efx_default_channel_want_txqs() is only used in efx.c, while
 efx_ptp_want_txqs() and efx_ptp_channel_type (a struct) are only used
 in ptp.c.  In all cases these symbols should be static.
Fixes: 2935e3c382 ("sfc: on 8000 series use TX queues for TX timestamps")
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
[ecree@solarflare.com: rewrote commit message]
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			2186 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2186 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare network controllers and boards
 | |
|  * Copyright 2011-2013 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| /* Theory of operation:
 | |
|  *
 | |
|  * PTP support is assisted by firmware running on the MC, which provides
 | |
|  * the hardware timestamping capabilities.  Both transmitted and received
 | |
|  * PTP event packets are queued onto internal queues for subsequent processing;
 | |
|  * this is because the MC operations are relatively long and would block
 | |
|  * block NAPI/interrupt operation.
 | |
|  *
 | |
|  * Receive event processing:
 | |
|  *	The event contains the packet's UUID and sequence number, together
 | |
|  *	with the hardware timestamp.  The PTP receive packet queue is searched
 | |
|  *	for this UUID/sequence number and, if found, put on a pending queue.
 | |
|  *	Packets not matching are delivered without timestamps (MCDI events will
 | |
|  *	always arrive after the actual packet).
 | |
|  *	It is important for the operation of the PTP protocol that the ordering
 | |
|  *	of packets between the event and general port is maintained.
 | |
|  *
 | |
|  * Work queue processing:
 | |
|  *	If work waiting, synchronise host/hardware time
 | |
|  *
 | |
|  *	Transmit: send packet through MC, which returns the transmission time
 | |
|  *	that is converted to an appropriate timestamp.
 | |
|  *
 | |
|  *	Receive: the packet's reception time is converted to an appropriate
 | |
|  *	timestamp.
 | |
|  */
 | |
| #include <linux/ip.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/net_tstamp.h>
 | |
| #include <linux/pps_kernel.h>
 | |
| #include <linux/ptp_clock_kernel.h>
 | |
| #include "net_driver.h"
 | |
| #include "efx.h"
 | |
| #include "mcdi.h"
 | |
| #include "mcdi_pcol.h"
 | |
| #include "io.h"
 | |
| #include "farch_regs.h"
 | |
| #include "nic.h"
 | |
| 
 | |
| /* Maximum number of events expected to make up a PTP event */
 | |
| #define	MAX_EVENT_FRAGS			3
 | |
| 
 | |
| /* Maximum delay, ms, to begin synchronisation */
 | |
| #define	MAX_SYNCHRONISE_WAIT_MS		2
 | |
| 
 | |
| /* How long, at most, to spend synchronising */
 | |
| #define	SYNCHRONISE_PERIOD_NS		250000
 | |
| 
 | |
| /* How often to update the shared memory time */
 | |
| #define	SYNCHRONISATION_GRANULARITY_NS	200
 | |
| 
 | |
| /* Minimum permitted length of a (corrected) synchronisation time */
 | |
| #define	DEFAULT_MIN_SYNCHRONISATION_NS	120
 | |
| 
 | |
| /* Maximum permitted length of a (corrected) synchronisation time */
 | |
| #define	MAX_SYNCHRONISATION_NS		1000
 | |
| 
 | |
| /* How many (MC) receive events that can be queued */
 | |
| #define	MAX_RECEIVE_EVENTS		8
 | |
| 
 | |
| /* Length of (modified) moving average. */
 | |
| #define	AVERAGE_LENGTH			16
 | |
| 
 | |
| /* How long an unmatched event or packet can be held */
 | |
| #define PKT_EVENT_LIFETIME_MS		10
 | |
| 
 | |
| /* Offsets into PTP packet for identification.  These offsets are from the
 | |
|  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
 | |
|  * PTP V2 permit the use of IPV4 options.
 | |
|  */
 | |
| #define PTP_DPORT_OFFSET	22
 | |
| 
 | |
| #define PTP_V1_VERSION_LENGTH	2
 | |
| #define PTP_V1_VERSION_OFFSET	28
 | |
| 
 | |
| #define PTP_V1_UUID_LENGTH	6
 | |
| #define PTP_V1_UUID_OFFSET	50
 | |
| 
 | |
| #define PTP_V1_SEQUENCE_LENGTH	2
 | |
| #define PTP_V1_SEQUENCE_OFFSET	58
 | |
| 
 | |
| /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
 | |
|  * includes IP header.
 | |
|  */
 | |
| #define	PTP_V1_MIN_LENGTH	64
 | |
| 
 | |
| #define PTP_V2_VERSION_LENGTH	1
 | |
| #define PTP_V2_VERSION_OFFSET	29
 | |
| 
 | |
| #define PTP_V2_UUID_LENGTH	8
 | |
| #define PTP_V2_UUID_OFFSET	48
 | |
| 
 | |
| /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 | |
|  * the MC only captures the last six bytes of the clock identity. These values
 | |
|  * reflect those, not the ones used in the standard.  The standard permits
 | |
|  * mapping of V1 UUIDs to V2 UUIDs with these same values.
 | |
|  */
 | |
| #define PTP_V2_MC_UUID_LENGTH	6
 | |
| #define PTP_V2_MC_UUID_OFFSET	50
 | |
| 
 | |
| #define PTP_V2_SEQUENCE_LENGTH	2
 | |
| #define PTP_V2_SEQUENCE_OFFSET	58
 | |
| 
 | |
| /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 | |
|  * includes IP header.
 | |
|  */
 | |
| #define	PTP_V2_MIN_LENGTH	63
 | |
| 
 | |
| #define	PTP_MIN_LENGTH		63
 | |
| 
 | |
| #define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
 | |
| #define PTP_EVENT_PORT		319
 | |
| #define PTP_GENERAL_PORT	320
 | |
| 
 | |
| /* Annoyingly the format of the version numbers are different between
 | |
|  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 | |
|  */
 | |
| #define	PTP_VERSION_V1		1
 | |
| 
 | |
| #define	PTP_VERSION_V2		2
 | |
| #define	PTP_VERSION_V2_MASK	0x0f
 | |
| 
 | |
| enum ptp_packet_state {
 | |
| 	PTP_PACKET_STATE_UNMATCHED = 0,
 | |
| 	PTP_PACKET_STATE_MATCHED,
 | |
| 	PTP_PACKET_STATE_TIMED_OUT,
 | |
| 	PTP_PACKET_STATE_MATCH_UNWANTED
 | |
| };
 | |
| 
 | |
| /* NIC synchronised with single word of time only comprising
 | |
|  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 | |
|  */
 | |
| #define	MC_NANOSECOND_BITS	30
 | |
| #define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
 | |
| #define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 | |
| 
 | |
| /* Maximum parts-per-billion adjustment that is acceptable */
 | |
| #define MAX_PPB			1000000
 | |
| 
 | |
| /* Precalculate scale word to avoid long long division at runtime */
 | |
| /* This is equivalent to 2^66 / 10^9. */
 | |
| #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 | |
| 
 | |
| /* How much to shift down after scaling to convert to FP40 */
 | |
| #define PPB_SHIFT_FP40		26
 | |
| /* ... and FP44. */
 | |
| #define PPB_SHIFT_FP44		22
 | |
| 
 | |
| #define PTP_SYNC_ATTEMPTS	4
 | |
| 
 | |
| /**
 | |
|  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 | |
|  * @words: UUID and (partial) sequence number
 | |
|  * @expiry: Time after which the packet should be delivered irrespective of
 | |
|  *            event arrival.
 | |
|  * @state: The state of the packet - whether it is ready for processing or
 | |
|  *         whether that is of no interest.
 | |
|  */
 | |
| struct efx_ptp_match {
 | |
| 	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 | |
| 	unsigned long expiry;
 | |
| 	enum ptp_packet_state state;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct efx_ptp_event_rx - A PTP receive event (from MC)
 | |
|  * @seq0: First part of (PTP) UUID
 | |
|  * @seq1: Second part of (PTP) UUID and sequence number
 | |
|  * @hwtimestamp: Event timestamp
 | |
|  */
 | |
| struct efx_ptp_event_rx {
 | |
| 	struct list_head link;
 | |
| 	u32 seq0;
 | |
| 	u32 seq1;
 | |
| 	ktime_t hwtimestamp;
 | |
| 	unsigned long expiry;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct efx_ptp_timeset - Synchronisation between host and MC
 | |
|  * @host_start: Host time immediately before hardware timestamp taken
 | |
|  * @major: Hardware timestamp, major
 | |
|  * @minor: Hardware timestamp, minor
 | |
|  * @host_end: Host time immediately after hardware timestamp taken
 | |
|  * @wait: Number of NIC clock ticks between hardware timestamp being read and
 | |
|  *          host end time being seen
 | |
|  * @window: Difference of host_end and host_start
 | |
|  * @valid: Whether this timeset is valid
 | |
|  */
 | |
| struct efx_ptp_timeset {
 | |
| 	u32 host_start;
 | |
| 	u32 major;
 | |
| 	u32 minor;
 | |
| 	u32 host_end;
 | |
| 	u32 wait;
 | |
| 	u32 window;	/* Derived: end - start, allowing for wrap */
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct efx_ptp_data - Precision Time Protocol (PTP) state
 | |
|  * @efx: The NIC context
 | |
|  * @channel: The PTP channel (Siena only)
 | |
|  * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 | |
|  *	separate events)
 | |
|  * @rxq: Receive SKB queue (awaiting timestamps)
 | |
|  * @txq: Transmit SKB queue
 | |
|  * @evt_list: List of MC receive events awaiting packets
 | |
|  * @evt_free_list: List of free events
 | |
|  * @evt_lock: Lock for manipulating evt_list and evt_free_list
 | |
|  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 | |
|  * @workwq: Work queue for processing pending PTP operations
 | |
|  * @work: Work task
 | |
|  * @reset_required: A serious error has occurred and the PTP task needs to be
 | |
|  *                  reset (disable, enable).
