u-boot/cpu/mpc86xx/spd_sdram.c

1347 lines
34 KiB
C
Raw Normal View History

/*
* Copyright 2004 Freescale Semiconductor.
* (C) Copyright 2003 Motorola Inc.
* Xianghua Xiao (X.Xiao@motorola.com)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>
#include <asm/fsl_law.h>
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
extern void dma_init(void);
extern uint dma_check(void);
extern int dma_xfer(void *dest, uint count, void *src);
#endif
#ifdef CONFIG_SPD_EEPROM
#ifndef CFG_READ_SPD
#define CFG_READ_SPD i2c_read
#endif
/*
* Only one of the following three should be 1; others should be 0
* By default the cache line interleaving is selected if
* the CONFIG_DDR_INTERLEAVE flag is defined
*/
#define CFG_PAGE_INTERLEAVING 0
#define CFG_BANK_INTERLEAVING 0
#define CFG_SUPER_BANK_INTERLEAVING 0
/*
* Convert picoseconds into DRAM clock cycles (rounding up if needed).
*/
static unsigned int
picos_to_clk(unsigned int picos)
{
/* use unsigned long long to avoid rounding errors */
const unsigned long long ULL_2e12 = 2000000000000ULL;
unsigned long long clks;
unsigned long long clks_temp;
if (! picos)
return 0;
clks = get_bus_freq(0) * (unsigned long long) picos;
clks_temp = clks;
clks = clks / ULL_2e12;
if (clks_temp % ULL_2e12) {
clks++;
}
if (clks > 0xFFFFFFFFULL) {
clks = 0xFFFFFFFFULL;
}
return (unsigned int) clks;
}
/*
* Calculate the Density of each Physical Rank.
* Returned size is in bytes.
*
* Study these table from Byte 31 of JEDEC SPD Spec.
*
* DDR I DDR II
* Bit Size Size
* --- ----- ------
* 7 high 512MB 512MB
* 6 256MB 256MB
* 5 128MB 128MB
* 4 64MB 16GB
* 3 32MB 8GB
* 2 16MB 4GB
* 1 2GB 2GB
* 0 low 1GB 1GB
*
* Reorder Table to be linear by stripping the bottom
* 2 or 5 bits off and shifting them up to the top.
*/
unsigned int
compute_banksize(unsigned int mem_type, unsigned char row_dens)
{
unsigned int bsize;
if (mem_type == SPD_MEMTYPE_DDR) {
/* Bottom 2 bits up to the top. */
bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
debug("DDR: DDR I rank density = 0x%08x\n", bsize);
} else {
/* Bottom 5 bits up to the top. */
bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
debug("DDR: DDR II rank density = 0x%08x\n", bsize);
}
return bsize;
}
/*
* Convert a two-nibble BCD value into a cycle time.
* While the spec calls for nano-seconds, picos are returned.
*
* This implements the tables for bytes 9, 23 and 25 for both
* DDR I and II. No allowance for distinguishing the invalid
* fields absent for DDR I yet present in DDR II is made.
* (That is, cycle times of .25, .33, .66 and .75 ns are
* allowed for both DDR II and I.)
*/
unsigned int
convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
{
/*
* Table look up the lower nibble, allow DDR I & II.
*/
unsigned int tenths_ps[16] = {
0,
100,
200,
300,
400,
500,
600,
700,
800,
900,
250,
330,
660,
750,
0, /* undefined */
0 /* undefined */
};
unsigned int whole_ns = (spd_val & 0xF0) >> 4;
unsigned int tenth_ns = spd_val & 0x0F;
unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
return ps;
}
/*
* Determine Refresh Rate. Ignore self refresh bit on DDR I.
* Table from SPD Spec, Byte 12, converted to picoseconds and
* filled in with "default" normal values.
