u-boot/drivers/s3c24x0_i2c.c

450 lines
10 KiB
C
Raw Normal View History

/*
* (C) Copyright 2002
* David Mueller, ELSOFT AG, d.mueller@elsoft.ch
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* This code should work for both the S3C2400 and the S3C2410
* as they seem to have the same I2C controller inside.
* The different address mapping is handled by the s3c24xx.h files below.
*/
#include <common.h>
#ifdef CONFIG_DRIVER_S3C24X0_I2C
#if defined(CONFIG_S3C2400)
#include <s3c2400.h>
#elif defined(CONFIG_S3C2410)
#include <s3c2410.h>
#endif
#include <i2c.h>
#ifdef CONFIG_HARD_I2C
#define I2C_WRITE 0
#define I2C_READ 1
#define I2C_OK 0
#define I2C_NOK 1
#define I2C_NACK 2
#define I2C_NOK_LA 3 /* Lost arbitration */
#define I2C_NOK_TOUT 4 /* time out */
#define I2CSTAT_BSY 0x20 /* Busy bit */
#define I2CSTAT_NACK 0x01 /* Nack bit */
#define I2CCON_IRPND 0x10 /* Interrupt pending bit */
#define I2C_MODE_MT 0xC0 /* Master Transmit Mode */
#define I2C_MODE_MR 0x80 /* Master Receive Mode */
#define I2C_START_STOP 0x20 /* START / STOP */
#define I2C_TXRX_ENA 0x10 /* I2C Tx/Rx enable */
#define I2C_TIMEOUT 1 /* 1 second */
static int GetI2CSDA(void)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
#ifdef CONFIG_S3C2410
return (gpio->GPEDAT & 0x8000) >> 15;
#endif
#ifdef CONFIG_S3C2400
return (gpio->PGDAT & 0x0020) >> 5;
#endif
}
#if 0
static void SetI2CSDA(int x)
{
rGPEDAT = (rGPEDAT & ~0x8000) | (x&1) << 15;
}
#endif
static void SetI2CSCL(int x)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
#ifdef CONFIG_S3C2410
gpio->GPEDAT = (gpio->GPEDAT & ~0x4000) | (x&1) << 14;
#endif
#ifdef CONFIG_S3C2400
gpio->PGDAT = (gpio->PGDAT & ~0x0040) | (x&1) << 6;
#endif
}
static int WaitForXfer(void)
{
S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
int i, status;
i = I2C_TIMEOUT * 1000;
status = i2c->IICCON;
while ((i > 0) && !(status & I2CCON_IRPND)) {
udelay(1000);
status = i2c->IICCON;
i--;
}
return(status & I2CCON_IRPND) ? I2C_OK : I2C_NOK_TOUT;
}
static int IsACK(void)
{
S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
return(!(i2c->IICSTAT & I2CSTAT_NACK));
}
static void ReadWriteByte(void)
{
S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
i2c->IICCON &= ~I2CCON_IRPND;
}
void i2c_init (int speed, int slaveadd)
{
S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
ulong freq, pres = 16, div;
int i, status;
/* wait for some time to give previous transfer a chance to finish */
i = I2C_TIMEOUT * 1000;
status = i2c->IICSTAT;
while ((i > 0) && (status & I2CSTAT_BSY)) {
udelay(1000);
status = i2c->IICSTAT;
i--;
}
if ((status & I2CSTAT_BSY) || GetI2CSDA() == 0) {
#ifdef CONFIG_S3C2410
ulong old_gpecon = gpio->GPECON;
#endif
#ifdef CONFIG_S3C2400
ulong old_gpecon = gpio->PGCON;
#endif
/* bus still busy probably by (most) previously interrupted transfer */
#ifdef CONFIG_S3C2410
/* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */
gpio->GPECON = (gpio->GPECON & ~0xF0000000) | 0x10000000;
#endif
#ifdef CONFIG_S3C2400
/* set I2CSDA and I2CSCL (PG5, PG6) to GPIO */
gpio->PGCON = (gpio->PGCON & ~0x00003c00) | 0x00000c00;
#endif
/* toggle I2CSCL until bus idle */
SetI2CSCL(0); udelay(1000);
i = 10;
while ((i > 0) && (GetI2CSDA() != 1)) {
SetI2CSCL(1); udelay(1000);
SetI2CSCL(0); udelay(1000);
i--;
}
SetI2CSCL(1); udelay(1000);
/* restore pin functions */
#ifdef CONFIG_S3C2410
gpio->GPECON = old_gpecon;
#endif
#ifdef CONFIG_S3C2400
gpio->PGCON = old_gpecon;
#endif
}
/* calculate prescaler and divisor values */
freq = get_PCLK();
if ((freq / pres / (16+1)) > speed)
/* set prescaler to 512 */
pres = 512;
div = 0;
while ((freq / pres / (div+1)) > speed)
div++;
/* set prescaler, divisor according to freq, also set
ACKGEN, IRQ */
i2c->IICCON = (div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0);
/* init to SLAVE REVEIVE and set slaveaddr */
i2c->IICSTAT = 0;
i2c->IICADD = slaveadd;
/* program Master Transmit (and implicit STOP) */
i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA;
}
/*
cmd_type is 0 for write 1 for read.
addr_len can take any value from 0-255, it is only limited
by the char, we could make it larger if needed. If it is
0 we skip the address write cycle.