 | |
|  * @rxfilter_event: Receive filter when operating
 | |
|  * @rxfilter_general: Receive filter when operating
 | |
|  * @config: Current timestamp configuration
 | |
|  * @enabled: PTP operation enabled
 | |
|  * @mode: Mode in which PTP operating (PTP version)
 | |
|  * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 | |
|  * @nic_to_kernel_time: Function to convert from NIC to kernel time
 | |
|  * @nic_time.minor_max: Wrap point for NIC minor times
 | |
|  * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 | |
|  * in packet prefix and last MCDI time sync event i.e. how much earlier than
 | |
|  * the last sync event time a packet timestamp can be.
 | |
|  * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 | |
|  * in packet prefix and last MCDI time sync event i.e. how much later than
 | |
|  * the last sync event time a packet timestamp can be.
 | |
|  * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 | |
|  * field in MCDI time sync event.
 | |
|  * @min_synchronisation_ns: Minimum acceptable corrected sync window
 | |
|  * @capabilities: Capabilities flags from the NIC
 | |
|  * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 | |
|  *                         timestamps
 | |
|  * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 | |
|  *                         timestamps
 | |
|  * @ts_corrections.pps_out: PPS output error (information only)
 | |
|  * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 | |
|  * @ts_corrections.general_tx: Required driver correction of general packet
 | |
|  *                             transmit timestamps
 | |
|  * @ts_corrections.general_rx: Required driver correction of general packet
 | |
|  *                             receive timestamps
 | |
|  * @evt_frags: Partly assembled PTP events
 | |
|  * @evt_frag_idx: Current fragment number
 | |
|  * @evt_code: Last event code
 | |
|  * @start: Address at which MC indicates ready for synchronisation
 | |
|  * @host_time_pps: Host time at last PPS
 | |
|  * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 | |
|  * frequency adjustment into a fixed point fractional nanosecond format.
 | |
|  * @current_adjfreq: Current ppb adjustment.
 | |
|  * @phc_clock: Pointer to registered phc device (if primary function)
 | |
|  * @phc_clock_info: Registration structure for phc device
 | |
|  * @pps_work: pps work task for handling pps events
 | |
|  * @pps_workwq: pps work queue
 | |
|  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 | |
|  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 | |
|  *         allocations in main data path).
 | |
|  * @good_syncs: Number of successful synchronisations.
 | |
|  * @fast_syncs: Number of synchronisations requiring short delay
 | |
|  * @bad_syncs: Number of failed synchronisations.
 | |
|  * @sync_timeouts: Number of synchronisation timeouts
 | |
|  * @no_time_syncs: Number of synchronisations with no good times.
 | |
|  * @invalid_sync_windows: Number of sync windows with bad durations.
 | |
|  * @undersize_sync_windows: Number of corrected sync windows that are too small
 | |
|  * @oversize_sync_windows: Number of corrected sync windows that are too large
 | |
|  * @rx_no_timestamp: Number of packets received without a timestamp.
 | |
|  * @timeset: Last set of synchronisation statistics.
 | |
|  * @xmit_skb: Transmit SKB function.
 | |
|  */
 | |
| struct efx_ptp_data {
 | |
| 	struct efx_nic *efx;
 | |
| 	struct efx_channel *channel;
 | |
| 	bool rx_ts_inline;
 | |
| 	struct sk_buff_head rxq;
 | |
| 	struct sk_buff_head txq;
 | |
| 	struct list_head evt_list;
 | |
| 	struct list_head evt_free_list;
 | |
| 	spinlock_t evt_lock;
 | |
| 	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 | |
| 	struct workqueue_struct *workwq;
 | |
| 	struct work_struct work;
 | |
| 	bool reset_required;
 | |
| 	u32 rxfilter_event;
 | |
| 	u32 rxfilter_general;
 | |
| 	bool rxfilter_installed;
 | |
| 	struct hwtstamp_config config;
 | |
| 	bool enabled;
 | |
| 	unsigned int mode;
 | |
| 	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 | |
| 	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 | |
| 				      s32 correction);
 | |
| 	struct {
 | |
| 		u32 minor_max;
 | |
| 		u32 sync_event_diff_min;
 | |
| 		u32 sync_event_diff_max;
 | |
| 		unsigned int sync_event_minor_shift;
 | |
| 	} nic_time;
 | |
| 	unsigned int min_synchronisation_ns;
 | |
| 	unsigned int capabilities;
 | |
| 	struct {
 | |
| 		s32 ptp_tx;
 | |
| 		s32 ptp_rx;
 | |
| 		s32 pps_out;
 | |
| 		s32 pps_in;
 | |
| 		s32 general_tx;
 | |
| 		s32 general_rx;
 | |
| 	} ts_corrections;
 | |
| 	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 | |
| 	int evt_frag_idx;
 | |
| 	int evt_code;
 | |
| 	struct efx_buffer start;
 | |
| 	struct pps_event_time host_time_pps;
 | |
| 	unsigned int adjfreq_ppb_shift;
 | |
| 	s64 current_adjfreq;
 | |
| 	struct ptp_clock *phc_clock;
 | |
| 	struct ptp_clock_info phc_clock_info;
 | |
| 	struct work_struct pps_work;
 | |
| 	struct workqueue_struct *pps_workwq;
 | |
| 	bool nic_ts_enabled;
 | |
| 	_MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 | |
| 
 | |
| 	unsigned int good_syncs;
 | |
| 	unsigned int fast_syncs;
 | |
| 	unsigned int bad_syncs;
 | |
| 	unsigned int sync_timeouts;
 | |
| 	unsigned int no_time_syncs;
 | |
| 	unsigned int invalid_sync_windows;
 | |
| 	unsigned int undersize_sync_windows;
 | |
| 	unsigned int oversize_sync_windows;
 | |
| 	unsigned int rx_no_timestamp;
 | |
| 	struct efx_ptp_timeset
 | |
| 	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 | |
| 	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 | |
| };
 | |
| 
 | |
| static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 | |
| static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 | |
| static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 | |
| static int efx_phc_settime(struct ptp_clock_info *ptp,
 | |
| 			   const struct timespec64 *e_ts);
 | |
| static int efx_phc_enable(struct ptp_clock_info *ptp,
 | |
| 			  struct ptp_clock_request *request, int on);
 | |
| 
 | |
| bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 	return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
 | |
| 		(nic_data->datapath_caps2 &
 | |
| 		 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
 | |
| 		));
 | |
| }
 | |
| 
 | |
| /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 | |
|  * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 | |
|  */
 | |
| static bool efx_ptp_want_txqs(struct efx_channel *channel)
 | |
| {
 | |
| 	return efx_ptp_use_mac_tx_timestamps(channel->efx);
 | |
| }
 | |
| 
 | |
| #define PTP_SW_STAT(ext_name, field_name)				\
 | |
| 	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 | |
| #define PTP_MC_STAT(ext_name, mcdi_name)				\
 | |
| 	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 | |
| static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 | |
| 	PTP_SW_STAT(ptp_good_syncs, good_syncs),
 | |
| 	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 | |
| 	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 | |
| 	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 | |
| 	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 | |
| 	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 | |
| 	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 | |
| 	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 | |
| 	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 | |
| 	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 | |
| 	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 | |
| 	PTP_MC_STAT(ptp_timestamp_packets, TS),
 | |
| 	PTP_MC_STAT(ptp_filter_matches, FM),
 | |
| 	PTP_MC_STAT(ptp_non_filter_matches, NFM),
 | |
| };
 | |
| #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 | |
| static const unsigned long efx_ptp_stat_mask[] = {
 | |
| 	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 | |
| };
 | |
| 
 | |
| size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 | |
| {
 | |
| 	if (!efx->ptp_data)
 | |
| 		return 0;
 | |
| 
 | |
| 	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 | |
| 				      efx_ptp_stat_mask, strings);
 | |
| }
 | |
| 
 | |
| size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 | |
| {
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 | |
| 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 | |
| 	size_t i;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!efx->ptp_data)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Copy software statistics */
 | |
| 	for (i = 0; i < PTP_STAT_COUNT; i++) {
 | |
| 		if (efx_ptp_stat_desc[i].dma_width)
 | |
| 			continue;
 | |
| 		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 | |
| 					     efx_ptp_stat_desc[i].offset);
 | |
| 	}
 | |
| 
 | |
| 	/* Fetch MC statistics.  We *must* fill in all statistics or
 | |
| 	 * risk leaking kernel memory to userland, so if the MCDI
 | |
| 	 * request fails we pretend we got zeroes.
 | |
| 	 */
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 | |
| 			  outbuf, sizeof(outbuf), NULL);
 | |
| 	if (rc)
 | |
| 		memset(outbuf, 0, sizeof(outbuf));
 | |
| 	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 | |
| 			     efx_ptp_stat_mask,
 | |
| 			     stats, _MCDI_PTR(outbuf, 0), false);
 | |
| 
 | |
| 	return PTP_STAT_COUNT;
 | |
| }
 | |
| 
 | |
| /* For Siena platforms NIC time is s and ns */
 | |
| static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 | |
| {
 | |
| 	struct timespec64 ts = ns_to_timespec64(ns);
 | |
| 	*nic_major = (u32)ts.tv_sec;
 | |
| 	*nic_minor = ts.tv_nsec;
 | |
| }
 | |
| 
 | |
| static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 | |
| 						s32 correction)
 | |
| {
 | |
| 	ktime_t kt = ktime_set(nic_major, nic_minor);
 | |
| 	if (correction >= 0)
 | |
| 		kt = ktime_add_ns(kt, (u64)correction);
 | |
| 	else
 | |
| 		kt = ktime_sub_ns(kt, (u64)-correction);
 | |
| 	return kt;
 | |
| }
 | |
| 
 | |
| /* To convert from s27 format to ns we multiply then divide by a power of 2.