*/
unsigned int determine_refresh_rate(unsigned int spd_refresh)
{
unsigned int refresh_time_ns[8] = {
15625000, /* 0 Normal 1.00x */
3900000, /* 1 Reduced .25x */
7800000, /* 2 Extended .50x */
31300000, /* 3 Extended 2.00x */
62500000, /* 4 Extended 4.00x */
125000000, /* 5 Extended 8.00x */
15625000, /* 6 Normal 1.00x filler */
15625000, /* 7 Normal 1.00x filler */
};
return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
}
long int
spd_init(unsigned char i2c_address, unsigned int ddr_num,
unsigned int dimm_num, unsigned int start_addr)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_ddr_t *ddr;
volatile ccsr_gur_t *gur = &immap->im_gur;
spd_eeprom_t spd;
unsigned int n_ranks;
unsigned int rank_density;
unsigned int odt_rd_cfg, odt_wr_cfg, ba_bits;
unsigned int odt_cfg, mode_odt_enable;
unsigned int refresh_clk;
#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
unsigned char clk_adjust;
#endif
unsigned int dqs_cfg;
unsigned char twr_clk, twtr_clk, twr_auto_clk;
unsigned int tCKmin_ps, tCKmax_ps;
unsigned int max_data_rate;
unsigned int busfreq;
unsigned int memsize;
unsigned char caslat, caslat_ctrl;
unsigned int trfc, trfc_clk, trfc_low, trfc_high;
unsigned int trcd_clk;
unsigned int trtp_clk;
unsigned char cke_min_clk;
unsigned char add_lat;
unsigned char wr_lat;
unsigned char wr_data_delay;
unsigned char four_act;
unsigned char cpo;
unsigned char burst_len;
unsigned int mode_caslat;
unsigned char d_init;
unsigned int tCycle_ps, modfreq;
if (ddr_num == 1)
ddr = &immap->im_ddr1;
else
ddr = &immap->im_ddr2;
/*
* Read SPD information.
*/
debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address);
memset((void *)&spd, 0, sizeof(spd));
CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd));
/*
* Check for supported memory module types.
*/
if (spd.mem_type != SPD_MEMTYPE_DDR &&
spd.mem_type != SPD_MEMTYPE_DDR2) {
debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n"
" Fundamental memory type is 0x%0x\n",
dimm_num,
ddr_num,
spd.mem_type);
return 0;
}
debug("\nFound memory of type 0x%02lx ", spd.mem_type);
if (spd.mem_type == SPD_MEMTYPE_DDR)
debug("DDR I\n");
else
debug("DDR II\n");
/*
* These test gloss over DDR I and II differences in interpretation
* of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
* are not supported on DDR I; and not encoded on DDR II.
*
* Also note that the 8548 controller can support:
* 12 <= nrow <= 16
* and
* 8 <= ncol <= 11 (still, for DDR)
* 6 <= ncol <= 9 (for FCRAM)
*/
if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
printf("DDR: Unsupported number of Row Addr lines: %d.\n",
spd.nrow_addr);
return 0;
}
if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
printf("DDR: Unsupported number of Column Addr lines: %d.\n",
spd.ncol_addr);
return 0;
}
/*
* Determine the number of physical banks controlled by
* different Chip Select signals. This is not quite the
* same as the number of DIMM modules on the board. Feh.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
n_ranks = spd.nrows;
} else {
n_ranks = (spd.nrows & 0x7) + 1;
}
debug("DDR: number of ranks = %d\n", n_ranks);
if (n_ranks > 2) {
printf("DDR: Only 2 chip selects are supported: %d\n",
n_ranks);
return 0;
}
/*
* Adjust DDR II IO voltage biasing. Rev1 only
*/
if (((get_svr() & 0xf0) == 0x10) && (spd.mem_type == SPD_MEMTYPE_DDR2)) {
gur->ddrioovcr = (0
| 0x80000000 /* Enable */
| 0x10000000 /* VSEL to 1.8V */
);
}
/*
* Determine the size of each Rank in bytes.
*/
rank_density = compute_banksize(spd.mem_type, spd.row_dens);
debug("Start address for this controller is 0x%08lx\n", start_addr);
/*
* ODT configuration recommendation from DDR Controller Chapter.
