218151e997
Add a short description of what we expect from GuC and some minor improvements to existing documentation. Also remove a comment about a difference between GuC and HuC that is not true anymore. v2: add that the GuC is not mandatory (Martin) v3: add extra newline for better text organization (Martin) Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: Matthew Brost <matthew.brost@intel.com> Cc: Martin Peres <martin.peres@linux.intel.com> Acked-by: Anna Karas <anna.karas@intel.com> Reviewed-by: Martin Peres <martin.peres@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191014183602.3643-2-daniele.ceraolospurio@intel.com
647 lines
17 KiB
C
647 lines
17 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2014-2019 Intel Corporation
|
|
*/
|
|
|
|
#include "gt/intel_gt.h"
|
|
#include "intel_guc.h"
|
|
#include "intel_guc_ads.h"
|
|
#include "intel_guc_submission.h"
|
|
#include "i915_drv.h"
|
|
|
|
/**
|
|
* DOC: GuC
|
|
*
|
|
* The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
|
|
* designed to offload some of the functionality usually performed by the host
|
|
* driver; currently the main operations it can take care of are:
|
|
*
|
|
* - Authentication of the HuC, which is required to fully enable HuC usage.
|
|
* - Low latency graphics context scheduling (a.k.a. GuC submission).
|
|
* - GT Power management.
|
|
*
|
|
* The enable_guc module parameter can be used to select which of those
|
|
* operations to enable within GuC. Note that not all the operations are
|
|
* supported on all gen9+ platforms.
|
|
*
|
|
* Enabling the GuC is not mandatory and therefore the firmware is only loaded
|
|
* if at least one of the operations is selected. However, not loading the GuC
|
|
* might result in the loss of some features that do require the GuC (currently
|
|
* just the HuC, but more are expected to land in the future).
|
|
*/
|
|
|
|
static void gen8_guc_raise_irq(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
intel_uncore_write(gt->uncore, GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
|
|
}
|
|
|
|
static void gen11_guc_raise_irq(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
intel_uncore_write(gt->uncore, GEN11_GUC_HOST_INTERRUPT, 0);
|
|
}
|
|
|
|
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
|
|
{
|
|
GEM_BUG_ON(!guc->send_regs.base);
|
|
GEM_BUG_ON(!guc->send_regs.count);
|
|
GEM_BUG_ON(i >= guc->send_regs.count);
|
|
|
|
return _MMIO(guc->send_regs.base + 4 * i);
|
|
}
|
|
|
|
void intel_guc_init_send_regs(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
enum forcewake_domains fw_domains = 0;
|
|
unsigned int i;
|
|
|
|
if (INTEL_GEN(gt->i915) >= 11) {
|
|
guc->send_regs.base =
|
|
i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
|
|
guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
|
|
} else {
|
|
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
|
|
guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
|
|
BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
|
|
}
|
|
|
|
for (i = 0; i < guc->send_regs.count; i++) {
|
|
fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
|
|
guc_send_reg(guc, i),
|
|
FW_REG_READ | FW_REG_WRITE);
|
|
}
|
|
guc->send_regs.fw_domains = fw_domains;
|
|
}
|
|
|
|
void intel_guc_init_early(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
|
|
|
|
intel_guc_fw_init_early(guc);
|
|
intel_guc_ct_init_early(&guc->ct);
|
|
intel_guc_log_init_early(&guc->log);
|
|
intel_guc_submission_init_early(guc);
|
|
|
|
mutex_init(&guc->send_mutex);
|
|
spin_lock_init(&guc->irq_lock);
|
|
guc->send = intel_guc_send_nop;
|
|
guc->handler = intel_guc_to_host_event_handler_nop;
|
|
if (INTEL_GEN(i915) >= 11) {
|
|
guc->notify = gen11_guc_raise_irq;
|
|
guc->interrupts.reset = gen11_reset_guc_interrupts;
|
|
guc->interrupts.enable = gen11_enable_guc_interrupts;
|
|
guc->interrupts.disable = gen11_disable_guc_interrupts;
|
|
} else {
|
|
guc->notify = gen8_guc_raise_irq;
|
|
guc->interrupts.reset = gen9_reset_guc_interrupts;
|
|
guc->interrupts.enable = gen9_enable_guc_interrupts;
|
|
guc->interrupts.disable = gen9_disable_guc_interrupts;
|
|
}
|
|
}
|
|
|
|
static int guc_shared_data_create(struct intel_guc *guc)
|
|
{
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
|
|
vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
|
|
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
|
|
if (IS_ERR(vaddr)) {
|
|
i915_vma_unpin_and_release(&vma, 0);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