 | |
|  * For the conversion from ns to s27, the operation is also converted to a
 | |
|  * multiply and shift.
 | |
|  */
 | |
| #define S27_TO_NS_SHIFT	(27)
 | |
| #define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 | |
| #define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
 | |
| #define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
 | |
| 
 | |
| /* For Huntington platforms NIC time is in seconds and fractions of a second
 | |
|  * where the minor register only uses 27 bits in units of 2^-27s.
 | |
|  */
 | |
| static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 | |
| {
 | |
| 	struct timespec64 ts = ns_to_timespec64(ns);
 | |
| 	u32 maj = (u32)ts.tv_sec;
 | |
| 	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 | |
| 			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 | |
| 
 | |
| 	/* The conversion can result in the minor value exceeding the maximum.
 | |
| 	 * In this case, round up to the next second.
 | |
| 	 */
 | |
| 	if (min >= S27_MINOR_MAX) {
 | |
| 		min -= S27_MINOR_MAX;
 | |
| 		maj++;
 | |
| 	}
 | |
| 
 | |
| 	*nic_major = maj;
 | |
| 	*nic_minor = min;
 | |
| }
 | |
| 
 | |
| static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 | |
| {
 | |
| 	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 | |
| 			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 | |
| 	return ktime_set(nic_major, ns);
 | |
| }
 | |
| 
 | |
| static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 | |
| 					       s32 correction)
 | |
| {
 | |
| 	/* Apply the correction and deal with carry */
 | |
| 	nic_minor += correction;
 | |
| 	if ((s32)nic_minor < 0) {
 | |
| 		nic_minor += S27_MINOR_MAX;
 | |
| 		nic_major--;
 | |
| 	} else if (nic_minor >= S27_MINOR_MAX) {
 | |
| 		nic_minor -= S27_MINOR_MAX;
 | |
| 		nic_major++;
 | |
| 	}
 | |
| 
 | |
| 	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 | |
| }
 | |
| 
 | |
| /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 | |
| static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 | |
| {
 | |
| 	struct timespec64 ts = ns_to_timespec64(ns);
 | |
| 
 | |
| 	*nic_major = (u32)ts.tv_sec;
 | |
| 	*nic_minor = ts.tv_nsec * 4;
 | |
| }
 | |
| 
 | |
| static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 | |
| 						 s32 correction)
 | |
| {
 | |
| 	ktime_t kt;
 | |
| 
 | |
| 	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 | |
| 	correction = DIV_ROUND_CLOSEST(correction, 4);
 | |
| 
 | |
| 	kt = ktime_set(nic_major, nic_minor);
 | |
| 
 | |
| 	if (correction >= 0)
 | |
| 		kt = ktime_add_ns(kt, (u64)correction);
 | |
| 	else
 | |
| 		kt = ktime_sub_ns(kt, (u64)-correction);
 | |
| 	return kt;
 | |
| }
 | |
| 
 | |
| struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 | |
| {
 | |
| 	return efx->ptp_data ? efx->ptp_data->channel : NULL;
 | |
| }
 | |
| 
 | |
| static u32 last_sync_timestamp_major(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel = efx_ptp_channel(efx);
 | |
| 	u32 major = 0;
 | |
| 
 | |
| 	if (channel)
 | |
| 		major = channel->sync_timestamp_major;
 | |
| 	return major;
 | |
| }
 | |
| 
 | |
| /* The 8000 series and later can provide the time from the MAC, which is only
 | |
|  * 48 bits long and provides meta-information in the top 2 bits.
 | |
|  */
 | |
| static ktime_t
 | |
| efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 | |
| 				    struct efx_ptp_data *ptp,
 | |
| 				    u32 nic_major, u32 nic_minor,
 | |
| 				    s32 correction)
 | |
| {
 | |
| 	ktime_t kt = { 0 };
 | |
| 
 | |
| 	if (!(nic_major & 0x80000000)) {
 | |
| 		WARN_ON_ONCE(nic_major >> 16);
 | |
| 		/* Use the top bits from the latest sync event. */
 | |
| 		nic_major &= 0xffff;
 | |
| 		nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000);
 | |
| 
 | |
| 		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 | |
| 					     correction);
 | |
| 	}
 | |
| 	return kt;
 | |
| }
 | |
| 
 | |
| ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	ktime_t kt;
 | |
| 
 | |
| 	if (efx_ptp_use_mac_tx_timestamps(efx))
 | |
| 		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 | |
| 				tx_queue->completed_timestamp_major,
 | |
| 				tx_queue->completed_timestamp_minor,
 | |
| 				ptp->ts_corrections.general_tx);
 | |
| 	else
 | |
| 		kt = ptp->nic_to_kernel_time(
 | |
| 				tx_queue->completed_timestamp_major,
 | |
| 				tx_queue->completed_timestamp_minor,
 | |
| 				ptp->ts_corrections.general_tx);
 | |
| 	return kt;
 | |
| }
 | |
| 
 | |
| /* Get PTP attributes and set up time conversions */
 | |
| static int efx_ptp_get_attributes(struct efx_nic *efx)
 | |
| {
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 | |
| 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	int rc;
 | |
| 	u32 fmt;
 | |
| 	size_t out_len;
 | |
| 
 | |
| 	/* Get the PTP attributes. If the NIC doesn't support the operation we
 | |
| 	 * use the default format for compatibility with older NICs i.e.
 | |
| 	 * seconds and nanoseconds.
 | |
| 	 */
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 | |
| 				outbuf, sizeof(outbuf), &out_len);
 | |
| 	if (rc == 0) {
 | |
| 		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 | |
| 	} else if (rc == -EINVAL) {
 | |
| 		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 | |
| 	} else if (rc == -EPERM) {
 | |
| 		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 | |
| 		return rc;
 | |
| 	} else {
 | |
| 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 | |
| 				       outbuf, sizeof(outbuf), rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	switch (fmt) {
 | |
| 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 | |
| 		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 | |
| 		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 | |
| 		ptp->nic_time.minor_max = 1 << 27;
 | |
| 		ptp->nic_time.sync_event_minor_shift = 19;
 | |
| 		break;
 | |
| 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 | |
| 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 | |
| 		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 | |
| 		ptp->nic_time.minor_max = 1000000000;
 | |
| 		ptp->nic_time.sync_event_minor_shift = 22;
 | |
| 		break;
 | |
| 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 | |
| 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 | |
| 		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 | |
| 		ptp->nic_time.minor_max = 4000000000UL;
 | |
| 		ptp->nic_time.sync_event_minor_shift = 24;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	/* Precalculate acceptable difference between the minor time in the
 | |
| 	 * packet prefix and the last MCDI time sync event. We expect the
 | |
| 	 * packet prefix timestamp to be after of sync event by up to one
 | |
| 	 * sync event interval (0.25s) but we allow it to exceed this by a
 | |
| 	 * fuzz factor of (0.1s)
 | |
| 	 */
 | |
| 	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 | |
| 		- (ptp->nic_time.minor_max / 10);
 | |
| 	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 | |
| 		+ (ptp->nic_time.minor_max / 10);
 | |
| 
 | |
| 	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 | |
| 	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 | |
| 	 * a value to use for the minimum acceptable corrected synchronization
 | |
| 	 * window and may return further capabilities.
 | |
| 	 * If we have the extra information store it. For older firmware that
 | |
| 	 * does not implement the extended command use the default value.
 | |
| 	 */
 | |
| 	if (rc == 0 &&
 | |
| 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 | |
| 		ptp->min_synchronisation_ns =
 | |
| 			MCDI_DWORD(outbuf,
 | |
| 				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 | |
| 	else
 | |
| 		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 | |
| 
 | |
| 	if (rc == 0 &&
 | |
| 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 | |
| 		ptp->capabilities = MCDI_DWORD(outbuf,
 | |
| 					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 | |
| 	else
 | |
| 		ptp->capabilities = 0;
 | |
| 
 | |
| 	/* Set up the shift for conversion between frequency
 | |
| 	 * adjustments in parts-per-billion and the fixed-point
 | |
| 	 * fractional ns format that the adapter uses.
 | |
| 	 */
 | |
| 	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 | |
| 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 | |
| 	else
 | |
| 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Get PTP timestamp corrections */
 | |
| static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 | |
| {
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 | |
| 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 | |
| 	int rc;
 | |
| 	size_t out_len;
 | |
| 
 | |
| 	/* Get the timestamp corrections from the NIC. If this operation is
 | |
| 	 * not supported (older NICs) then no correction is required.