*/
static
int i2c_transfer(unsigned char cmd_type,
unsigned char chip,
unsigned char addr[],
unsigned char addr_len,
unsigned char data[],
unsigned short data_len)
{
S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
int i, status, result;
if (data == 0 || data_len == 0) {
/*Don't support data transfer of no length or to address 0*/
printf( "i2c_transfer: bad call\n" );
return I2C_NOK;
}
/*CheckDelay(); */
/* Check I2C bus idle */
i = I2C_TIMEOUT * 1000;
status = i2c->IICSTAT;
while ((i > 0) && (status & I2CSTAT_BSY)) {
udelay(1000);
status = i2c->IICSTAT;
i--;
}
if (status & I2CSTAT_BSY) {
result = I2C_NOK_TOUT;
return(result);
}
i2c->IICCON |= 0x80;
result = I2C_OK;
switch (cmd_type) {
case I2C_WRITE:
if (addr && addr_len) {
i2c->IICDS = chip;
/* send START */
i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP;
i = 0;
while ((i < addr_len) && (result == I2C_OK)) {
result = WaitForXfer();
i2c->IICDS = addr[i];
ReadWriteByte();
i++;
}
i = 0;
while ((i < data_len) && (result == I2C_OK)) {
result = WaitForXfer();
i2c->IICDS = data[i];
ReadWriteByte();
i++;
}
} else {
i2c->IICDS = chip;
/* send START */
i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP;
i = 0;
while ((i < data_len) && (result = I2C_OK)) {
result = WaitForXfer();
i2c->IICDS = data[i];
ReadWriteByte();
i++;
}
}
if (result == I2C_OK)
result = WaitForXfer();
/* send STOP */
i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA;
ReadWriteByte();
break;
case I2C_READ:
if (addr && addr_len) {
i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA;
i2c->IICDS = chip;
/* send START */
i2c->IICSTAT |= I2C_START_STOP;
result = WaitForXfer();
if (IsACK()) {
i = 0;
while ((i < addr_len) && (result == I2C_OK)) {
i2c->IICDS = addr[i];
ReadWriteByte();
result = WaitForXfer();
i++;
}
i2c->IICDS = chip;
/* resend START */
i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP;
ReadWriteByte();
result = WaitForXfer();
i = 0;
while ((i < data_len) && (result == I2C_OK)) {
/* disable ACK for final READ */
if (i == data_len - 1)
i2c->IICCON &= ~0x80;
ReadWriteByte();
result = WaitForXfer();
data[i] = i2c->IICDS;
i++;
}
} else {
result = I2C_NACK;
}
} else {
i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA;
i2c->IICDS = chip;
/* send START */
i2c->IICSTAT |= I2C_START_STOP;
result = WaitForXfer();
if (IsACK()) {
i = 0;
while ((i < data_len) && (result == I2C_OK)) {
/* disable ACK for final READ */
if (i == data_len - 1)
i2c->IICCON &= ~0x80;
ReadWriteByte();
result = WaitForXfer();
data[i] = i2c->IICDS;
i++;
}
} else {
result = I2C_NACK;
}
}
/* send STOP */
i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA;
ReadWriteByte();
break;
default:
printf( "i2c_transfer: bad call\n" );
result = I2C_NOK;
break;
}
return (result);
}
int i2c_probe (uchar chip)
{
uchar buf[1];
buf[0] = 0;
/*
* What is needed is to send the chip address and verify that the
* address was <ACK>ed (i.e. there was a chip at that address which
* drove the data line low).
*/
return(i2c_transfer (I2C_READ, chip << 1, 0, 0, buf, 1) != I2C_OK);
}
int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len)
{
uchar xaddr[4];
int ret;
if ( alen > 4 ) {
printf ("I2C read: addr len %d not supported\n", alen);
return 1;
}
if ( alen > 0 ) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
* address and the extra bits end up in the "chip address"
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
* four 256 byte chips.
*
* Note that we consider the length of the address field to
* still be one byte because the extra address bits are
* hidden in the chip address.
*/
if( alen > 0 )
chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
#endif
if( (ret = i2c_transfer(I2C_READ, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) {
printf( "I2c read: failed %d\n", ret);
return 1;
}
return 0;
}
int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len)
{
uchar xaddr[4];
if ( alen > 4 ) {
printf ("I2C write: addr len %d not supported\n", alen);
return 1;
}
if ( alen > 0 ) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
* address and the extra bits end up in the "chip address"
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
* four 256 byte chips.
*
* Note that we consider the length of the address field to
* still be one byte because the extra address bits are
* hidden in the chip address.
*/
if( alen > 0 )
chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
#endif
return (i2c_transfer(I2C_WRITE, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0);
}
#endif /* CONFIG_HARD_I2C */
#endif /* CONFIG_DRIVER_S3C24X0_I2C */