guc->shared_data = vma;
|
|
guc->shared_data_vaddr = vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_shared_data_destroy(struct intel_guc *guc)
|
|
{
|
|
i915_vma_unpin_and_release(&guc->shared_data, I915_VMA_RELEASE_MAP);
|
|
}
|
|
|
|
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
|
|
{
|
|
u32 level = intel_guc_log_get_level(&guc->log);
|
|
u32 flags = 0;
|
|
|
|
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
|
|
flags |= GUC_LOG_DISABLED;
|
|
else
|
|
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
|
|
GUC_LOG_VERBOSITY_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
|
|
{
|
|
u32 flags = 0;
|
|
|
|
if (!intel_guc_is_submission_supported(guc))
|
|
flags |= GUC_CTL_DISABLE_SCHEDULER;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
|
|
{
|
|
u32 flags = 0;
|
|
|
|
if (intel_guc_is_submission_supported(guc)) {
|
|
u32 ctxnum, base;
|
|
|
|
base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
|
|
ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
|
|
|
|
base >>= PAGE_SHIFT;
|
|
flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
|
|
(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
|
|
{
|
|
u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
|
|
u32 flags;
|
|
|
|
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
|
|
#define UNIT SZ_1M
|
|
#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
|
|
#else
|
|
#define UNIT SZ_4K
|
|
#define FLAG 0
|
|
#endif
|
|
|
|
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
|
|
BUILD_BUG_ON(!DPC_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
|
|
BUILD_BUG_ON(!ISR_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
|
|
|
|
BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
|
|
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
|
|
BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
|
|
(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
|
|
BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
|
|
(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
|
|
|
|
flags = GUC_LOG_VALID |
|
|
GUC_LOG_NOTIFY_ON_HALF_FULL |
|
|
FLAG |
|
|
((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
|
|
((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
|
|
((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
|
|
(offset << GUC_LOG_BUF_ADDR_SHIFT);
|
|
|
|
#undef UNIT
|
|
#undef FLAG
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_ads_flags(struct intel_guc *guc)
|
|
{
|
|
u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
|
|
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* Initialise the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
static void guc_init_params(struct intel_guc *guc)
|
|
{
|
|
u32 *params = guc->params;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
|
|
|
|
params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
|
|
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
|
|
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
|
|
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
|
|
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
|
|
}
|
|
|
|
/*
|
|
* Initialise the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
void intel_guc_write_params(struct intel_guc *guc)
|
|
{
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
int i;
|
|
|
|
/*
|
|
* All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
|
|
* they are power context saved so it's ok to release forcewake
|
|
* when we are done here and take it again at xfer time.
|
|
*/
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
|
|
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
|
|
|
|
intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
|
|
}
|
|
|
|
int intel_guc_init(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
int ret;
|
|
|
|
ret = intel_uc_fw_init(&guc->fw);
|
|
if (ret)
|
|
goto err_fetch;
|
|
|
|
ret = guc_shared_data_create(guc);
|
|
if (ret)
|
|
goto err_fw;
|
|
GEM_BUG_ON(!guc->shared_data);
|
|
|
|
ret = intel_guc_log_create(&guc->log);
|
|
if (ret)
|
|
goto err_shared;
|
|
|
|
ret = intel_guc_ads_create(guc);
|
|
if (ret)
|
|
goto err_log;
|
|
GEM_BUG_ON(!guc->ads_vma);
|
|
|
|
ret = intel_guc_ct_init(&guc->ct);
|
|
if (ret)
|
|
goto err_ads;
|
|
|
|
if (intel_guc_is_submission_supported(guc)) {
|
|
/*
|
|
* This is stuff we need to have available at fw load time
|
|
* if we are planning to enable submission later
|
|
*/
|
|
ret = intel_guc_submission_init(guc);
|
|
if (ret)
|
|
goto err_ct;
|
|