 | |
| 	 */
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 | |
| 		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 
 | |
| 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 | |
| 				outbuf, sizeof(outbuf), &out_len);
 | |
| 	if (rc == 0) {
 | |
| 		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 | |
| 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 | |
| 		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 | |
| 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 | |
| 		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 | |
| 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 | |
| 		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 | |
| 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 | |
| 
 | |
| 		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 | |
| 			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 | |
| 				outbuf,
 | |
| 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 | |
| 			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 | |
| 				outbuf,
 | |
| 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 | |
| 		} else {
 | |
| 			efx->ptp_data->ts_corrections.general_tx =
 | |
| 				efx->ptp_data->ts_corrections.ptp_tx;
 | |
| 			efx->ptp_data->ts_corrections.general_rx =
 | |
| 				efx->ptp_data->ts_corrections.ptp_rx;
 | |
| 		}
 | |
| 	} else if (rc == -EINVAL) {
 | |
| 		efx->ptp_data->ts_corrections.ptp_tx = 0;
 | |
| 		efx->ptp_data->ts_corrections.ptp_rx = 0;
 | |
| 		efx->ptp_data->ts_corrections.pps_out = 0;
 | |
| 		efx->ptp_data->ts_corrections.pps_in = 0;
 | |
| 		efx->ptp_data->ts_corrections.general_tx = 0;
 | |
| 		efx->ptp_data->ts_corrections.general_rx = 0;
 | |
| 	} else {
 | |
| 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 | |
| 				       sizeof(outbuf), rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Enable MCDI PTP support. */
 | |
| static int efx_ptp_enable(struct efx_nic *efx)
 | |
| {
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 | |
| 	MCDI_DECLARE_BUF_ERR(outbuf);
 | |
| 	int rc;
 | |
| 
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 | |
| 		       efx->ptp_data->channel ?
 | |
| 		       efx->ptp_data->channel->channel : 0);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 | |
| 
 | |
| 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 | |
| 				outbuf, sizeof(outbuf), NULL);
 | |
| 	rc = (rc == -EALREADY) ? 0 : rc;
 | |
| 	if (rc)
 | |
| 		efx_mcdi_display_error(efx, MC_CMD_PTP,
 | |
| 				       MC_CMD_PTP_IN_ENABLE_LEN,
 | |
| 				       outbuf, sizeof(outbuf), rc);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Disable MCDI PTP support.
 | |
|  *
 | |
|  * Note that this function should never rely on the presence of ptp_data -
 | |
|  * may be called before that exists.
 | |
|  */
 | |
| static int efx_ptp_disable(struct efx_nic *efx)
 | |
| {
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 | |
| 	MCDI_DECLARE_BUF_ERR(outbuf);
 | |
| 	int rc;
 | |
| 
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 | |
| 				outbuf, sizeof(outbuf), NULL);
 | |
| 	rc = (rc == -EALREADY) ? 0 : rc;
 | |
| 	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 | |
| 	 * should only have been called during probe.
 | |
| 	 */
 | |
| 	if (rc == -ENOSYS || rc == -EPERM)
 | |
| 		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 | |
| 	else if (rc)
 | |
| 		efx_mcdi_display_error(efx, MC_CMD_PTP,
 | |
| 				       MC_CMD_PTP_IN_DISABLE_LEN,
 | |
| 				       outbuf, sizeof(outbuf), rc);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	while ((skb = skb_dequeue(q))) {
 | |
| 		local_bh_disable();
 | |
| 		netif_receive_skb(skb);
 | |
| 		local_bh_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_err(efx, drv, efx->net_dev,
 | |
| 		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 | |
| 		  "vector. PTP disabled\n");
 | |
| }
 | |
| 
 | |
| /* Repeatedly send the host time to the MC which will capture the hardware
 | |
|  * time.
 | |
|  */
 | |
| static void efx_ptp_send_times(struct efx_nic *efx,
 | |
| 			       struct pps_event_time *last_time)
 | |
| {
 | |
| 	struct pps_event_time now;
 | |
| 	struct timespec64 limit;
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	int *mc_running = ptp->start.addr;
 | |
| 
 | |
| 	pps_get_ts(&now);
 | |
| 	limit = now.ts_real;
 | |
| 	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 | |
| 
 | |
| 	/* Write host time for specified period or until MC is done */
 | |
| 	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 | |
| 	       READ_ONCE(*mc_running)) {
 | |
| 		struct timespec64 update_time;
 | |
| 		unsigned int host_time;
 | |
| 
 | |
| 		/* Don't update continuously to avoid saturating the PCIe bus */
 | |
| 		update_time = now.ts_real;
 | |
| 		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 | |
| 		do {
 | |
| 			pps_get_ts(&now);
 | |
| 		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 | |
| 			 READ_ONCE(*mc_running));
 | |
| 
 | |
| 		/* Synchronise NIC with single word of time only */
 | |
| 		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 | |
| 			     now.ts_real.tv_nsec);
 | |
| 		/* Update host time in NIC memory */
 | |
| 		efx->type->ptp_write_host_time(efx, host_time);
 | |
| 	}
 | |
| 	*last_time = now;
 | |
| }
 | |
| 
 | |
| /* Read a timeset from the MC's results and partial process. */
 | |
| static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 | |
| 				 struct efx_ptp_timeset *timeset)
 | |
| {
 | |
| 	unsigned start_ns, end_ns;
 | |
| 
 | |
| 	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 | |
| 	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 | |
| 	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 | |
| 	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 | |
| 	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 | |
| 
 | |
| 	/* Ignore seconds */
 | |
| 	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 | |
| 	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 | |
| 	/* Allow for rollover */
 | |
| 	if (end_ns < start_ns)
 | |
| 		end_ns += NSEC_PER_SEC;
 | |
| 	/* Determine duration of operation */
 | |
| 	timeset->window = end_ns - start_ns;
 | |
| }
 | |
| 
 | |
| /* Process times received from MC.
 | |
|  *
 | |
|  * Extract times from returned results, and establish the minimum value
 | |
|  * seen.  The minimum value represents the "best" possible time and events
 | |
|  * too much greater than this are rejected - the machine is, perhaps, too
 | |
|  * busy. A number of readings are taken so that, hopefully, at least one good
 | |
|  * synchronisation will be seen in the results.
 | |
|  */
 | |
| static int
 | |
| efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 | |
| 		      size_t response_length,
 | |
| 		      const struct pps_event_time *last_time)
 | |
| {
 | |
| 	unsigned number_readings =
 | |
| 		MCDI_VAR_ARRAY_LEN(response_length,
 | |
| 				   PTP_OUT_SYNCHRONIZE_TIMESET);
 | |
| 	unsigned i;
 | |
| 	unsigned ngood = 0;
 | |
| 	unsigned last_good = 0;
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	u32 last_sec;
 | |
| 	u32 start_sec;
 | |
| 	struct timespec64 delta;
 | |
| 	ktime_t mc_time;
 | |
| 
 | |
| 	if (number_readings == 0)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/* Read the set of results and find the last good host-MC
 | |
| 	 * synchronization result. The MC times when it finishes reading the
 | |
| 	 * host time so the corrected window time should be fairly constant
 | |
| 	 * for a given platform. Increment stats for any results that appear
 | |
| 	 * to be erroneous.
 | |
| 	 */
 | |
| 	for (i = 0; i < number_readings; i++) {
 | |
| 		s32 window, corrected;
 | |
| 		struct timespec64 wait;
 | |
| 
 | |
| 		efx_ptp_read_timeset(
 | |
| 			MCDI_ARRAY_STRUCT_PTR(synch_buf,
 | |
| 					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
 | |
| 			&ptp->timeset[i]);
 | |
| 
 | |
| 		wait = ktime_to_timespec64(
 | |
| 			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 | |
| 		window = ptp->timeset[i].window;
 | |
| 		corrected = window - wait.tv_nsec;
 | |
| 
 | |
| 		/* We expect the uncorrected synchronization window to be at
 | |
| 		 * least as large as the interval between host start and end
 | |
| 		 * times. If it is smaller than this then this is mostly likely
 | |
| 		 * to be a consequence of the host's time being adjusted.
 | |
| 		 * Check that the corrected sync window is in a reasonable
 | |
| 		 * range. If it is out of range it is likely to be because an
 | |
| 		 * interrupt or other delay occurred between reading the system
 | |
| 		 * time and writing it to MC memory.
 | |
| 		 */
 | |
| 		if (window < SYNCHRONISATION_GRANULARITY_NS) {
 | |
| 			++ptp->invalid_sync_windows;
 | |
| 		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
 | |
| 			++ptp->oversize_sync_windows;
 | |
| 		} else if (corrected < ptp->min_synchronisation_ns) {
 | |
| 			++ptp->undersize_sync_windows;
 | |
| 		} else {
 | |
| 			ngood++;
 | |
| 			last_good = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ngood == 0) {
 | |
| 		netif_warn(efx, drv, efx->net_dev,
 | |
| 			   "PTP no suitable synchronisations\n");
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate delay from last good sync (host time) to last_time.
 | |
| 	 * It is possible that the seconds rolled over between taking
 | |
| 	 * the start reading and the last value written by the host.  The
 | |
| 	 * timescales are such that a gap of more than one second is never
 | |
| 	 * expected.  delta is *not* normalised.
 | |
| 	 */
 | |
| 	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 | |
| 	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 | |
| 	if (start_sec != last_sec &&
 | |
| 	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 | |
| 		netif_warn(efx, hw, efx->net_dev,
 | |
| 			   "PTP bad synchronisation seconds\n");
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	delta.tv_sec = (last_sec - start_sec) & 1;
 | |
| 	delta.tv_nsec =
 | |
| 		last_time->ts_real.tv_nsec -
 | |
| 		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 | |
| 
 | |
| 	/* Convert the NIC time at last good sync into kernel time.
 | |
| 	 * No correction is required - this time is the output of a
 | |
| 	 * firmware process.
