forked from Minki/linux
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
241 lines
6.4 KiB
C
241 lines
6.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Suspend support specific for s390.
|
|
*
|
|
* Copyright IBM Corp. 2009
|
|
*
|
|
* Author(s): Hans-Joachim Picht <hans@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#include <linux/pfn.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pci.h>
|
|
#include <asm/ctl_reg.h>
|
|
#include <asm/ipl.h>
|
|
#include <asm/cio.h>
|
|
#include <asm/sections.h>
|
|
#include "entry.h"
|
|
|
|
/*
|
|
* The restore of the saved pages in an hibernation image will set
|
|
* the change and referenced bits in the storage key for each page.
|
|
* Overindication of the referenced bits after an hibernation cycle
|
|
* does not cause any harm but the overindication of the change bits
|
|
* would cause trouble.
|
|
* Use the ARCH_SAVE_PAGE_KEYS hooks to save the storage key of each
|
|
* page to the most significant byte of the associated page frame
|
|
* number in the hibernation image.
|
|
*/
|
|
|
|
/*
|
|
* Key storage is allocated as a linked list of pages.
|
|
* The size of the keys array is (PAGE_SIZE - sizeof(long))
|
|
*/
|
|
struct page_key_data {
|
|
struct page_key_data *next;
|
|
unsigned char data[];
|
|
};
|
|
|
|
#define PAGE_KEY_DATA_SIZE (PAGE_SIZE - sizeof(struct page_key_data *))
|
|
|
|
static struct page_key_data *page_key_data;
|
|
static struct page_key_data *page_key_rp, *page_key_wp;
|
|
static unsigned long page_key_rx, page_key_wx;
|
|
unsigned long suspend_zero_pages;
|
|
|
|
/*
|
|
* For each page in the hibernation image one additional byte is
|
|
* stored in the most significant byte of the page frame number.
|
|
* On suspend no additional memory is required but on resume the
|
|
* keys need to be memorized until the page data has been restored.
|
|
* Only then can the storage keys be set to their old state.
|
|
*/
|
|
unsigned long page_key_additional_pages(unsigned long pages)
|
|
{
|
|
return DIV_ROUND_UP(pages, PAGE_KEY_DATA_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Free page_key_data list of arrays.
|
|
*/
|
|
void page_key_free(void)
|
|
{
|
|
struct page_key_data *pkd;
|
|
|
|
while (page_key_data) {
|
|
pkd = page_key_data;
|
|
page_key_data = pkd->next;
|
|
free_page((unsigned long) pkd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate page_key_data list of arrays with enough room to store
|
|
* one byte for each page in the hibernation image.
|
|
*/
|
|
int page_key_alloc(unsigned long pages)
|
|
{
|
|
struct page_key_data *pk;
|
|
unsigned long size;
|
|
|
|
size = DIV_ROUND_UP(pages, PAGE_KEY_DATA_SIZE);
|
|
while (size--) {
|
|
pk = (struct page_key_data *) get_zeroed_page(GFP_KERNEL);
|
|
if (!pk) {
|
|
page_key_free();
|
|
return -ENOMEM;
|
|
}
|
|
pk->next = page_key_data;
|
|
page_key_data = pk;
|
|
}
|
|
page_key_rp = page_key_wp = page_key_data;
|
|
page_key_rx = page_key_wx = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Save the storage key into the upper 8 bits of the page frame number.
|
|
*/
|
|
void page_key_read(unsigned long *pfn)
|
|
{
|
|
struct page *page;
|
|
unsigned long addr;
|
|
unsigned char key;
|
|
|
|
page = pfn_to_page(*pfn);
|
|
addr = (unsigned long) page_address(page);
|
|
key = (unsigned char) page_get_storage_key(addr) & 0x7f;
|
|
if (arch_test_page_nodat(page))
|
|
key |= 0x80;
|
|
*(unsigned char *) pfn = key;
|
|
}
|
|
|
|
/*
|
|
* Extract the storage key from the upper 8 bits of the page frame number
|
|
* and store it in the page_key_data list of arrays.
|
|
*/
|
|
void page_key_memorize(unsigned long *pfn)
|
|
{
|
|
page_key_wp->data[page_key_wx] = *(unsigned char *) pfn;
|
|
*(unsigned char *) pfn = 0;
|
|
if (++page_key_wx < PAGE_KEY_DATA_SIZE)
|
|
return;
|
|
page_key_wp = page_key_wp->next;
|
|
page_key_wx = 0;
|
|
}
|
|
|
|
/*
|
|
* Get the next key from the page_key_data list of arrays and set the
|
|
* storage key of the page referred by @address. If @address refers to
|
|
* a "safe" page the swsusp_arch_resume code will transfer the storage
|
|
* key from the buffer page to the original page.