*/
odt_rd_cfg = 0; /* Never assert ODT */
odt_wr_cfg = 0; /* Never assert ODT */
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
}
ba_bits = 0;
if (spd.nbanks == 0x8)
ba_bits = 1;
#ifdef CONFIG_DDR_INTERLEAVE
if (dimm_num != 1) {
printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num);
return 0;
} else {
/*
* Since interleaved memory only uses CS0, the
* memory sticks have to be identical in size and quantity
* of ranks. That essentially gives double the size on
* one rank, i.e on CS0 for both controllers put together.
* Confirm this???
*/
rank_density *= 2;
/*
* Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
*/
start_addr = 0;
ddr->cs0_bnds = (start_addr >> 8)
| (((start_addr + rank_density - 1) >> 24));
/*
* Default interleaving mode to cache-line interleaving.
*/
ddr->cs0_config = ( 1 << 31
#if (CFG_PAGE_INTERLEAVING == 1)
| (PAGE_INTERLEAVING)
#elif (CFG_BANK_INTERLEAVING == 1)
| (BANK_INTERLEAVING)
#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
| (SUPER_BANK_INTERLEAVING)
#else
| (CACHE_LINE_INTERLEAVING)
#endif
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (ba_bits << 14)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
/*
* Adjustment for dual rank memory to get correct memory
* size (return value of this function).
*/
if (n_ranks == 2) {
n_ranks = 1;
rank_density /= 2;
} else {
rank_density /= 2;
}
}
#else /* CONFIG_DDR_INTERLEAVE */
if (dimm_num == 1) {
/*
* Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
*/
ddr->cs0_bnds = (start_addr >> 8)
| (((start_addr + rank_density - 1) >> 24));
ddr->cs0_config = ( 1 << 31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (ba_bits << 14)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
if (n_ranks == 2) {
/*
* Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
* second 256 Meg
*/
ddr->cs1_bnds = (((start_addr + rank_density) >> 8)
| (( start_addr + 2*rank_density - 1)
>> 24));
ddr->cs1_config = ( 1<<31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (ba_bits << 14)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
}
} else {
/*
* This is the 2nd DIMM slot for this controller
*/
/*
* Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
*/
ddr->cs2_bnds = (start_addr >> 8)
| (((start_addr + rank_density - 1) >> 24));
ddr->cs2_config = ( 1 << 31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (ba_bits << 14)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("DDR: cs2_bnds = 0x%08x\n", ddr->cs2_bnds);
debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config);
if (n_ranks == 2) {
/*
* Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
* second 256 Meg
*/
ddr->cs3_bnds = (((start_addr + rank_density) >> 8)
| (( start_addr + 2*rank_density - 1)
>> 24));
ddr->cs3_config = ( 1<<31
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (ba_bits << 14)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("DDR: cs3_bnds = 0x%08x\n", ddr->cs3_bnds);
debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config);
}
}
#endif /* CONFIG_DDR_INTERLEAVE */
/*
* Find the largest CAS by locating the highest 1 bit
* in the spd.cas_lat field. Translate it to a DDR
* controller field value:
*
* CAS Lat DDR I DDR II Ctrl
* Clocks SPD Bit SPD Bit Value
* ------- ------- ------- -----
* 1.0 0 0001
* 1.5 1 0010
* 2.0 2 2 0011
* 2.5 3 0100
* 3.0 4 3 0101
* 3.5 5 0110
* 4.0 4 0111
* 4.5 1000
* 5.0 5 1001
*/
caslat = __ilog2(spd.cas_lat);
if ((spd.mem_type == SPD_MEMTYPE_DDR)
&& (caslat > 5)) {
printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
return 0;
} else if (spd.mem_type == SPD_MEMTYPE_DDR2
&& (caslat < 2 || caslat > 5)) {
printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
spd.cas_lat);
return 0;
}
debug("DDR: caslat SPD bit is %d\n", caslat);
/*
* Calculate the Maximum Data Rate based on the Minimum Cycle time.
* The SPD clk_cycle field (tCKmin) is measured in tenths of
* nanoseconds and represented as BCD.
*/
tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
/*
* Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
*/
max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
/*
* Adjust the CAS Latency to allow for bus speeds that
* are slower than the DDR module.