 | |
| 	 */
 | |
| 	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 | |
| 					  ptp->timeset[last_good].minor, 0);
 | |
| 
 | |
| 	/* Calculate delay from NIC top of second to last_time */
 | |
| 	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
 | |
| 
 | |
| 	/* Set PPS timestamp to match NIC top of second */
 | |
| 	ptp->host_time_pps = *last_time;
 | |
| 	pps_sub_ts(&ptp->host_time_pps, delta);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Synchronize times between the host and the MC */
 | |
| static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
 | |
| 	size_t response_length;
 | |
| 	int rc;
 | |
| 	unsigned long timeout;
 | |
| 	struct pps_event_time last_time = {};
 | |
| 	unsigned int loops = 0;
 | |
| 	int *start = ptp->start.addr;
 | |
| 
 | |
| 	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
 | |
| 	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
 | |
| 	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
 | |
| 		       num_readings);
 | |
| 	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
 | |
| 		       ptp->start.dma_addr);
 | |
| 
 | |
| 	/* Clear flag that signals MC ready */
 | |
| 	WRITE_ONCE(*start, 0);
 | |
| 	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
 | |
| 				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
 | |
| 	EFX_WARN_ON_ONCE_PARANOID(rc);
 | |
| 
 | |
| 	/* Wait for start from MCDI (or timeout) */
 | |
| 	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
 | |
| 	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
 | |
| 		udelay(20);	/* Usually start MCDI execution quickly */
 | |
| 		loops++;
 | |
| 	}
 | |
| 
 | |
| 	if (loops <= 1)
 | |
| 		++ptp->fast_syncs;
 | |
| 	if (!time_before(jiffies, timeout))
 | |
| 		++ptp->sync_timeouts;
 | |
| 
 | |
| 	if (READ_ONCE(*start))
 | |
| 		efx_ptp_send_times(efx, &last_time);
 | |
| 
 | |
| 	/* Collect results */
 | |
| 	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
 | |
| 				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
 | |
| 				 synch_buf, sizeof(synch_buf),
 | |
| 				 &response_length);
 | |
| 	if (rc == 0) {
 | |
| 		rc = efx_ptp_process_times(efx, synch_buf, response_length,
 | |
| 					   &last_time);
 | |
| 		if (rc == 0)
 | |
| 			++ptp->good_syncs;
 | |
| 		else
 | |
| 			++ptp->no_time_syncs;
 | |
| 	}
 | |
| 
 | |
| 	/* Increment the bad syncs counter if the synchronize fails, whatever
 | |
| 	 * the reason.
 | |
| 	 */
 | |
| 	if (rc != 0)
 | |
| 		++ptp->bad_syncs;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
 | |
| static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp_data = efx->ptp_data;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
 | |
| 
 | |
| 	tx_queue = &ptp_data->channel->tx_queue[type];
 | |
| 	if (tx_queue && tx_queue->timestamping) {
 | |
| 		efx_enqueue_skb(tx_queue, skb);
 | |
| 	} else {
 | |
| 		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Transmit a PTP packet, via the MCDI interface, to the wire. */
 | |
| static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp_data = efx->ptp_data;
 | |
| 	struct skb_shared_hwtstamps timestamps;
 | |
| 	int rc = -EIO;
 | |
| 	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
 | |
| 	size_t len;
 | |
| 
 | |
| 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
 | |
| 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
 | |
| 	if (skb_shinfo(skb)->nr_frags != 0) {
 | |
| 		rc = skb_linearize(skb);
 | |
| 		if (rc != 0)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		rc = skb_checksum_help(skb);
 | |
| 		if (rc != 0)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 	skb_copy_from_linear_data(skb,
 | |
| 				  MCDI_PTR(ptp_data->txbuf,
 | |
| 					   PTP_IN_TRANSMIT_PACKET),
 | |
| 				  skb->len);
 | |
| 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
 | |
| 			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
 | |
| 			  txtime, sizeof(txtime), &len);
 | |
| 	if (rc != 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	memset(×tamps, 0, sizeof(timestamps));
 | |
| 	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
 | |
| 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
 | |
| 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
 | |
| 		ptp_data->ts_corrections.ptp_tx);
 | |
| 
 | |
| 	skb_tstamp_tx(skb, ×tamps);
 | |
| 
 | |
| 	rc = 0;
 | |
| 
 | |
| fail:
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	struct list_head *cursor;
 | |
| 	struct list_head *next;
 | |
| 
 | |
| 	if (ptp->rx_ts_inline)
 | |
| 		return;
 | |
| 
 | |
| 	/* Drop time-expired events */
 | |
| 	spin_lock_bh(&ptp->evt_lock);
 | |
| 	if (!list_empty(&ptp->evt_list)) {
 | |
| 		list_for_each_safe(cursor, next, &ptp->evt_list) {
 | |
| 			struct efx_ptp_event_rx *evt;
 | |
| 
 | |
| 			evt = list_entry(cursor, struct efx_ptp_event_rx,
 | |
| 					 link);
 | |
| 			if (time_after(jiffies, evt->expiry)) {
 | |
| 				list_move(&evt->link, &ptp->evt_free_list);
 | |
| 				netif_warn(efx, hw, efx->net_dev,
 | |
| 					   "PTP rx event dropped\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&ptp->evt_lock);
 | |
| }
 | |
| 
 | |
| static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
 | |
| 					      struct sk_buff *skb)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	bool evts_waiting;
 | |
| 	struct list_head *cursor;
 | |
| 	struct list_head *next;
 | |
| 	struct efx_ptp_match *match;
 | |
| 	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
 | |
| 
 | |
| 	WARN_ON_ONCE(ptp->rx_ts_inline);
 | |
| 
 | |
| 	spin_lock_bh(&ptp->evt_lock);
 | |
| 	evts_waiting = !list_empty(&ptp->evt_list);
 | |
| 	spin_unlock_bh(&ptp->evt_lock);
 | |
| 
 | |
| 	if (!evts_waiting)
 | |
| 		return PTP_PACKET_STATE_UNMATCHED;
 | |
| 
 | |
| 	match = (struct efx_ptp_match *)skb->cb;
 | |
| 	/* Look for a matching timestamp in the event queue */
 | |
| 	spin_lock_bh(&ptp->evt_lock);
 | |
| 	list_for_each_safe(cursor, next, &ptp->evt_list) {
 | |
| 		struct efx_ptp_event_rx *evt;
 | |
| 
 | |
| 		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
 | |
| 		if ((evt->seq0 == match->words[0]) &&
 | |
| 		    (evt->seq1 == match->words[1])) {
 | |
| 			struct skb_shared_hwtstamps *timestamps;
 | |
| 
 | |
| 			/* Match - add in hardware timestamp */
 | |
| 			timestamps = skb_hwtstamps(skb);
 | |
| 			timestamps->hwtstamp = evt->hwtimestamp;
 | |
| 
 | |
| 			match->state = PTP_PACKET_STATE_MATCHED;
 | |
| 			rc = PTP_PACKET_STATE_MATCHED;
 | |
| 			list_move(&evt->link, &ptp->evt_free_list);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&ptp->evt_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Process any queued receive events and corresponding packets
 | |
|  *
 | |
|  * q is returned with all the packets that are ready for delivery.
 | |
|  */
 | |
| static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	while ((skb = skb_dequeue(&ptp->rxq))) {
 | |
| 		struct efx_ptp_match *match;
 | |
| 
 | |
| 		match = (struct efx_ptp_match *)skb->cb;
 | |
| 		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
 | |
| 			__skb_queue_tail(q, skb);
 | |
| 		} else if (efx_ptp_match_rx(efx, skb) ==
 | |
| 			   PTP_PACKET_STATE_MATCHED) {
 | |
| 			__skb_queue_tail(q, skb);
 | |
| 		} else if (time_after(jiffies, match->expiry)) {
 | |
| 			match->state = PTP_PACKET_STATE_TIMED_OUT;
 | |
| 			++ptp->rx_no_timestamp;
 | |
| 			__skb_queue_tail(q, skb);
 | |
| 		} else {
 | |
| 			/* Replace unprocessed entry and stop */
 | |
| 			skb_queue_head(&ptp->rxq, skb);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Complete processing of a received packet */
 | |
| static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
 | |
| {
 | |
| 	local_bh_disable();
 | |
| 	netif_receive_skb(skb);
 | |
| 	local_bh_enable();
 | |
| }
 | |
| 
 | |
| static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 
 | |
| 	if (ptp->rxfilter_installed) {
 | |
| 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 | |
| 					  ptp->rxfilter_general);
 | |
| 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 | |
| 					  ptp->rxfilter_event);
 | |
| 		ptp->rxfilter_installed = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	struct efx_filter_spec rxfilter;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!ptp->channel || ptp->rxfilter_installed)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Must filter on both event and general ports to ensure
 | |
| 	 * that there is no packet re-ordering.