|
|
*/
|
|
void page_key_write(void *address)
|
|
{
|
|
struct page *page;
|
|
unsigned char key;
|
|
|
|
key = page_key_rp->data[page_key_rx];
|
|
page_set_storage_key((unsigned long) address, key & 0x7f, 0);
|
|
page = virt_to_page(address);
|
|
if (key & 0x80)
|
|
arch_set_page_nodat(page, 0);
|
|
else
|
|
arch_set_page_dat(page, 0);
|
|
if (++page_key_rx >= PAGE_KEY_DATA_SIZE)
|
|
return;
|
|
page_key_rp = page_key_rp->next;
|
|
page_key_rx = 0;
|
|
}
|
|
|
|
int pfn_is_nosave(unsigned long pfn)
|
|
{
|
|
unsigned long nosave_begin_pfn = PFN_DOWN(__pa(&__nosave_begin));
|
|
unsigned long nosave_end_pfn = PFN_DOWN(__pa(&__nosave_end));
|
|
unsigned long eshared_pfn = PFN_DOWN(__pa(&_eshared)) - 1;
|
|
unsigned long stext_pfn = PFN_DOWN(__pa(&_stext));
|
|
|
|
/* Always save lowcore pages (LC protection might be enabled). */
|
|
if (pfn <= LC_PAGES)
|
|
return 0;
|
|
if (pfn >= nosave_begin_pfn && pfn < nosave_end_pfn)
|
|
return 1;
|
|
/* Skip memory holes and read-only pages (NSS, DCSS, ...). */
|
|
if (pfn >= stext_pfn && pfn <= eshared_pfn)
|
|
return ipl_info.type == IPL_TYPE_NSS ? 1 : 0;
|
|
if (tprot(PFN_PHYS(pfn)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* PM notifier callback for suspend
|
|
*/
|
|
static int suspend_pm_cb(struct notifier_block *nb, unsigned long action,
|
|
void *ptr)
|
|
{
|
|
switch (action) {
|
|
case PM_SUSPEND_PREPARE:
|
|
case PM_HIBERNATION_PREPARE:
|
|
suspend_zero_pages = __get_free_pages(GFP_KERNEL, LC_ORDER);
|
|
if (!suspend_zero_pages)
|
|
return NOTIFY_BAD;
|
|
break;
|
|
case PM_POST_SUSPEND:
|
|
case PM_POST_HIBERNATION:
|
|
free_pages(suspend_zero_pages, LC_ORDER);
|
|
break;
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int __init suspend_pm_init(void)
|
|
{
|
|
pm_notifier(suspend_pm_cb, 0);
|
|
return 0;
|
|
}
|
|
arch_initcall(suspend_pm_init);
|
|
|
|
void save_processor_state(void)
|
|
{
|
|
/* swsusp_arch_suspend() actually saves all cpu register contents.
|
|
* Machine checks must be disabled since swsusp_arch_suspend() stores
|
|
* register contents to their lowcore save areas. That's the same
|
|
* place where register contents on machine checks would be saved.
|
|
* To avoid register corruption disable machine checks.
|
|
* We must also disable machine checks in the new psw mask for
|
|
* program checks, since swsusp_arch_suspend() may generate program
|
|
* checks. Disabling machine checks for all other new psw masks is
|
|
* just paranoia.
|
|
*/
|
|
local_mcck_disable();
|
|
/* Disable lowcore protection */
|
|
__ctl_clear_bit(0,28);
|
|
S390_lowcore.external_new_psw.mask &= ~PSW_MASK_MCHECK;
|
|
S390_lowcore.svc_new_psw.mask &= ~PSW_MASK_MCHECK;
|
|
S390_lowcore.io_new_psw.mask &= ~PSW_MASK_MCHECK;
|
|
S390_lowcore.program_new_psw.mask &= ~PSW_MASK_MCHECK;
|
|
}
|
|
|
|
void restore_processor_state(void)
|
|
{
|
|
S390_lowcore.external_new_psw.mask |= PSW_MASK_MCHECK;
|
|
S390_lowcore.svc_new_psw.mask |= PSW_MASK_MCHECK;
|
|
S390_lowcore.io_new_psw.mask |= PSW_MASK_MCHECK;
|
|
S390_lowcore.program_new_psw.mask |= PSW_MASK_MCHECK;
|
|
/* Enable lowcore protection */
|
|
__ctl_set_bit(0,28);
|
|
local_mcck_enable();
|
|
}
|
|
|
|
/* Called at the end of swsusp_arch_resume */
|
|
void s390_early_resume(void)
|
|
{
|
|
lgr_info_log();
|
|
channel_subsystem_reinit();
|
|
zpci_rescan();
|
|
}
|