*/
busfreq = get_bus_freq(0) / 1000000; /* MHz */
tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3);
modfreq = 2 * 1000 * 1000 / tCycle_ps;
if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) {
printf("DDR: platform frequency too low for correct DDR2 controller operation\n");
return 0;
} else if (busfreq < 90) {
printf("DDR: platform frequency too low for correct DDR1 operation\n");
return 0;
}
if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) {
caslat -= 2;
} else {
tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2);
modfreq = 2 * 1000 * 1000 / tCycle_ps;
if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1))))
caslat -= 1;
else if (busfreq > max_data_rate) {
printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
busfreq, max_data_rate);
return 0;
}
}
/*
* Empirically set ~MCAS-to-preamble override for DDR 2.
* Your milage will vary.
*/
cpo = 0;
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
if (busfreq <= 333) {
cpo = 0x7;
} else if (busfreq <= 400) {
cpo = 0x9;
} else {
cpo = 0xa;
}
}
/*
* Convert caslat clocks to DDR controller value.
* Force caslat_ctrl to be DDR Controller field-sized.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
caslat_ctrl = (caslat + 1) & 0x07;
} else {
caslat_ctrl = (2 * caslat - 1) & 0x0f;
}
debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
caslat, caslat_ctrl);
/*
* Timing Config 0.
* Avoid writing for DDR I. The new PQ38 DDR controller
* dreams up non-zero default values to be backwards compatible.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
unsigned char taxpd_clk = 8; /* By the book. */
unsigned char tmrd_clk = 2; /* By the book. */
unsigned char act_pd_exit = 2; /* Empirical? */
unsigned char pre_pd_exit = 6; /* Empirical? */
ddr->timing_cfg_0 = (0
| ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
| ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
| ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
| ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
);
debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
}
/*
* Some Timing Config 1 values now.
* Sneak Extended Refresh Recovery in here too.
*/
/*
* For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
* use conservative value.
* For DDR II, they are bytes 36 and 37, in quarter nanos.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
twr_clk = 3; /* Clocks */
twtr_clk = 1; /* Clocks */
} else {
twr_clk = picos_to_clk(spd.twr * 250);
twtr_clk = picos_to_clk(spd.twtr * 250);
}
/*
* Calculate Trfc, in picos.
* DDR I: Byte 42 straight up in ns.
* DDR II: Byte 40 and 42 swizzled some, in ns.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
trfc = spd.trfc * 1000; /* up to ps */
} else {
unsigned int byte40_table_ps[8] = {
0,
250,
330,
500,
660,
750,
0,
0
};
trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
}
trfc_clk = picos_to_clk(trfc);
/*
* Trcd, Byte 29, from quarter nanos to ps and clocks.
*/
trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
/*
* Convert trfc_clk to DDR controller fields. DDR I should
* fit in the REFREC field (16-19) of TIMING_CFG_1, but the
* 8548 controller has an extended REFREC field of three bits.
* The controller automatically adds 8 clocks to this value,
* so preadjust it down 8 first before splitting it up.
*/
trfc_low = (trfc_clk - 8) & 0xf;
trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
/*
* Sneak in some Extended Refresh Recovery.
*/
ddr->ext_refrec = (trfc_high << 16);
debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
ddr->timing_cfg_1 =
(0
| ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
| ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
| (trcd_clk << 20) /* ACTTORW */
| (caslat_ctrl << 16) /* CASLAT */
| (trfc_low << 12) /* REFEC */
| ((twr_clk & 0x07) << 8) /* WRRREC */
| ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
| ((twtr_clk & 0x07) << 0) /* WRTORD */
);
debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
/*
* Timing_Config_2
* Was: 0x00000800;
*/
/*
* Additive Latency
* For DDR I, 0.
* For DDR II, with ODT enabled, use "a value" less than ACTTORW,
* which comes from Trcd, and also note that:
* add_lat + caslat must be >= 4
*/
add_lat = 0;
if (spd.mem_type == SPD_MEMTYPE_DDR2
&& (odt_wr_cfg || odt_rd_cfg)
&& (caslat < 4)) {
add_lat = 4 - caslat;
if (add_lat >= trcd_clk) {
add_lat = trcd_clk - 1;
}
}
/*
* Write Data Delay
* Historically 0x2 == 4/8 clock delay.
* Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
*/
wr_data_delay = 3;
/*
* Write Latency
* Read to Precharge
* Minimum CKE Pulse Width.
* Four Activate Window
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
/*
* This is a lie. It should really be 1, but if it is
* set to 1, bits overlap into the old controller's
* otherwise unused ACSM field. If we leave it 0, then
* the HW will magically treat it as 1 for DDR 1. Oh Yea.
*/
wr_lat = 0;
trtp_clk = 2; /* By the book. */
cke_min_clk = 1; /* By the book. */
four_act = 1; /* By the book. */
} else {
wr_lat = caslat - 1;
/* Convert SPD value from quarter nanos to picos. */
trtp_clk = picos_to_clk(spd.trtp * 250);
cke_min_clk = 3; /* By the book. */
four_act = picos_to_clk(37500); /* By the book. 1k pages? */
}
ddr->timing_cfg_2 = (0
| ((add_lat & 0x7) << 28) /* ADD_LAT */
| ((cpo & 0x1f) << 23) /* CPO */
| ((wr_lat & 0x7) << 19) /* WR_LAT */
| ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
| ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
| ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
| ((four_act & 0x1f) << 0) /* FOUR_ACT */
);
debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
/*
* Determine the Mode Register Set.
*
* This is nominally part specific, but it appears to be
* consistent for all DDR I devices, and for all DDR II devices.
*
* caslat must be programmed
* burst length is always 4
* burst type is sequential
*
* For DDR I:
* operating mode is "normal"
*
* For DDR II:
* other stuff
*/
mode_caslat = 0;
/*
* Table lookup from DDR I or II Device Operation Specs.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
if (1 <= caslat && caslat <= 4) {
unsigned char mode_caslat_table[4] = {
0x5, /* 1.5 clocks */
0x2, /* 2.0 clocks */
0x6, /* 2.5 clocks */
0x3 /* 3.0 clocks */
};
mode_caslat = mode_caslat_table[caslat - 1];
} else {
puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
"2.5 and 3.0 clocks are supported.\n");
return 0;
}
} else {
if (2 <= caslat && caslat <= 5) {
mode_caslat = caslat;
} else {
puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
"4.0 and 5.0 clocks are supported.\n");
return 0;
}
}
/*
* Encoded Burst Length of 4.
*/
burst_len = 2; /* Fiat. */
if (spd.mem_type == SPD_MEMTYPE_DDR) {
twr_auto_clk = 0; /* Historical */
} else {
/*
* Determine tCK max in picos. Grab tWR and convert to picos.
* Auto-precharge write recovery is:
* WR = roundup(tWR_ns/tCKmax_ns).
*
* Ponder: Is twr_auto_clk different than twr_clk?
*/
tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
}
/*
* Mode Reg in bits 16 ~ 31,
* Extended Mode Reg 1 in bits 0 ~ 15.
*/
mode_odt_enable = 0x0; /* Default disabled */
if (odt_wr_cfg || odt_rd_cfg) {
/*
* Bits 6 and 2 in Extended MRS(1)
* Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
* Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
*/
mode_odt_enable = 0x40; /* 150 Ohm */
}
ddr->sdram_mode_1 =
(0
| (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
| (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
| (twr_auto_clk << 9) /* Write Recovery Autopre */
| (mode_caslat << 4) /* caslat */
| (burst_len << 0) /* Burst length */
);
debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode_1);
/*
* Clear EMRS2 and EMRS3.
*/
ddr->sdram_mode_2 = 0;
debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
/*
* Determine Refresh Rate.
*/
refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
/*
* Set BSTOPRE to 0x100 for page mode
* If auto-charge is used, set BSTOPRE = 0
*/
ddr->sdram_interval =
(0
| (refresh_clk & 0x3fff) << 16
| 0x100
);
debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
/*
* Is this an ECC DDR chip?
* But don't mess with it if the DDR controller will init mem.
*/
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
if (spd.config == 0x02) {
ddr->err_disable = 0x0000000d;
ddr->err_sbe = 0x00ff0000;
}
debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
#endif
asm volatile("sync;isync");
udelay(500);
/*
* SDRAM Cfg 2
*/
/*
* When ODT is enabled, Chap 9 suggests asserting ODT to
* internal IOs only during reads.