}
|
|
|
|
/* now that everything is perma-pinned, initialize the parameters */
|
|
guc_init_params(guc);
|
|
|
|
/* We need to notify the guc whenever we change the GGTT */
|
|
i915_ggtt_enable_guc(gt->ggtt);
|
|
|
|
return 0;
|
|
|
|
err_ct:
|
|
intel_guc_ct_fini(&guc->ct);
|
|
err_ads:
|
|
intel_guc_ads_destroy(guc);
|
|
err_log:
|
|
intel_guc_log_destroy(&guc->log);
|
|
err_shared:
|
|
guc_shared_data_destroy(guc);
|
|
err_fw:
|
|
intel_uc_fw_fini(&guc->fw);
|
|
err_fetch:
|
|
intel_uc_fw_cleanup_fetch(&guc->fw);
|
|
DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_fini(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
if (!intel_uc_fw_is_available(&guc->fw))
|
|
return;
|
|
|
|
i915_ggtt_disable_guc(gt->ggtt);
|
|
|
|
if (intel_guc_is_submission_supported(guc))
|
|
intel_guc_submission_fini(guc);
|
|
|
|
intel_guc_ct_fini(&guc->ct);
|
|
|
|
intel_guc_ads_destroy(guc);
|
|
intel_guc_log_destroy(&guc->log);
|
|
guc_shared_data_destroy(guc);
|
|
intel_uc_fw_fini(&guc->fw);
|
|
intel_uc_fw_cleanup_fetch(&guc->fw);
|
|
}
|
|
|
|
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
|
|
u32 *response_buf, u32 response_buf_size)
|
|
{
|
|
WARN(1, "Unexpected send: action=%#x\n", *action);
|
|
return -ENODEV;
|
|
}
|
|
|
|
void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
|
|
{
|
|
WARN(1, "Unexpected event: no suitable handler\n");
|
|
}
|
|
|
|
/*
|
|
* This function implements the MMIO based host to GuC interface.
|
|
*/
|
|
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
|
|
u32 *response_buf, u32 response_buf_size)
|
|
{
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
u32 status;
|
|
int i;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(!len);
|
|
GEM_BUG_ON(len > guc->send_regs.count);
|
|
|
|
/* We expect only action code */
|
|
GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
|
|
|
|
/* If CT is available, we expect to use MMIO only during init/fini */
|
|
GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
|
|
*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
|
|
|
|
mutex_lock(&guc->send_mutex);
|
|
intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
|
|
|
|
for (i = 0; i < len; i++)
|
|
intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
|
|
|
|
intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
|
|
|
|
intel_guc_notify(guc);
|
|
|
|
/*
|
|
* No GuC command should ever take longer than 10ms.
|
|
* Fast commands should still complete in 10us.
|
|
*/
|
|
ret = __intel_wait_for_register_fw(uncore,
|
|
guc_send_reg(guc, 0),
|
|
INTEL_GUC_MSG_TYPE_MASK,
|
|
INTEL_GUC_MSG_TYPE_RESPONSE <<
|
|
INTEL_GUC_MSG_TYPE_SHIFT,
|
|
10, 10, &status);
|
|
/* If GuC explicitly returned an error, convert it to -EIO */
|
|
if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
|
|
ret = -EIO;
|
|
|
|
if (ret) {
|
|
DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
|
|
action[0], ret, status);
|
|
goto out;
|
|
}
|
|
|
|
if (response_buf) {
|
|
int count = min(response_buf_size, guc->send_regs.count - 1);
|
|
|
|
for (i = 0; i < count; i++)
|
|
response_buf[i] = intel_uncore_read(uncore,
|
|
guc_send_reg(guc, i + 1));
|
|
}
|
|
|
|
/* Use data from the GuC response as our return value */
|
|
ret = INTEL_GUC_MSG_TO_DATA(status);
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
|
|
mutex_unlock(&guc->send_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
|
|
const u32 *payload, u32 len)
|
|
{
|
|
u32 msg;
|
|
|
|
if (unlikely(!len))
|
|
return -EPROTO;
|
|
|
|
/* Make sure to handle only enabled messages */
|
|
msg = payload[0] & guc->msg_enabled_mask;
|
|
|
|
if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
|
|
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
|
|
intel_guc_log_handle_flush_event(&guc->log);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_guc_sample_forcewake(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
|
|
u32 action[2];
|
|
|
|
action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
|
|
/* WaRsDisableCoarsePowerGating:skl,cnl */
|
|
if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
|
|
action[1] = 0;
|
|
else
|
|
/* bit 0 and 1 are for Render and Media domain separately */
|
|
action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
|
|
* @guc: intel_guc structure
|
|
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
|
|
*
|
|
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
|
|
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
|
|
* intel_huc_auth().