 | |
| 	 */
 | |
| 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
 | |
| 			   efx_rx_queue_index(
 | |
| 				   efx_channel_get_rx_queue(ptp->channel)));
 | |
| 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
 | |
| 				       htonl(PTP_ADDRESS),
 | |
| 				       htons(PTP_EVENT_PORT));
 | |
| 	if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
 | |
| 	if (rc < 0)
 | |
| 		return rc;
 | |
| 	ptp->rxfilter_event = rc;
 | |
| 
 | |
| 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
 | |
| 			   efx_rx_queue_index(
 | |
| 				   efx_channel_get_rx_queue(ptp->channel)));
 | |
| 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
 | |
| 				       htonl(PTP_ADDRESS),
 | |
| 				       htons(PTP_GENERAL_PORT));
 | |
| 	if (rc != 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
 | |
| 	if (rc < 0)
 | |
| 		goto fail;
 | |
| 	ptp->rxfilter_general = rc;
 | |
| 
 | |
| 	ptp->rxfilter_installed = true;
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 | |
| 				  ptp->rxfilter_event);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int efx_ptp_start(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	int rc;
 | |
| 
 | |
| 	ptp->reset_required = false;
 | |
| 
 | |
| 	rc = efx_ptp_insert_multicast_filters(efx);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = efx_ptp_enable(efx);
 | |
| 	if (rc != 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ptp->evt_frag_idx = 0;
 | |
| 	ptp->current_adjfreq = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	efx_ptp_remove_multicast_filters(efx);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int efx_ptp_stop(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	struct list_head *cursor;
 | |
| 	struct list_head *next;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (ptp == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	rc = efx_ptp_disable(efx);
 | |
| 
 | |
| 	efx_ptp_remove_multicast_filters(efx);
 | |
| 
 | |
| 	/* Make sure RX packets are really delivered */
 | |
| 	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
 | |
| 	skb_queue_purge(&efx->ptp_data->txq);
 | |
| 
 | |
| 	/* Drop any pending receive events */
 | |
| 	spin_lock_bh(&efx->ptp_data->evt_lock);
 | |
| 	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
 | |
| 		list_move(cursor, &efx->ptp_data->evt_free_list);
 | |
| 	}
 | |
| 	spin_unlock_bh(&efx->ptp_data->evt_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int efx_ptp_restart(struct efx_nic *efx)
 | |
| {
 | |
| 	if (efx->ptp_data && efx->ptp_data->enabled)
 | |
| 		return efx_ptp_start(efx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void efx_ptp_pps_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp =
 | |
| 		container_of(work, struct efx_ptp_data, pps_work);
 | |
| 	struct efx_nic *efx = ptp->efx;
 | |
| 	struct ptp_clock_event ptp_evt;
 | |
| 
 | |
| 	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
 | |
| 		return;
 | |
| 
 | |
| 	ptp_evt.type = PTP_CLOCK_PPSUSR;
 | |
| 	ptp_evt.pps_times = ptp->host_time_pps;
 | |
| 	ptp_clock_event(ptp->phc_clock, &ptp_evt);
 | |
| }
 | |
| 
 | |
| static void efx_ptp_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp_data =
 | |
| 		container_of(work, struct efx_ptp_data, work);
 | |
| 	struct efx_nic *efx = ptp_data->efx;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct sk_buff_head tempq;
 | |
| 
 | |
| 	if (ptp_data->reset_required) {
 | |
| 		efx_ptp_stop(efx);
 | |
| 		efx_ptp_start(efx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	efx_ptp_drop_time_expired_events(efx);
 | |
| 
 | |
| 	__skb_queue_head_init(&tempq);
 | |
| 	efx_ptp_process_events(efx, &tempq);
 | |
| 
 | |
| 	while ((skb = skb_dequeue(&ptp_data->txq)))
 | |
| 		ptp_data->xmit_skb(efx, skb);
 | |
| 
 | |
| 	while ((skb = __skb_dequeue(&tempq)))
 | |
| 		efx_ptp_process_rx(efx, skb);
 | |
| }
 | |
| 
 | |
| static const struct ptp_clock_info efx_phc_clock_info = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.name		= "sfc",
 | |
| 	.max_adj	= MAX_PPB,
 | |
| 	.n_alarm	= 0,
 | |
| 	.n_ext_ts	= 0,
 | |
| 	.n_per_out	= 0,
 | |
| 	.n_pins		= 0,
 | |
| 	.pps		= 1,
 | |
| 	.adjfreq	= efx_phc_adjfreq,
 | |
| 	.adjtime	= efx_phc_adjtime,
 | |
| 	.gettime64	= efx_phc_gettime,
 | |
| 	.settime64	= efx_phc_settime,
 | |
| 	.enable		= efx_phc_enable,
 | |
| };
 | |
| 
 | |
| /* Initialise PTP state. */
 | |
| int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp;
 | |
| 	int rc = 0;
 | |
| 	unsigned int pos;
 | |
| 
 | |
| 	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
 | |
| 	efx->ptp_data = ptp;
 | |
| 	if (!efx->ptp_data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ptp->efx = efx;
 | |
| 	ptp->channel = channel;
 | |
| 	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
 | |
| 
 | |
| 	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
 | |
| 	if (rc != 0)
 | |
| 		goto fail1;
 | |
| 
 | |
| 	skb_queue_head_init(&ptp->rxq);
 | |
| 	skb_queue_head_init(&ptp->txq);
 | |
| 	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
 | |
| 	if (!ptp->workwq) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto fail2;
 | |
| 	}
 | |
| 
 | |
| 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
 | |
| 		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
 | |
| 		/* Request sync events on this channel. */
 | |
| 		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
 | |
| 	} else {
 | |
| 		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
 | |
| 	}
 | |
| 
 | |
| 	INIT_WORK(&ptp->work, efx_ptp_worker);
 | |
| 	ptp->config.flags = 0;
 | |
| 	ptp->config.tx_type = HWTSTAMP_TX_OFF;
 | |
| 	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
 | |
| 	INIT_LIST_HEAD(&ptp->evt_list);
 | |
| 	INIT_LIST_HEAD(&ptp->evt_free_list);
 | |
| 	spin_lock_init(&ptp->evt_lock);
 | |
| 	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
 | |
| 		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
 | |
| 
 | |
| 	/* Get the NIC PTP attributes and set up time conversions */
 | |
| 	rc = efx_ptp_get_attributes(efx);
 | |
| 	if (rc < 0)
 | |
| 		goto fail3;
 | |
| 
 | |
| 	/* Get the timestamp corrections */
 | |
| 	rc = efx_ptp_get_timestamp_corrections(efx);
 | |
| 	if (rc < 0)
 | |
| 		goto fail3;
 | |
| 
 | |
| 	if (efx->mcdi->fn_flags &
 | |
| 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
 | |
| 		ptp->phc_clock_info = efx_phc_clock_info;
 | |
| 		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
 | |
| 						    &efx->pci_dev->dev);
 | |
| 		if (IS_ERR(ptp->phc_clock)) {
 | |
| 			rc = PTR_ERR(ptp->phc_clock);
 | |
| 			goto fail3;
 | |
| 		} else if (ptp->phc_clock) {
 | |
| 			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
 | |
| 			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
 | |
| 			if (!ptp->pps_workwq) {
 | |
| 				rc = -ENOMEM;
 | |
| 				goto fail4;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	ptp->nic_ts_enabled = false;
 | |
| 
 | |
| 	return 0;
 | |
| fail4:
 | |
| 	ptp_clock_unregister(efx->ptp_data->phc_clock);
 | |
| 
 | |
| fail3:
 | |
| 	destroy_workqueue(efx->ptp_data->workwq);
 | |
| 
 | |
| fail2:
 | |
| 	efx_nic_free_buffer(efx, &ptp->start);
 | |
| 
 | |
| fail1:
 | |
| 	kfree(efx->ptp_data);
 | |
| 	efx->ptp_data = NULL;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Initialise PTP channel.
 | |
|  *
 | |
|  * Setting core_index to zero causes the queue to be initialised and doesn't
 | |
|  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
 | |
|  */
 | |
| static int efx_ptp_probe_channel(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	int rc;
 | |
| 
 | |
| 	channel->irq_moderation_us = 0;
 | |
| 	channel->rx_queue.core_index = 0;
 | |
| 
 | |
| 	rc = efx_ptp_probe(efx, channel);
 | |
| 	/* Failure to probe PTP is not fatal; this channel will just not be
 | |
| 	 * used for anything.
 | |
| 	 * In the case of EPERM, efx_ptp_probe will print its own message (in
 | |
| 	 * efx_ptp_get_attributes()), so we don't need to.
 | |
| 	 */
 | |
| 	if (rc && rc != -EPERM)
 | |
| 		netif_warn(efx, drv, efx->net_dev,
 | |
| 			   "Failed to probe PTP, rc=%d\n", rc);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void efx_ptp_remove(struct efx_nic *efx)
 | |
| {
 | |
| 	if (!efx->ptp_data)
 | |
| 		return;
 | |
| 
 | |
| 	(void)efx_ptp_disable(efx);
 | |
| 
 | |
| 	cancel_work_sync(&efx->ptp_data->work);
 | |
| 	cancel_work_sync(&efx->ptp_data->pps_work);
 | |
| 
 | |
| 	skb_queue_purge(&efx->ptp_data->rxq);
 | |
| 	skb_queue_purge(&efx->ptp_data->txq);
 | |
| 
 | |
| 	if (efx->ptp_data->phc_clock) {
 | |
| 		destroy_workqueue(efx->ptp_data->pps_workwq);
 | |
| 		ptp_clock_unregister(efx->ptp_data->phc_clock);
 | |
| 	}
 | |
| 
 | |
| 	destroy_workqueue(efx->ptp_data->workwq);
 | |
| 
 | |
| 	efx_nic_free_buffer(efx, &efx->ptp_data->start);
 | |
| 	kfree(efx->ptp_data);
 | |
| 	efx->ptp_data = NULL;
 | |
| }
 | |
| 
 | |
| static void efx_ptp_remove_channel(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_ptp_remove(channel->efx);
 | |
| }
 | |
| 
 | |
| static void efx_ptp_get_channel_name(struct efx_channel *channel,
 | |
| 				     char *buf, size_t len)
 | |
| {
 | |
| 	snprintf(buf, len, "%s-ptp", channel->efx->name);
 | |
| }
 | |
| 
 | |
| /* Determine whether this packet should be processed by the PTP module
 | |
|  * or transmitted conventionally.
 | |
|  */
 | |
| bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
 | |
| {
 | |
| 	return efx->ptp_data &&
 | |
| 		efx->ptp_data->enabled &&
 | |
| 		skb->len >= PTP_MIN_LENGTH &&
 | |
| 		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
 | |
| 		likely(skb->protocol == htons(ETH_P_IP)) &&
 | |
| 		skb_transport_header_was_set(skb) &&
 | |
| 		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
 | |
| 		ip_hdr(skb)->protocol == IPPROTO_UDP &&
 | |
| 		skb_headlen(skb) >=
 | |
| 		skb_transport_offset(skb) + sizeof(struct udphdr) &&
 | |
| 		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
 | |
| }
 | |
| 
 | |
| /* Receive a PTP packet.  Packets are queued until the arrival of
 | |
|  * the receive timestamp from the MC - this will probably occur after the
 | |
|  * packet arrival because of the processing in the MC.