*/
odt_cfg = 0;
if (odt_rd_cfg | odt_wr_cfg) {
odt_cfg = 0x2; /* ODT to IOs during reads */
}
/*
* Try to use differential DQS with DDR II.
*/
if (spd.mem_type == SPD_MEMTYPE_DDR) {
dqs_cfg = 0; /* No Differential DQS for DDR I */
} else {
dqs_cfg = 0x1; /* Differential DQS for DDR II */
}
#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
/*
* Use the DDR controller to auto initialize memory.
*/
d_init = 1;
ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
#else
/*
* Memory will be initialized via DMA, or not at all.
*/
d_init = 0;
#endif
ddr->sdram_cfg_2 = (0
| (dqs_cfg << 26) /* Differential DQS */
| (odt_cfg << 21) /* ODT */
| (d_init << 4) /* D_INIT auto init DDR */
);
debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
/*
* Setup the clock control.
* SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
* SDRAM_CLK_CNTL[5-7] = Clock Adjust
* 0110 3/4 cycle late
* 0111 7/8 cycle late
*/
if (spd.mem_type == SPD_MEMTYPE_DDR)
clk_adjust = 0x6;
else
clk_adjust = 0x7;
ddr->sdram_clk_cntl = (0
| 0x80000000
| (clk_adjust << 23)
);
debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
#endif
/*
* Figure out memory size in Megabytes.
*/
debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density);
memsize = n_ranks * rank_density / 0x100000;
return memsize;
}
unsigned int enable_ddr(unsigned int ddr_num)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
spd_eeprom_t spd1,spd2;
volatile ccsr_ddr_t *ddr;
unsigned sdram_cfg_1;
unsigned char sdram_type, mem_type, mod_attr;
unsigned char d_init;
unsigned int no_dimm1=0, no_dimm2=0;
/* Set up pointer to enable the current ddr controller */
if (ddr_num == 1)
ddr = &immap->im_ddr1;
else
ddr = &immap->im_ddr2;
/*
* Read both dimm slots and decide whether
* or not to enable this controller.
*/
memset((void *)&spd1, 0, sizeof(spd1));
memset((void *)&spd2, 0, sizeof(spd2));
if (ddr_num == 1) {
CFG_READ_SPD(SPD_EEPROM_ADDRESS1,
0, 1, (uchar *) &spd1, sizeof(spd1));
#if defined(SPD_EEPROM_ADDRESS2)
CFG_READ_SPD(SPD_EEPROM_ADDRESS2,
0, 1, (uchar *) &spd2, sizeof(spd2));
#endif
} else {
#if defined(SPD_EEPROM_ADDRESS3)
CFG_READ_SPD(SPD_EEPROM_ADDRESS3,
0, 1, (uchar *) &spd1, sizeof(spd1));
#endif
#if defined(SPD_EEPROM_ADDRESS4)
CFG_READ_SPD(SPD_EEPROM_ADDRESS4,
0, 1, (uchar *) &spd2, sizeof(spd2));
#endif
}
/*
* Check for supported memory module types.
*/
if (spd1.mem_type != SPD_MEMTYPE_DDR
&& spd1.mem_type != SPD_MEMTYPE_DDR2) {
no_dimm1 = 1;
} else {
debug("\nFound memory of type 0x%02lx ",spd1.mem_type );
if (spd1.mem_type == SPD_MEMTYPE_DDR)
debug("DDR I\n");
else
debug("DDR II\n");
}
if (spd2.mem_type != SPD_MEMTYPE_DDR &&
spd2.mem_type != SPD_MEMTYPE_DDR2) {
no_dimm2 = 1;
} else {
debug("\nFound memory of type 0x%02lx ",spd2.mem_type );
if (spd2.mem_type == SPD_MEMTYPE_DDR)
debug("DDR I\n");
else
debug("DDR II\n");
}
#ifdef CONFIG_DDR_INTERLEAVE
if (no_dimm1) {
printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n");
return 0;
}
#endif
/*
* Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn
*/
if (no_dimm1 && no_dimm2) {
printf("No memory modules found for DDR controller %d!!\n", ddr_num);
return 0;
} else {
#if defined(CONFIG_DDR_ECC)
unsigned char config;
#endif
mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type;
/*
* Figure out the settings for the sdram_cfg register.