|
|
*
|
|
* Return: non-zero code on error
|
|
*/
|
|
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
|
|
rsa_offset
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* intel_guc_suspend() - notify GuC entering suspend state
|
|
* @guc: the guc
|
|
*/
|
|
int intel_guc_suspend(struct intel_guc *guc)
|
|
{
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
int ret;
|
|
u32 status;
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_ENTER_S_STATE,
|
|
GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
|
|
};
|
|
|
|
/*
|
|
* The ENTER_S_STATE action queues the save/restore operation in GuC FW
|
|
* and then returns, so waiting on the H2G is not enough to guarantee
|
|
* GuC is done. When all the processing is done, GuC writes
|
|
* INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
|
|
* on that. Note that GuC does not ensure that the value in the register
|
|
* is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
|
|
* in progress so we need to take care of that ourselves as well.
|
|
*/
|
|
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(14),
|
|
INTEL_GUC_SLEEP_STATE_INVALID_MASK);
|
|
|
|
ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
|
|
INTEL_GUC_SLEEP_STATE_INVALID_MASK,
|
|
0, 0, 10, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
|
|
DRM_ERROR("GuC failed to change sleep state. "
|
|
"action=0x%x, err=%u\n",
|
|
action[0], status);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_reset_engine() - ask GuC to reset an engine
|
|
* @guc: intel_guc structure
|
|
* @engine: engine to be reset
|
|
*/
|
|
int intel_guc_reset_engine(struct intel_guc *guc,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
u32 data[7];
|
|
|
|
GEM_BUG_ON(!guc->execbuf_client);
|
|
|
|
data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
|
|
data[1] = engine->guc_id;
|
|
data[2] = 0;
|
|
data[3] = 0;
|
|
data[4] = 0;
|
|
data[5] = guc->execbuf_client->stage_id;
|
|
data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
|
|
|
|
return intel_guc_send(guc, data, ARRAY_SIZE(data));
|
|
}
|
|
|
|
/**
|
|
* intel_guc_resume() - notify GuC resuming from suspend state
|
|
* @guc: the guc
|
|
*/
|
|
int intel_guc_resume(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_EXIT_S_STATE,
|
|
GUC_POWER_D0,
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* DOC: GuC Memory Management
|
|
*
|
|
* GuC can't allocate any memory for its own usage, so all the allocations must
|
|
* be handled by the host driver. GuC accesses the memory via the GGTT, with the
|
|
* exception of the top and bottom parts of the 4GB address space, which are
|
|
* instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
|
|
* or other parts of the HW. The driver must take care not to place objects that
|
|
* the GuC is going to access in these reserved ranges. The layout of the GuC
|
|
* address space is shown below:
|
|
*
|
|
* ::
|
|
*
|
|
* +===========> +====================+ <== FFFF_FFFF
|
|
* ^ | Reserved |
|
|
* | +====================+ <== GUC_GGTT_TOP
|
|
* | | |
|
|
* | | DRAM |
|
|
* GuC | |
|
|
* Address +===> +====================+ <== GuC ggtt_pin_bias
|
|
* Space ^ | |
|
|
* | | | |
|
|
* | GuC | GuC |
|
|
* | WOPCM | WOPCM |
|
|
* | Size | |
|
|
* | | | |
|
|
* v v | |
|
|
* +=======+===> +====================+ <== 0000_0000
|
|
*
|
|
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
|
|
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
|
|
* to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
|
|
*/
|
|
|
|
/**
|
|
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
|
|
* @guc: the guc
|
|
* @size: size of area to allocate (both virtual space and memory)
|
|
*
|
|
* This is a wrapper to create an object for use with the GuC. In order to
|
|
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
|
|
* both some backing storage and a range inside the Global GTT. We must pin
|
|
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
|
|
* range is reserved inside GuC.
|
|
*
|
|
* Return: A i915_vma if successful, otherwise an ERR_PTR.
|
|
*/
|
|
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
u64 flags;
|
|
int ret;
|
|
|
|
obj = i915_gem_object_create_shmem(gt->i915, size);
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
|
|
if (IS_ERR(vma))
|
|
goto err;
|
|
|
|
flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
|
|
ret = i915_vma_pin(vma, 0, 0, flags);
|
|
if (ret) {
|
|
vma = ERR_PTR(ret);
|
|
goto err;
|
|
}
|
|
|
|
return i915_vma_make_unshrinkable(vma);
|
|
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return vma;
|
|
}
|