		   | 0xFFFC9000 (8KB)		|
-------------------------------------------------
|HEAP		   | 0xFFFCB000 (50KB)		|
-------------------------------------------------
|STACK		   | 0xFFFD8000 (22KB)		|
-------------------------------------------------
|U-Boot SPL	   | 0xFFFD8000 (160KB)		|
-------------------------------------------------

NAND Flash memory Map on T2080QDS
--------------------------------------------------------------
Start		End		Definition	Size
0x000000	0x0FFFFF	U-Boot img	1MB  (2 blocks)
0x100000	0x17FFFF	U-Boot env	512KB (1 block)
0x180000	0x1FFFFF	FMAN ucode	512KB (1 block)


Micro SD Card memory Map on T2080QDS
----------------------------------------------------
Block		#blocks		Definition	Size
0x008		2048		U-Boot img	1MB
0x800		0016		U-Boot env	8KB
0x820		0128		FMAN ucode	64KB


SPI Flash memory Map on T2080QDS
----------------------------------------------------
Start		End		Definition	Size
0x000000	0x0FFFFF	U-Boot img	1MB
0x100000	0x101FFF	U-Boot env	8KB
0x110000	0x11FFFF	FMAN ucode	64KB


How to update the ucode of Freescale FMAN
-----------------------------------------
=> tftp 1000000 fsl_fman_ucode_t2080_xx.bin
=> pro off all;erase 0xeff00000 0xeff1ffff;cp 1000000 0xeff00000 $filesize


For more details, please refer to T2080QDS User Guide and access
website www.freescale.com and Freescale QorIQ SDK Infocenter document.

Device tree support and how to enable it for different configs
--------------------------------------------------------------
Device tree support is available for t2080qds for below mentioned boot,
1. NOR Boot
2. NAND Boot
3. SD Boot
4. SPIFLASH Boot

To enable device tree support for other boot, below configs need to be
enabled in relative defconfig file,
1. CONFIG_DEFAULT_DEVICE_TREE="t2080qds" (Change default device tree name if required)
2. CONFIG_OF_CONTROL
3. CONFIG_MPC85XX_HAVE_RESET_VECTOR if reset vector is located at
   CONFIG_RESET_VECTOR_ADDRESS - 0xffc

If device tree support is enabled in defconfig,
1. use 'u-boot-with-dtb.bin' for NOR boot.
2. use 'u-boot-with-spl-pbl.bin' for other boot.