* Build up the entire register in 'sdram_cfg' before
* writing since the write into the register will
* actually enable the memory controller; all settings
* must be done before enabling.
*
* sdram_cfg[0] = 1 (ddr sdram logic enable)
* sdram_cfg[1] = 1 (self-refresh-enable)
* sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
* 010 DDR 1 SDRAM
* 011 DDR 2 SDRAM
*/
sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
sdram_cfg_1 = (0
| (1 << 31) /* Enable */
| (1 << 30) /* Self refresh */
| (sdram_type << 24) /* SDRAM type */
);
/*
* sdram_cfg[3] = RD_EN - registered DIMM enable
* A value of 0x26 indicates micron registered
* DIMMS (micron.com)
*/
mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr;
if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) {
sdram_cfg_1 |= 0x10000000; /* RD_EN */
}
#if defined(CONFIG_DDR_ECC)
config = no_dimm2 ? spd1.config : spd2.config;
/*
* If the user wanted ECC (enabled via sdram_cfg[2])
*/
if (config == 0x02) {
ddr->err_disable = 0x00000000;
asm volatile("sync;isync;");
ddr->err_sbe = 0x00ff0000;
ddr->err_int_en = 0x0000000d;
sdram_cfg_1 |= 0x20000000; /* ECC_EN */
}
#endif
/*
* Set 1T or 2T timing based on 1 or 2 modules
*/
{
if (!(no_dimm1 || no_dimm2)) {
/*
* 2T timing,because both DIMMS are present.
* Enable 2T timing by setting sdram_cfg[16].
*/
sdram_cfg_1 |= 0x8000; /* 2T_EN */
}
}
/*
* 200 painful micro-seconds must elapse between
* the DDR clock setup and the DDR config enable.
*/
udelay(200);
/*
* Go!
*/
ddr->sdram_cfg_1 = sdram_cfg_1;
asm volatile("sync;isync");
udelay(500);
debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg_1);
#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
d_init = 1;
debug("DDR: memory initializing\n");
/*
* Poll until memory is initialized.
* 512 Meg at 400 might hit this 200 times or so.
*/
while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
udelay(1000);
}
debug("DDR: memory initialized\n\n");
#endif
debug("Enabled DDR Controller %d\n", ddr_num);
return 1;
}
}
long int
spd_sdram(void)
{
int memsize_ddr1_dimm1 = 0;
int memsize_ddr1_dimm2 = 0;
int memsize_ddr1 = 0;
unsigned int law_size_ddr1;
#ifdef CONFIG_DDR_INTERLEAVE
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1;
#endif
#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
int memsize_ddr2_dimm1 = 0;
int memsize_ddr2_dimm2 = 0;
int memsize_ddr2 = 0;
unsigned int law_size_ddr2;
#endif
unsigned int ddr1_enabled = 0;
unsigned int ddr2_enabled = 0;
int memsize_total = 0;
#ifdef CONFIG_DDR_INTERLEAVE
unsigned int law_size_interleaved;
volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2;
memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
1, 1,
(unsigned int)memsize_total * 1024*1024);
memsize_total += memsize_ddr1_dimm1;
memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
2, 1,
(unsigned int)memsize_total * 1024*1024);
memsize_total += memsize_ddr2_dimm1;
if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) {
if (memsize_ddr1_dimm1 < memsize_ddr2_dimm1)
memsize_total -= memsize_ddr1_dimm1;
else
memsize_total -= memsize_ddr2_dimm1;
debug("Total memory available for interleaving 0x%08lx\n",
memsize_total * 1024 * 1024);
debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n");
ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
debug("DDR1: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds);
debug("DDR2: cs0_bnds = 0x%08x\n", ddr2->cs0_bnds);
}
ddr1_enabled = enable_ddr(1);
ddr2_enabled = enable_ddr(2);
/*
* Both controllers need to be enabled for interleaving.