 | |
|  */
 | |
| static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
 | |
| 	u8 *match_data_012, *match_data_345;
 | |
| 	unsigned int version;
 | |
| 	u8 *data;
 | |
| 
 | |
| 	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
 | |
| 
 | |
| 	/* Correct version? */
 | |
| 	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
 | |
| 		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 		data = skb->data;
 | |
| 		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
 | |
| 		if (version != PTP_VERSION_V1) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		/* PTP V1 uses all six bytes of the UUID to match the packet
 | |
| 		 * to the timestamp
 | |
| 		 */
 | |
| 		match_data_012 = data + PTP_V1_UUID_OFFSET;
 | |
| 		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
 | |
| 	} else {
 | |
| 		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 		data = skb->data;
 | |
| 		version = data[PTP_V2_VERSION_OFFSET];
 | |
| 		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		/* The original V2 implementation uses bytes 2-7 of
 | |
| 		 * the UUID to match the packet to the timestamp. This
 | |
| 		 * discards two of the bytes of the MAC address used
 | |
| 		 * to create the UUID (SF bug 33070).  The PTP V2
 | |
| 		 * enhanced mode fixes this issue and uses bytes 0-2
 | |
| 		 * and byte 5-7 of the UUID.
 | |
| 		 */
 | |
| 		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
 | |
| 		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
 | |
| 			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
 | |
| 		} else {
 | |
| 			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
 | |
| 			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Does this packet require timestamping? */
 | |
| 	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
 | |
| 		match->state = PTP_PACKET_STATE_UNMATCHED;
 | |
| 
 | |
| 		/* We expect the sequence number to be in the same position in
 | |
| 		 * the packet for PTP V1 and V2
 | |
| 		 */
 | |
| 		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
 | |
| 		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
 | |
| 
 | |
| 		/* Extract UUID/Sequence information */
 | |
| 		match->words[0] = (match_data_012[0]         |
 | |
| 				   (match_data_012[1] << 8)  |
 | |
| 				   (match_data_012[2] << 16) |
 | |
| 				   (match_data_345[0] << 24));
 | |
| 		match->words[1] = (match_data_345[1]         |
 | |
| 				   (match_data_345[2] << 8)  |
 | |
| 				   (data[PTP_V1_SEQUENCE_OFFSET +
 | |
| 					 PTP_V1_SEQUENCE_LENGTH - 1] <<
 | |
| 				    16));
 | |
| 	} else {
 | |
| 		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
 | |
| 	}
 | |
| 
 | |
| 	skb_queue_tail(&ptp->rxq, skb);
 | |
| 	queue_work(ptp->workwq, &ptp->work);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Transmit a PTP packet.  This has to be transmitted by the MC
 | |
|  * itself, through an MCDI call.  MCDI calls aren't permitted
 | |
|  * in the transmit path so defer the actual transmission to a suitable worker.
 | |
|  */
 | |
| int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 
 | |
| 	skb_queue_tail(&ptp->txq, skb);
 | |
| 
 | |
| 	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
 | |
| 	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
 | |
| 		efx_xmit_hwtstamp_pending(skb);
 | |
| 	queue_work(ptp->workwq, &ptp->work);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| int efx_ptp_get_mode(struct efx_nic *efx)
 | |
| {
 | |
| 	return efx->ptp_data->mode;
 | |
| }
 | |
| 
 | |
| int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
 | |
| 			unsigned int new_mode)
 | |
| {
 | |
| 	if ((enable_wanted != efx->ptp_data->enabled) ||
 | |
| 	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
 | |
| 		int rc = 0;
 | |
| 
 | |
| 		if (enable_wanted) {
 | |
| 			/* Change of mode requires disable */
 | |
| 			if (efx->ptp_data->enabled &&
 | |
| 			    (efx->ptp_data->mode != new_mode)) {
 | |
| 				efx->ptp_data->enabled = false;
 | |
| 				rc = efx_ptp_stop(efx);
 | |
| 				if (rc != 0)
 | |
| 					return rc;
 | |
| 			}
 | |
| 
 | |
| 			/* Set new operating mode and establish
 | |
| 			 * baseline synchronisation, which must
 | |
| 			 * succeed.
 | |
| 			 */
 | |
| 			efx->ptp_data->mode = new_mode;
 | |
| 			if (netif_running(efx->net_dev))
 | |
| 				rc = efx_ptp_start(efx);
 | |
| 			if (rc == 0) {
 | |
| 				rc = efx_ptp_synchronize(efx,
 | |
| 							 PTP_SYNC_ATTEMPTS * 2);
 | |
| 				if (rc != 0)
 | |
| 					efx_ptp_stop(efx);
 | |
| 			}
 | |
| 		} else {
 | |
| 			rc = efx_ptp_stop(efx);
 | |
| 		}
 | |
| 
 | |
| 		if (rc != 0)
 | |
| 			return rc;
 | |
| 
 | |
| 		efx->ptp_data->enabled = enable_wanted;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (init->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
 | |
| 	    (init->tx_type != HWTSTAMP_TX_ON))
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	rc = efx->type->ptp_set_ts_config(efx, init);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	efx->ptp_data->config = *init;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	struct efx_nic *primary = efx->primary;
 | |
| 
 | |
| 	ASSERT_RTNL();
 | |
| 
 | |
| 	if (!ptp)
 | |
| 		return;
 | |
| 
 | |
| 	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
 | |
| 				     SOF_TIMESTAMPING_RX_HARDWARE |
 | |
| 				     SOF_TIMESTAMPING_RAW_HARDWARE);
 | |
| 	/* Check licensed features.  If we don't have the license for TX
 | |
| 	 * timestamps, the NIC will not support them.
 | |
| 	 */
 | |
| 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
 | |
| 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 		if (!(nic_data->licensed_features &
 | |
| 		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
 | |
| 			ts_info->so_timestamping &=
 | |
| 				~SOF_TIMESTAMPING_TX_HARDWARE;
 | |
| 	}
 | |
| 	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
 | |
| 		ts_info->phc_index =
 | |
| 			ptp_clock_index(primary->ptp_data->phc_clock);
 | |
| 	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
 | |
| 	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
 | |
| }
 | |
| 
 | |
| int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
 | |
| {
 | |
| 	struct hwtstamp_config config;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Not a PTP enabled port */
 | |
| 	if (!efx->ptp_data)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	rc = efx_ptp_ts_init(efx, &config);
 | |
| 	if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
 | |
| 		? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
 | |
| {
 | |
| 	if (!efx->ptp_data)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
 | |
| 			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 
 | |
| 	netif_err(efx, hw, efx->net_dev,
 | |
| 		"PTP unexpected event length: got %d expected %d\n",
 | |
| 		ptp->evt_frag_idx, expected_frag_len);
 | |
| 	ptp->reset_required = true;
 | |
| 	queue_work(ptp->workwq, &ptp->work);
 | |
| }
 | |
| 
 | |
| /* Process a completed receive event.  Put it on the event queue and
 | |
|  * start worker thread.  This is required because event and their
 | |
|  * correspoding packets may come in either order.
 | |
|  */
 | |
| static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
 | |
| {
 | |
| 	struct efx_ptp_event_rx *evt = NULL;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(ptp->rx_ts_inline))
 | |
| 		return;
 | |
| 
 | |
| 	if (ptp->evt_frag_idx != 3) {
 | |
| 		ptp_event_failure(efx, 3);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&ptp->evt_lock);
 | |
| 	if (!list_empty(&ptp->evt_free_list)) {
 | |
| 		evt = list_first_entry(&ptp->evt_free_list,
 | |
| 				       struct efx_ptp_event_rx, link);
 | |
| 		list_del(&evt->link);
 | |
| 
 | |
| 		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
 | |
| 		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
 | |
| 					     MCDI_EVENT_SRC)        |
 | |
| 			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
 | |
| 					      MCDI_EVENT_SRC) << 8) |
 | |
| 			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
 | |
| 					      MCDI_EVENT_SRC) << 16));
 | |
| 		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
 | |
| 			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
 | |
| 			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
 | |
| 			ptp->ts_corrections.ptp_rx);
 | |
| 		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
 | |
| 		list_add_tail(&evt->link, &ptp->evt_list);
 | |
| 
 | |
| 		queue_work(ptp->workwq, &ptp->work);
 | |
| 	} else if (net_ratelimit()) {
 | |
| 		/* Log a rate-limited warning message. */
 | |
| 		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
 | |
| 	}
 | |
| 	spin_unlock_bh(&ptp->evt_lock);
 | |
| }
 | |
| 
 | |
| static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
 | |
| {
 | |
| 	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
 | |
| 	if (ptp->evt_frag_idx != 1) {
 | |
| 		ptp_event_failure(efx, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
 | |
| }
 | |
| 
 | |
| static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
 | |
| {
 | |
| 	if (ptp->nic_ts_enabled)
 | |
| 		queue_work(ptp->pps_workwq, &ptp->pps_work);
 | |
| }
 | |
| 
 | |
| void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
 | |
| 
 | |
| 	if (!ptp) {
 | |
| 		if (!efx->ptp_warned) {
 | |
| 			netif_warn(efx, drv, efx->net_dev,
 | |
| 				   "Received PTP event but PTP not set up\n");
 | |
| 			efx->ptp_warned = true;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!ptp->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (ptp->evt_frag_idx == 0) {
 | |
| 		ptp->evt_code = code;
 | |
| 	} else if (ptp->evt_code != code) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "PTP out of sequence event %d\n", code);
 | |
| 		ptp->evt_frag_idx = 0;
 | |
| 	}
 | |
| 
 | |
| 	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
 | |
| 	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
 | |
| 		/* Process resulting event */
 | |
| 		switch (code) {
 | |
| 		case MCDI_EVENT_CODE_PTP_RX:
 | |
| 			ptp_event_rx(efx, ptp);
 | |
| 			break;
 | |
| 		case MCDI_EVENT_CODE_PTP_FAULT:
 | |
| 			ptp_event_fault(efx, ptp);
 | |
| 			break;
 | |
| 		case MCDI_EVENT_CODE_PTP_PPS:
 | |
| 			ptp_event_pps(efx, ptp);
 | |
| 			break;
 | |
| 		default:
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "PTP unknown event %d\n", code);
 | |
| 			break;
 | |
| 		}
 | |
| 		ptp->evt_frag_idx = 0;
 | |
| 	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "PTP too many event fragments\n");
 | |
| 		ptp->evt_frag_idx = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 
 | |
| 	/* When extracting the sync timestamp minor value, we should discard
 | |
| 	 * the least significant two bits. These are not required in order
 | |
| 	 * to reconstruct full-range timestamps and they are optionally used
 | |
| 	 * to report status depending on the options supplied when subscribing
 | |
| 	 * for sync events.
 | |
| 	 */
 | |
| 	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
 | |
| 	channel->sync_timestamp_minor =
 | |
| 		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
 | |
| 			<< ptp->nic_time.sync_event_minor_shift;
 | |
| 
 | |
| 	/* if sync events have been disabled then we want to silently ignore
 | |
| 	 * this event, so throw away result.
 | |
| 	 */
 | |
| 	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
 | |
| 		       SYNC_EVENTS_VALID);
 | |
| }
 | |
| 
 | |
| static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
 | |
| {
 | |
| #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 | |
| 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
 | |
| #else
 | |
| 	const u8 *data = eh + efx->rx_packet_ts_offset;
 | |
| 	return (u32)data[0]       |
 | |
| 	       (u32)data[1] << 8  |
 | |
| 	       (u32)data[2] << 16 |
 | |
| 	       (u32)data[3] << 24;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
 | |
| 				   struct sk_buff *skb)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	struct efx_ptp_data *ptp = efx->ptp_data;
 | |
| 	u32 pkt_timestamp_major, pkt_timestamp_minor;
 | |
| 	u32 diff, carry;
 | |
| 	struct skb_shared_hwtstamps *timestamps;
 | |
| 
 | |
| 	if (channel->sync_events_state != SYNC_EVENTS_VALID)
 | |
| 		return;
 | |
| 
 | |
| 	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
 | |
| 
 | |
| 	/* get the difference between the packet and sync timestamps,
 | |
| 	 * modulo one second
 | |
| 	 */
 | |
| 	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
 | |
| 	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
 | |
| 		diff += ptp->nic_time.minor_max;
 | |
| 
 | |
| 	/* do we roll over a second boundary and need to carry the one? */
 | |
| 	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
 | |
| 		1 : 0;
 | |
| 
 | |
| 	if (diff <= ptp->nic_time.sync_event_diff_max) {
 | |
| 		/* packet is ahead of the sync event by a quarter of a second or
 | |
| 		 * less (allowing for fuzz)
 | |
| 		 */
 | |
| 		pkt_timestamp_major = channel->sync_timestamp_major + carry;
 | |
| 	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
 | |
| 		/* packet is behind the sync event but within the fuzz factor.
 | |
| 		 * This means the RX packet and sync event crossed as they were
 | |
| 		 * placed on the event queue, which can sometimes happen.
 | |
| 		 */
 | |
| 		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
 | |
| 	} else {
 | |
| 		/* it's outside tolerance in both directions. this might be
 | |
| 		 * indicative of us missing sync events for some reason, so
 | |
| 		 * we'll call it an error rather than risk giving a bogus
 | |
| 		 * timestamp.
 | |
| 		 */
 | |
| 		netif_vdbg(efx, drv, efx->net_dev,
 | |
| 			  "packet timestamp %x too far from sync event %x:%x\n",
 | |
| 			  pkt_timestamp_minor, channel->sync_timestamp_major,
 | |
| 			  channel->sync_timestamp_minor);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* attach the timestamps to the skb */
 | |
| 	timestamps = skb_hwtstamps(skb);
 | |
| 	timestamps->hwtstamp =
 | |
| 		ptp->nic_to_kernel_time(pkt_timestamp_major,
 | |
| 					pkt_timestamp_minor,
 | |
| 					ptp->ts_corrections.general_rx);
 | |
| }
 | |
| 
 | |
| static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp_data = container_of(ptp,
 | |
| 						     struct efx_ptp_data,
 | |
| 						     phc_clock_info);
 | |
| 	struct efx_nic *efx = ptp_data->efx;
 | |
| 	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
 | |
| 	s64 adjustment_ns;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (delta > MAX_PPB)
 | |
| 		delta = MAX_PPB;
 | |
| 	else if (delta < -MAX_PPB)
 | |
| 		delta = -MAX_PPB;
 | |
| 
 | |
| 	/* Convert ppb to fixed point ns taking care to round correctly. */
 | |
| 	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
 | |
| 			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
 | |
| 			ptp_data->adjfreq_ppb_shift;
 | |
| 
 | |
| 	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
 | |
| 	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
 | |
| 	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
 | |
| 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
 | |
| 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
 | |
| 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
 | |
| 			  NULL, 0, NULL);
 | |
| 	if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	ptp_data->current_adjfreq = adjustment_ns;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
 | |
| {
 | |
| 	u32 nic_major, nic_minor;
 | |
| 	struct efx_ptp_data *ptp_data = container_of(ptp,
 | |
| 						     struct efx_ptp_data,
 | |
| 						     phc_clock_info);
 | |
| 	struct efx_nic *efx = ptp_data->efx;
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
 | |
| 
 | |
| 	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
 | |
| 
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
 | |
| 	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 | |
| 			    NULL, 0, NULL);
 | |
| }
 | |
| 
 | |
| static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp_data = container_of(ptp,
 | |
| 						     struct efx_ptp_data,
 | |
| 						     phc_clock_info);
 | |
| 	struct efx_nic *efx = ptp_data->efx;
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
 | |
| 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
 | |
| 	int rc;
 | |
| 	ktime_t kt;
 | |
| 
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
 | |
| 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 | |
| 
 | |
| 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 | |
| 			  outbuf, sizeof(outbuf), NULL);
 | |
| 	if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	kt = ptp_data->nic_to_kernel_time(
 | |
| 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
 | |
| 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
 | |
| 	*ts = ktime_to_timespec64(kt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efx_phc_settime(struct ptp_clock_info *ptp,
 | |
| 			   const struct timespec64 *e_ts)
 | |
| {
 | |
| 	/* Get the current NIC time, efx_phc_gettime.
 | |
| 	 * Subtract from the desired time to get the offset
 | |
| 	 * call efx_phc_adjtime with the offset
 | |
| 	 */
 | |
| 	int rc;
 | |
| 	struct timespec64 time_now;
 | |
| 	struct timespec64 delta;
 | |
| 
 | |
| 	rc = efx_phc_gettime(ptp, &time_now);
 | |
| 	if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	delta = timespec64_sub(*e_ts, time_now);
 | |
| 
 | |
| 	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
 | |
| 	if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efx_phc_enable(struct ptp_clock_info *ptp,
 | |
| 			  struct ptp_clock_request *request,
 | |
| 			  int enable)
 | |
| {
 | |
| 	struct efx_ptp_data *ptp_data = container_of(ptp,
 | |
| 						     struct efx_ptp_data,
 | |
| 						     phc_clock_info);
 | |
| 	if (request->type != PTP_CLK_REQ_PPS)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	ptp_data->nic_ts_enabled = !!enable;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct efx_channel_type efx_ptp_channel_type = {
 | |
| 	.handle_no_channel	= efx_ptp_handle_no_channel,
 | |
| 	.pre_probe		= efx_ptp_probe_channel,
 | |
| 	.post_remove		= efx_ptp_remove_channel,
 | |
| 	.get_name		= efx_ptp_get_channel_name,
 | |
| 	/* no copy operation; there is no need to reallocate this channel */
 | |
| 	.receive_skb		= efx_ptp_rx,
 | |
| 	.want_txqs		= efx_ptp_want_txqs,
 | |
| 	.keep_eventq		= false,
 | |
| };
 | |
| 
 | |
| void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Check whether PTP is implemented on this NIC.  The DISABLE
 | |
| 	 * operation will succeed if and only if it is implemented.
 | |
| 	 */
 | |
| 	if (efx_ptp_disable(efx) == 0)
 | |
| 		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
 | |
| 			&efx_ptp_channel_type;
 | |
| }
 | |
| 
 | |
| void efx_ptp_start_datapath(struct efx_nic *efx)
 | |
| {
 | |
| 	if (efx_ptp_restart(efx))
 | |
| 		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
 | |
| 	/* re-enable timestamping if it was previously enabled */
 | |
| 	if (efx->type->ptp_set_ts_sync_events)
 | |
| 		efx->type->ptp_set_ts_sync_events(efx, true, true);
 | |
| }
 | |
| 
 | |
| void efx_ptp_stop_datapath(struct efx_nic *efx)
 | |
| {
 | |
| 	/* temporarily disable timestamping */
 | |
| 	if (efx->type->ptp_set_ts_sync_events)
 | |
| 		efx->type->ptp_set_ts_sync_events(efx, false, true);
 | |
| 	efx_ptp_stop(efx);
 | |
| }
 |