*/
if (ddr1_enabled && ddr2_enabled) {
law_size_interleaved = 19 + __ilog2(memsize_total);
/*
* Set up LAWBAR for DDR 1 space.
*/
#ifdef CONFIG_FSL_LAW
set_law(1, CFG_DDR_SDRAM_BASE, law_size_interleaved, LAW_TRGT_IF_DDR_INTRLV);
#endif
debug("Interleaved memory size is 0x%08lx\n", memsize_total);
#if (CFG_PAGE_INTERLEAVING == 1)
printf("Page ");
#elif (CFG_BANK_INTERLEAVING == 1)
printf("Bank ");
#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
printf("Super-bank ");
#else
printf("Cache-line ");
#endif
printf("Interleaved");
return memsize_total * 1024 * 1024;
} else {
printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n");
return 0;
}
#else
/*
* Call spd_sdram() routine to init ddr1 - pass I2c address,
* controller number, dimm number, and starting address.
*/
memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
1, 1,
(unsigned int)memsize_total * 1024*1024);
memsize_total += memsize_ddr1_dimm1;
#if defined(SPD_EEPROM_ADDRESS2)
memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2,
1, 2,
(unsigned int)memsize_total * 1024*1024);
#endif
memsize_total += memsize_ddr1_dimm2;
/*
* Enable the DDR controller - pass ddr controller number.
*/
ddr1_enabled = enable_ddr(1);
/* Keep track of memory to be addressed by DDR1 */
memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2;
/*
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
*/
if (ddr1_enabled) {
law_size_ddr1 = 19 + __ilog2(memsize_ddr1);
/*
* Set up LAWBAR for DDR 1 space.
*/
#ifdef CONFIG_FSL_LAW
set_law(1, CFG_DDR_SDRAM_BASE, law_size_ddr1, LAW_TRGT_IF_DDR_1);
#endif
}
#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
2, 1,
(unsigned int)memsize_total * 1024*1024);
memsize_total += memsize_ddr2_dimm1;
memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4,
2, 2,
(unsigned int)memsize_total * 1024*1024);
memsize_total += memsize_ddr2_dimm2;
ddr2_enabled = enable_ddr(2);
/* Keep track of memory to be addressed by DDR2 */
memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2;
if (ddr2_enabled) {
law_size_ddr2 = 19 + __ilog2(memsize_ddr2);
/*
* Set up LAWBAR for DDR 2 space.
*/
#ifdef CONFIG_FSL_LAW
set_law(8,
(ddr1_enabled ? (memsize_ddr1 * 1024 * 1024) : CFG_DDR_SDRAM_BASE),
law_size_ddr2, LAW_TRGT_IF_DDR_2);
#endif
}
debug("\nMemory size of DDR2 = 0x%08lx\n", memsize_ddr2);
#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */
debug("\nMemory size of DDR1 = 0x%08lx\n", memsize_ddr1);
/*
* If neither DDR controller is enabled return 0.
*/
if (!ddr1_enabled && !ddr2_enabled)
return 0;
printf("Non-interleaved");
return memsize_total * 1024 * 1024;
#endif /* CONFIG_DDR_INTERLEAVE */
}
#endif /* CONFIG_SPD_EEPROM */
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
/*
* Initialize all of memory for ECC, then enable errors.
*/
void
ddr_enable_ecc(unsigned int dram_size)
{
uint *p = 0;
uint i = 0;
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_ddr_t *ddr1= &immap->im_ddr1;
dma_init();
for (*p = 0; p < (uint *)(8 * 1024); p++) {
if (((unsigned int)p & 0x1f) == 0) {
ppcDcbz((unsigned long) p);
}
*p = (unsigned int)CONFIG_MEM_INIT_VALUE;
if (((unsigned int)p & 0x1c) == 0x1c) {
ppcDcbf((unsigned long) p);
}
}
dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
for (i = 1; i < dram_size / 0x800000; i++) {
dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
}
/*
* Enable errors for ECC.
*/
debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
ddr1->err_disable = 0x00000000;
asm volatile("sync;isync");
debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable);
}
#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */