linux/drivers/net/ethernet/intel/igb/igb_ethtool.c
Todd Fujinaka 23d87824de igb: unhide invariant returns
Return a 0 directly rather than a constant.

Reported-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Todd Fujinaka <todd.fujinaka@intel.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2014-06-11 08:45:48 -07:00

3043 lines
85 KiB
C

/* Intel(R) Gigabit Ethernet Linux driver
* Copyright(c) 2007-2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, see <http://www.gnu.org/licenses/>.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
/* ethtool support for igb */
#include <linux/vmalloc.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/ethtool.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/highmem.h>
#include <linux/mdio.h>
#include "igb.h"
struct igb_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int stat_offset;
};
#define IGB_STAT(_name, _stat) { \
.stat_string = _name, \
.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
.stat_offset = offsetof(struct igb_adapter, _stat) \
}
static const struct igb_stats igb_gstrings_stats[] = {
IGB_STAT("rx_packets", stats.gprc),
IGB_STAT("tx_packets", stats.gptc),
IGB_STAT("rx_bytes", stats.gorc),
IGB_STAT("tx_bytes", stats.gotc),
IGB_STAT("rx_broadcast", stats.bprc),
IGB_STAT("tx_broadcast", stats.bptc),
IGB_STAT("rx_multicast", stats.mprc),
IGB_STAT("tx_multicast", stats.mptc),
IGB_STAT("multicast", stats.mprc),
IGB_STAT("collisions", stats.colc),
IGB_STAT("rx_crc_errors", stats.crcerrs),
IGB_STAT("rx_no_buffer_count", stats.rnbc),
IGB_STAT("rx_missed_errors", stats.mpc),
IGB_STAT("tx_aborted_errors", stats.ecol),
IGB_STAT("tx_carrier_errors", stats.tncrs),
IGB_STAT("tx_window_errors", stats.latecol),
IGB_STAT("tx_abort_late_coll", stats.latecol),
IGB_STAT("tx_deferred_ok", stats.dc),
IGB_STAT("tx_single_coll_ok", stats.scc),
IGB_STAT("tx_multi_coll_ok", stats.mcc),
IGB_STAT("tx_timeout_count", tx_timeout_count),
IGB_STAT("rx_long_length_errors", stats.roc),
IGB_STAT("rx_short_length_errors", stats.ruc),
IGB_STAT("rx_align_errors", stats.algnerrc),
IGB_STAT("tx_tcp_seg_good", stats.tsctc),
IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
IGB_STAT("rx_flow_control_xon", stats.xonrxc),
IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
IGB_STAT("tx_flow_control_xon", stats.xontxc),
IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
IGB_STAT("rx_long_byte_count", stats.gorc),
IGB_STAT("tx_dma_out_of_sync", stats.doosync),
IGB_STAT("tx_smbus", stats.mgptc),
IGB_STAT("rx_smbus", stats.mgprc),
IGB_STAT("dropped_smbus", stats.mgpdc),
IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
};
#define IGB_NETDEV_STAT(_net_stat) { \
.stat_string = __stringify(_net_stat), \
.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
}
static const struct igb_stats igb_gstrings_net_stats[] = {
IGB_NETDEV_STAT(rx_errors),
IGB_NETDEV_STAT(tx_errors),
IGB_NETDEV_STAT(tx_dropped),
IGB_NETDEV_STAT(rx_length_errors),
IGB_NETDEV_STAT(rx_over_errors),
IGB_NETDEV_STAT(rx_frame_errors),
IGB_NETDEV_STAT(rx_fifo_errors),
IGB_NETDEV_STAT(tx_fifo_errors),
IGB_NETDEV_STAT(tx_heartbeat_errors)
};
#define IGB_GLOBAL_STATS_LEN \
(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
#define IGB_NETDEV_STATS_LEN \
(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
#define IGB_RX_QUEUE_STATS_LEN \
(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
#define IGB_QUEUE_STATS_LEN \
((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
IGB_RX_QUEUE_STATS_LEN) + \
(((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
IGB_TX_QUEUE_STATS_LEN))
#define IGB_STATS_LEN \
(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
"Register test (offline)", "Eeprom test (offline)",
"Interrupt test (offline)", "Loopback test (offline)",
"Link test (on/offline)"
};
#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
u32 status;
u32 speed;
status = rd32(E1000_STATUS);
if (hw->phy.media_type == e1000_media_type_copper) {
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full|
SUPPORTED_Autoneg |
SUPPORTED_TP |
SUPPORTED_Pause);
ecmd->advertising = ADVERTISED_TP;
if (hw->mac.autoneg == 1) {
ecmd->advertising |= ADVERTISED_Autoneg;
/* the e1000 autoneg seems to match ethtool nicely */
ecmd->advertising |= hw->phy.autoneg_advertised;
}
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy.addr;
ecmd->transceiver = XCVR_INTERNAL;
} else {
ecmd->supported = (SUPPORTED_FIBRE |
SUPPORTED_1000baseKX_Full |
SUPPORTED_Autoneg |
SUPPORTED_Pause);
ecmd->advertising = (ADVERTISED_FIBRE |
ADVERTISED_1000baseKX_Full);
if (hw->mac.type == e1000_i354) {
if ((hw->device_id ==
E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
!(status & E1000_STATUS_2P5_SKU_OVER)) {
ecmd->supported |= SUPPORTED_2500baseX_Full;
ecmd->supported &=
~SUPPORTED_1000baseKX_Full;
ecmd->advertising |= ADVERTISED_2500baseX_Full;
ecmd->advertising &=
~ADVERTISED_1000baseKX_Full;
}
}
if (eth_flags->e100_base_fx) {
ecmd->supported |= SUPPORTED_100baseT_Full;
ecmd->advertising |= ADVERTISED_100baseT_Full;
}
if (hw->mac.autoneg == 1)
ecmd->advertising |= ADVERTISED_Autoneg;
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_EXTERNAL;
}
if (hw->mac.autoneg != 1)
ecmd->advertising &= ~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
switch (hw->fc.requested_mode) {
case e1000_fc_full:
ecmd->advertising |= ADVERTISED_Pause;
break;
case e1000_fc_rx_pause:
ecmd->advertising |= (ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
break;
case e1000_fc_tx_pause:
ecmd->advertising |= ADVERTISED_Asym_Pause;
break;
default:
ecmd->advertising &= ~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
}
if (status & E1000_STATUS_LU) {
if ((status & E1000_STATUS_2P5_SKU) &&
!(status & E1000_STATUS_2P5_SKU_OVER)) {
speed = SPEED_2500;
} else if (status & E1000_STATUS_SPEED_1000) {
speed = SPEED_1000;
} else if (status & E1000_STATUS_SPEED_100) {
speed = SPEED_100;
} else {
speed = SPEED_10;
}
if ((status & E1000_STATUS_FD) ||
hw->phy.media_type != e1000_media_type_copper)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
speed = SPEED_UNKNOWN;
ecmd->duplex = DUPLEX_UNKNOWN;
}
ethtool_cmd_speed_set(ecmd, speed);
if ((hw->phy.media_type == e1000_media_type_fiber) ||
hw->mac.autoneg)
ecmd->autoneg = AUTONEG_ENABLE;
else
ecmd->autoneg = AUTONEG_DISABLE;
/* MDI-X => 2; MDI =>1; Invalid =>0 */
if (hw->phy.media_type == e1000_media_type_copper)
ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
ETH_TP_MDI;
else
ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
if (hw->phy.mdix == AUTO_ALL_MODES)
ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
else
ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
return 0;
}
static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* When SoL/IDER sessions are active, autoneg/speed/duplex
* cannot be changed
*/
if (igb_check_reset_block(hw)) {
dev_err(&adapter->pdev->dev,
"Cannot change link characteristics when SoL/IDER is active.\n");
return -EINVAL;
}
/* MDI setting is only allowed when autoneg enabled because
* some hardware doesn't allow MDI setting when speed or
* duplex is forced.
*/
if (ecmd->eth_tp_mdix_ctrl) {
if (hw->phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
(ecmd->autoneg != AUTONEG_ENABLE)) {
dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
return -EINVAL;
}
}
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (ecmd->autoneg == AUTONEG_ENABLE) {
hw->mac.autoneg = 1;
if (hw->phy.media_type == e1000_media_type_fiber) {
hw->phy.autoneg_advertised = ecmd->advertising |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg;
switch (adapter->link_speed) {
case SPEED_2500:
hw->phy.autoneg_advertised =
ADVERTISED_2500baseX_Full;
break;
case SPEED_1000:
hw->phy.autoneg_advertised =
ADVERTISED_1000baseT_Full;
break;
case SPEED_100:
hw->phy.autoneg_advertised =
ADVERTISED_100baseT_Full;
break;
default:
break;
}
} else {
hw->phy.autoneg_advertised = ecmd->advertising |
ADVERTISED_TP |
ADVERTISED_Autoneg;
}
ecmd->advertising = hw->phy.autoneg_advertised;
if (adapter->fc_autoneg)
hw->fc.requested_mode = e1000_fc_default;
} else {
u32 speed = ethtool_cmd_speed(ecmd);
/* calling this overrides forced MDI setting */
if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
clear_bit(__IGB_RESETTING, &adapter->state);
return -EINVAL;
}
}
/* MDI-X => 2; MDI => 1; Auto => 3 */
if (ecmd->eth_tp_mdix_ctrl) {
/* fix up the value for auto (3 => 0) as zero is mapped
* internally to auto
*/
if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
hw->phy.mdix = AUTO_ALL_MODES;
else
hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
igb_down(adapter);
igb_up(adapter);
} else
igb_reset(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
return 0;
}
static u32 igb_get_link(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_mac_info *mac = &adapter->hw.mac;
/* If the link is not reported up to netdev, interrupts are disabled,
* and so the physical link state may have changed since we last
* looked. Set get_link_status to make sure that the true link
* state is interrogated, rather than pulling a cached and possibly
* stale link state from the driver.
*/
if (!netif_carrier_ok(netdev))
mac->get_link_status = 1;
return igb_has_link(adapter);
}
static void igb_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
if (hw->fc.current_mode == e1000_fc_rx_pause)
pause->rx_pause = 1;
else if (hw->fc.current_mode == e1000_fc_tx_pause)
pause->tx_pause = 1;
else if (hw->fc.current_mode == e1000_fc_full) {
pause->rx_pause = 1;
pause->tx_pause = 1;
}
}
static int igb_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int retval = 0;
/* 100basefx does not support setting link flow control */
if (hw->dev_spec._82575.eth_flags.e100_base_fx)
return -EINVAL;
adapter->fc_autoneg = pause->autoneg;
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
hw->fc.requested_mode = e1000_fc_default;
if (netif_running(adapter->netdev)) {
igb_down(adapter);
igb_up(adapter);
} else {
igb_reset(adapter);
}
} else {
if (pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_full;
else if (pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_rx_pause;
else if (!pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_tx_pause;
else if (!pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_none;
hw->fc.current_mode = hw->fc.requested_mode;
retval = ((hw->phy.media_type == e1000_media_type_copper) ?
igb_force_mac_fc(hw) : igb_setup_link(hw));
}
clear_bit(__IGB_RESETTING, &adapter->state);
return retval;
}
static u32 igb_get_msglevel(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
static void igb_set_msglevel(struct net_device *netdev, u32 data)
{
struct igb_adapter *adapter = netdev_priv(netdev);
adapter->msg_enable = data;
}
static int igb_get_regs_len(struct net_device *netdev)
{
#define IGB_REGS_LEN 739
return IGB_REGS_LEN * sizeof(u32);
}
static void igb_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u8 i;
memset(p, 0, IGB_REGS_LEN * sizeof(u32));
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
/* General Registers */
regs_buff[0] = rd32(E1000_CTRL);
regs_buff[1] = rd32(E1000_STATUS);
regs_buff[2] = rd32(E1000_CTRL_EXT);
regs_buff[3] = rd32(E1000_MDIC);
regs_buff[4] = rd32(E1000_SCTL);
regs_buff[5] = rd32(E1000_CONNSW);
regs_buff[6] = rd32(E1000_VET);
regs_buff[7] = rd32(E1000_LEDCTL);
regs_buff[8] = rd32(E1000_PBA);
regs_buff[9] = rd32(E1000_PBS);
regs_buff[10] = rd32(E1000_FRTIMER);
regs_buff[11] = rd32(E1000_TCPTIMER);
/* NVM Register */
regs_buff[12] = rd32(E1000_EECD);
/* Interrupt */
/* Reading EICS for EICR because they read the
* same but EICS does not clear on read
*/
regs_buff[13] = rd32(E1000_EICS);
regs_buff[14] = rd32(E1000_EICS);
regs_buff[15] = rd32(E1000_EIMS);
regs_buff[16] = rd32(E1000_EIMC);
regs_buff[17] = rd32(E1000_EIAC);
regs_buff[18] = rd32(E1000_EIAM);
/* Reading ICS for ICR because they read the
* same but ICS does not clear on read
*/
regs_buff[19] = rd32(E1000_ICS);
regs_buff[20] = rd32(E1000_ICS);
regs_buff[21] = rd32(E1000_IMS);
regs_buff[22] = rd32(E1000_IMC);
regs_buff[23] = rd32(E1000_IAC);
regs_buff[24] = rd32(E1000_IAM);
regs_buff[25] = rd32(E1000_IMIRVP);
/* Flow Control */
regs_buff[26] = rd32(E1000_FCAL);
regs_buff[27] = rd32(E1000_FCAH);
regs_buff[28] = rd32(E1000_FCTTV);
regs_buff[29] = rd32(E1000_FCRTL);
regs_buff[30] = rd32(E1000_FCRTH);
regs_buff[31] = rd32(E1000_FCRTV);
/* Receive */
regs_buff[32] = rd32(E1000_RCTL);
regs_buff[33] = rd32(E1000_RXCSUM);
regs_buff[34] = rd32(E1000_RLPML);
regs_buff[35] = rd32(E1000_RFCTL);
regs_buff[36] = rd32(E1000_MRQC);
regs_buff[37] = rd32(E1000_VT_CTL);
/* Transmit */
regs_buff[38] = rd32(E1000_TCTL);
regs_buff[39] = rd32(E1000_TCTL_EXT);
regs_buff[40] = rd32(E1000_TIPG);
regs_buff[41] = rd32(E1000_DTXCTL);
/* Wake Up */
regs_buff[42] = rd32(E1000_WUC);
regs_buff[43] = rd32(E1000_WUFC);
regs_buff[44] = rd32(E1000_WUS);
regs_buff[45] = rd32(E1000_IPAV);
regs_buff[46] = rd32(E1000_WUPL);
/* MAC */
regs_buff[47] = rd32(E1000_PCS_CFG0);
regs_buff[48] = rd32(E1000_PCS_LCTL);
regs_buff[49] = rd32(E1000_PCS_LSTAT);
regs_buff[50] = rd32(E1000_PCS_ANADV);
regs_buff[51] = rd32(E1000_PCS_LPAB);
regs_buff[52] = rd32(E1000_PCS_NPTX);
regs_buff[53] = rd32(E1000_PCS_LPABNP);
/* Statistics */
regs_buff[54] = adapter->stats.crcerrs;
regs_buff[55] = adapter->stats.algnerrc;
regs_buff[56] = adapter->stats.symerrs;
regs_buff[57] = adapter->stats.rxerrc;
regs_buff[58] = adapter->stats.mpc;
regs_buff[59] = adapter->stats.scc;
regs_buff[60] = adapter->stats.ecol;
regs_buff[61] = adapter->stats.mcc;
regs_buff[62] = adapter->stats.latecol;
regs_buff[63] = adapter->stats.colc;
regs_buff[64] = adapter->stats.dc;
regs_buff[65] = adapter->stats.tncrs;
regs_buff[66] = adapter->stats.sec;
regs_buff[67] = adapter->stats.htdpmc;
regs_buff[68] = adapter->stats.rlec;
regs_buff[69] = adapter->stats.xonrxc;
regs_buff[70] = adapter->stats.xontxc;
regs_buff[71] = adapter->stats.xoffrxc;
regs_buff[72] = adapter->stats.xofftxc;
regs_buff[73] = adapter->stats.fcruc;
regs_buff[74] = adapter->stats.prc64;
regs_buff[75] = adapter->stats.prc127;
regs_buff[76] = adapter->stats.prc255;
regs_buff[77] = adapter->stats.prc511;
regs_buff[78] = adapter->stats.prc1023;
regs_buff[79] = adapter->stats.prc1522;
regs_buff[80] = adapter->stats.gprc;
regs_buff[81] = adapter->stats.bprc;
regs_buff[82] = adapter->stats.mprc;
regs_buff[83] = adapter->stats.gptc;
regs_buff[84] = adapter->stats.gorc;
regs_buff[86] = adapter->stats.gotc;
regs_buff[88] = adapter->stats.rnbc;
regs_buff[89] = adapter->stats.ruc;
regs_buff[90] = adapter->stats.rfc;
regs_buff[91] = adapter->stats.roc;
regs_buff[92] = adapter->stats.rjc;
regs_buff[93] = adapter->stats.mgprc;
regs_buff[94] = adapter->stats.mgpdc;
regs_buff[95] = adapter->stats.mgptc;
regs_buff[96] = adapter->stats.tor;
regs_buff[98] = adapter->stats.tot;
regs_buff[100] = adapter->stats.tpr;
regs_buff[101] = adapter->stats.tpt;
regs_buff[102] = adapter->stats.ptc64;
regs_buff[103] = adapter->stats.ptc127;
regs_buff[104] = adapter->stats.ptc255;
regs_buff[105] = adapter->stats.ptc511;
regs_buff[106] = adapter->stats.ptc1023;
regs_buff[107] = adapter->stats.ptc1522;
regs_buff[108] = adapter->stats.mptc;
regs_buff[109] = adapter->stats.bptc;
regs_buff[110] = adapter->stats.tsctc;
regs_buff[111] = adapter->stats.iac;
regs_buff[112] = adapter->stats.rpthc;
regs_buff[113] = adapter->stats.hgptc;
regs_buff[114] = adapter->stats.hgorc;
regs_buff[116] = adapter->stats.hgotc;
regs_buff[118] = adapter->stats.lenerrs;
regs_buff[119] = adapter->stats.scvpc;
regs_buff[120] = adapter->stats.hrmpc;
for (i = 0; i < 4; i++)
regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
for (i = 0; i < 4; i++)
regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
for (i = 0; i < 4; i++)
regs_buff[129 + i] = rd32(E1000_RDBAL(i));
for (i = 0; i < 4; i++)
regs_buff[133 + i] = rd32(E1000_RDBAH(i));
for (i = 0; i < 4; i++)
regs_buff[137 + i] = rd32(E1000_RDLEN(i));
for (i = 0; i < 4; i++)
regs_buff[141 + i] = rd32(E1000_RDH(i));
for (i = 0; i < 4; i++)
regs_buff[145 + i] = rd32(E1000_RDT(i));
for (i = 0; i < 4; i++)
regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
for (i = 0; i < 10; i++)
regs_buff[153 + i] = rd32(E1000_EITR(i));
for (i = 0; i < 8; i++)
regs_buff[163 + i] = rd32(E1000_IMIR(i));
for (i = 0; i < 8; i++)
regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
for (i = 0; i < 16; i++)
regs_buff[179 + i] = rd32(E1000_RAL(i));
for (i = 0; i < 16; i++)
regs_buff[195 + i] = rd32(E1000_RAH(i));
for (i = 0; i < 4; i++)
regs_buff[211 + i] = rd32(E1000_TDBAL(i));
for (i = 0; i < 4; i++)
regs_buff[215 + i] = rd32(E1000_TDBAH(i));
for (i = 0; i < 4; i++)
regs_buff[219 + i] = rd32(E1000_TDLEN(i));
for (i = 0; i < 4; i++)
regs_buff[223 + i] = rd32(E1000_TDH(i));
for (i = 0; i < 4; i++)
regs_buff[227 + i] = rd32(E1000_TDT(i));
for (i = 0; i < 4; i++)
regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
for (i = 0; i < 4; i++)
regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
for (i = 0; i < 4; i++)
regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
for (i = 0; i < 4; i++)
regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
for (i = 0; i < 4; i++)
regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
for (i = 0; i < 4; i++)
regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
for (i = 0; i < 32; i++)
regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
for (i = 0; i < 128; i++)
regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
for (i = 0; i < 128; i++)
regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
for (i = 0; i < 4; i++)
regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
regs_buff[547] = rd32(E1000_TDFH);
regs_buff[548] = rd32(E1000_TDFT);
regs_buff[549] = rd32(E1000_TDFHS);
regs_buff[550] = rd32(E1000_TDFPC);
if (hw->mac.type > e1000_82580) {
regs_buff[551] = adapter->stats.o2bgptc;
regs_buff[552] = adapter->stats.b2ospc;
regs_buff[553] = adapter->stats.o2bspc;
regs_buff[554] = adapter->stats.b2ogprc;
}
if (hw->mac.type != e1000_82576)
return;
for (i = 0; i < 12; i++)
regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
for (i = 0; i < 4; i++)
regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
for (i = 0; i < 12; i++)
regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
for (i = 0; i < 12; i++)
regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
for (i = 0; i < 12; i++)
regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
for (i = 0; i < 12; i++)
regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
for (i = 0; i < 12; i++)
regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
for (i = 0; i < 12; i++)
regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
for (i = 0; i < 12; i++)
regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
for (i = 0; i < 12; i++)
regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
for (i = 0; i < 12; i++)
regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
for (i = 0; i < 12; i++)
regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
for (i = 0; i < 12; i++)
regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
for (i = 0; i < 12; i++)
regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
for (i = 0; i < 12; i++)
regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
for (i = 0; i < 12; i++)
regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
}
static int igb_get_eeprom_len(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
return adapter->hw.nvm.word_size * 2;
}
static int igb_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
int first_word, last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(sizeof(u16) *
(last_word - first_word + 1), GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
if (hw->nvm.type == e1000_nvm_eeprom_spi)
ret_val = hw->nvm.ops.read(hw, first_word,
last_word - first_word + 1,
eeprom_buff);
else {
for (i = 0; i < last_word - first_word + 1; i++) {
ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
&eeprom_buff[i]);
if (ret_val)
break;
}
}
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int igb_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
void *ptr;
int max_len, first_word, last_word, ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if ((hw->mac.type >= e1000_i210) &&
!igb_get_flash_presence_i210(hw)) {
return -EOPNOTSUPP;
}
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EFAULT;
max_len = hw->nvm.word_size * 2;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (void *)eeprom_buff;
if (eeprom->offset & 1) {
/* need read/modify/write of first changed EEPROM word
* only the second byte of the word is being modified
*/
ret_val = hw->nvm.ops.read(hw, first_word, 1,
&eeprom_buff[0]);
ptr++;
}
if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
/* need read/modify/write of last changed EEPROM word
* only the first byte of the word is being modified
*/
ret_val = hw->nvm.ops.read(hw, last_word, 1,
&eeprom_buff[last_word - first_word]);
}
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
ret_val = hw->nvm.ops.write(hw, first_word,
last_word - first_word + 1, eeprom_buff);
/* Update the checksum if nvm write succeeded */
if (ret_val == 0)
hw->nvm.ops.update(hw);
igb_set_fw_version(adapter);
kfree(eeprom_buff);
return ret_val;
}
static void igb_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct igb_adapter *adapter = netdev_priv(netdev);
strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
/* EEPROM image version # is reported as firmware version # for
* 82575 controllers
*/
strlcpy(drvinfo->fw_version, adapter->fw_version,
sizeof(drvinfo->fw_version));
strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info));
drvinfo->n_stats = IGB_STATS_LEN;
drvinfo->testinfo_len = IGB_TEST_LEN;
drvinfo->regdump_len = igb_get_regs_len(netdev);
drvinfo->eedump_len = igb_get_eeprom_len(netdev);
}
static void igb_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct igb_adapter *adapter = netdev_priv(netdev);
ring->rx_max_pending = IGB_MAX_RXD;
ring->tx_max_pending = IGB_MAX_TXD;
ring->rx_pending = adapter->rx_ring_count;
ring->tx_pending = adapter->tx_ring_count;
}
static int igb_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct igb_ring *temp_ring;
int i, err = 0;
u16 new_rx_count, new_tx_count;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
if ((new_tx_count == adapter->tx_ring_count) &&
(new_rx_count == adapter->rx_ring_count)) {
/* nothing to do */
return 0;
}
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (!netif_running(adapter->netdev)) {
for (i = 0; i < adapter->num_tx_queues; i++)
adapter->tx_ring[i]->count = new_tx_count;
for (i = 0; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->count = new_rx_count;
adapter->tx_ring_count = new_tx_count;
adapter->rx_ring_count = new_rx_count;
goto clear_reset;
}
if (adapter->num_tx_queues > adapter->num_rx_queues)
temp_ring = vmalloc(adapter->num_tx_queues *
sizeof(struct igb_ring));
else
temp_ring = vmalloc(adapter->num_rx_queues *
sizeof(struct igb_ring));
if (!temp_ring) {
err = -ENOMEM;
goto clear_reset;
}
igb_down(adapter);
/* We can't just free everything and then setup again,
* because the ISRs in MSI-X mode get passed pointers
* to the Tx and Rx ring structs.
*/
if (new_tx_count != adapter->tx_ring_count) {
for (i = 0; i < adapter->num_tx_queues; i++) {
memcpy(&temp_ring[i], adapter->tx_ring[i],
sizeof(struct igb_ring));
temp_ring[i].count = new_tx_count;
err = igb_setup_tx_resources(&temp_ring[i]);
if (err) {
while (i) {
i--;
igb_free_tx_resources(&temp_ring[i]);
}
goto err_setup;
}
}
for (i = 0; i < adapter->num_tx_queues; i++) {
igb_free_tx_resources(adapter->tx_ring[i]);
memcpy(adapter->tx_ring[i], &temp_ring[i],
sizeof(struct igb_ring));
}
adapter->tx_ring_count = new_tx_count;
}
if (new_rx_count != adapter->rx_ring_count) {
for (i = 0; i < adapter->num_rx_queues; i++) {
memcpy(&temp_ring[i], adapter->rx_ring[i],
sizeof(struct igb_ring));
temp_ring[i].count = new_rx_count;
err = igb_setup_rx_resources(&temp_ring[i]);
if (err) {
while (i) {
i--;
igb_free_rx_resources(&temp_ring[i]);
}
goto err_setup;
}
}
for (i = 0; i < adapter->num_rx_queues; i++) {
igb_free_rx_resources(adapter->rx_ring[i]);
memcpy(adapter->rx_ring[i], &temp_ring[i],
sizeof(struct igb_ring));
}
adapter->rx_ring_count = new_rx_count;
}
err_setup:
igb_up(adapter);
vfree(temp_ring);
clear_reset:
clear_bit(__IGB_RESETTING, &adapter->state);
return err;
}
/* ethtool register test data */
struct igb_reg_test {
u16 reg;
u16 reg_offset;
u16 array_len;
u16 test_type;
u32 mask;
u32 write;
};
/* In the hardware, registers are laid out either singly, in arrays
* spaced 0x100 bytes apart, or in contiguous tables. We assume
* most tests take place on arrays or single registers (handled
* as a single-element array) and special-case the tables.
* Table tests are always pattern tests.
*
* We also make provision for some required setup steps by specifying
* registers to be written without any read-back testing.
*/
#define PATTERN_TEST 1
#define SET_READ_TEST 2
#define WRITE_NO_TEST 3
#define TABLE32_TEST 4
#define TABLE64_TEST_LO 5
#define TABLE64_TEST_HI 6
/* i210 reg test */
static struct igb_reg_test reg_test_i210[] = {
{ E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
/* RDH is read-only for i210, only test RDT. */
{ E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
{ E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
{ E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
{ E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
{ E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RA, 0, 16, TABLE64_TEST_LO,
0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA, 0, 16, TABLE64_TEST_HI,
0x900FFFFF, 0xFFFFFFFF },
{ E1000_MTA, 0, 128, TABLE32_TEST,
0xFFFFFFFF, 0xFFFFFFFF },
{ 0, 0, 0, 0, 0 }
};
/* i350 reg test */
static struct igb_reg_test reg_test_i350[] = {
{ E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
{ E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
{ E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
/* RDH is read-only for i350, only test RDT. */
{ E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
{ E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
{ E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
{ E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
{ E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
{ E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RA, 0, 16, TABLE64_TEST_LO,
0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA, 0, 16, TABLE64_TEST_HI,
0xC3FFFFFF, 0xFFFFFFFF },
{ E1000_RA2, 0, 16, TABLE64_TEST_LO,
0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA2, 0, 16, TABLE64_TEST_HI,
0xC3FFFFFF, 0xFFFFFFFF },
{ E1000_MTA, 0, 128, TABLE32_TEST,
0xFFFFFFFF, 0xFFFFFFFF },
{ 0, 0, 0, 0 }
};
/* 82580 reg test */
static struct igb_reg_test reg_test_82580[] = {
{ E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
{ E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
/* RDH is read-only for 82580, only test RDT. */
{ E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
{ E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
{ E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
{ E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
{ E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
{ E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RA, 0, 16, TABLE64_TEST_LO,
0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA, 0, 16, TABLE64_TEST_HI,
0x83FFFFFF, 0xFFFFFFFF },
{ E1000_RA2, 0, 8, TABLE64_TEST_LO,
0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA2, 0, 8, TABLE64_TEST_HI,
0x83FFFFFF, 0xFFFFFFFF },
{ E1000_MTA, 0, 128, TABLE32_TEST,
0xFFFFFFFF, 0xFFFFFFFF },
{ 0, 0, 0, 0 }
};
/* 82576 reg test */
static struct igb_reg_test reg_test_82576[] = {
{ E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
{ E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
/* Enable all RX queues before testing. */
{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
E1000_RXDCTL_QUEUE_ENABLE },
{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
E1000_RXDCTL_QUEUE_ENABLE },
/* RDH is read-only for 82576, only test RDT. */
{ E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
{ E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
{ E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
{ E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
{ E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
{ E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
{ E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
{ E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ 0, 0, 0, 0 }
};
/* 82575 register test */
static struct igb_reg_test reg_test_82575[] = {
{ E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
{ E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
/* Enable all four RX queues before testing. */
{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
E1000_RXDCTL_QUEUE_ENABLE },
/* RDH is read-only for 82575, only test RDT. */
{ E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
{ E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
{ E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
{ E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
{ E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
{ E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
{ E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
{ E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
{ E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
{ E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
{ E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
{ 0, 0, 0, 0 }
};
static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
int reg, u32 mask, u32 write)
{
struct e1000_hw *hw = &adapter->hw;
u32 pat, val;
static const u32 _test[] = {
0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
wr32(reg, (_test[pat] & write));
val = rd32(reg) & mask;
if (val != (_test[pat] & write & mask)) {
dev_err(&adapter->pdev->dev,
"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
reg, val, (_test[pat] & write & mask));
*data = reg;
return true;
}
}
return false;
}
static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
int reg, u32 mask, u32 write)
{
struct e1000_hw *hw = &adapter->hw;
u32 val;
wr32(reg, write & mask);
val = rd32(reg);
if ((write & mask) != (val & mask)) {
dev_err(&adapter->pdev->dev,
"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
reg, (val & mask), (write & mask));
*data = reg;
return true;
}
return false;
}
#define REG_PATTERN_TEST(reg, mask, write) \
do { \
if (reg_pattern_test(adapter, data, reg, mask, write)) \
return 1; \
} while (0)
#define REG_SET_AND_CHECK(reg, mask, write) \
do { \
if (reg_set_and_check(adapter, data, reg, mask, write)) \
return 1; \
} while (0)
static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
struct igb_reg_test *test;
u32 value, before, after;
u32 i, toggle;
switch (adapter->hw.mac.type) {
case e1000_i350:
case e1000_i354:
test = reg_test_i350;
toggle = 0x7FEFF3FF;
break;
case e1000_i210:
case e1000_i211:
test = reg_test_i210;
toggle = 0x7FEFF3FF;
break;
case e1000_82580:
test = reg_test_82580;
toggle = 0x7FEFF3FF;
break;
case e1000_82576:
test = reg_test_82576;
toggle = 0x7FFFF3FF;
break;
default:
test = reg_test_82575;
toggle = 0x7FFFF3FF;
break;
}
/* Because the status register is such a special case,
* we handle it separately from the rest of the register
* tests. Some bits are read-only, some toggle, and some
* are writable on newer MACs.
*/
before = rd32(E1000_STATUS);
value = (rd32(E1000_STATUS) & toggle);
wr32(E1000_STATUS, toggle);
after = rd32(E1000_STATUS) & toggle;
if (value != after) {
dev_err(&adapter->pdev->dev,
"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
after, value);
*data = 1;
return 1;
}
/* restore previous status */
wr32(E1000_STATUS, before);
/* Perform the remainder of the register test, looping through
* the test table until we either fail or reach the null entry.
*/
while (test->reg) {
for (i = 0; i < test->array_len; i++) {
switch (test->test_type) {
case PATTERN_TEST:
REG_PATTERN_TEST(test->reg +
(i * test->reg_offset),
test->mask,
test->write);
break;
case SET_READ_TEST:
REG_SET_AND_CHECK(test->reg +
(i * test->reg_offset),
test->mask,
test->write);
break;
case WRITE_NO_TEST:
writel(test->write,
(adapter->hw.hw_addr + test->reg)
+ (i * test->reg_offset));
break;
case TABLE32_TEST:
REG_PATTERN_TEST(test->reg + (i * 4),
test->mask,
test->write);
break;
case TABLE64_TEST_LO:
REG_PATTERN_TEST(test->reg + (i * 8),
test->mask,
test->write);
break;
case TABLE64_TEST_HI:
REG_PATTERN_TEST((test->reg + 4) + (i * 8),
test->mask,
test->write);
break;
}
}
test++;
}
*data = 0;
return 0;
}
static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
*data = 0;
/* Validate eeprom on all parts but flashless */
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (igb_get_flash_presence_i210(hw)) {
if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
*data = 2;
}
break;
default:
if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
*data = 2;
break;
}
return *data;
}
static irqreturn_t igb_test_intr(int irq, void *data)
{
struct igb_adapter *adapter = (struct igb_adapter *) data;
struct e1000_hw *hw = &adapter->hw;
adapter->test_icr |= rd32(E1000_ICR);
return IRQ_HANDLED;
}
static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 mask, ics_mask, i = 0, shared_int = true;
u32 irq = adapter->pdev->irq;
*data = 0;
/* Hook up test interrupt handler just for this test */
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
if (request_irq(adapter->msix_entries[0].vector,
igb_test_intr, 0, netdev->name, adapter)) {
*data = 1;
return -1;
}
} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
shared_int = false;
if (request_irq(irq,
igb_test_intr, 0, netdev->name, adapter)) {
*data = 1;
return -1;
}
} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
netdev->name, adapter)) {
shared_int = false;
} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
netdev->name, adapter)) {
*data = 1;
return -1;
}
dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
(shared_int ? "shared" : "unshared"));
/* Disable all the interrupts */
wr32(E1000_IMC, ~0);
wrfl();
usleep_range(10000, 11000);
/* Define all writable bits for ICS */
switch (hw->mac.type) {
case e1000_82575:
ics_mask = 0x37F47EDD;
break;
case e1000_82576:
ics_mask = 0x77D4FBFD;
break;
case e1000_82580:
ics_mask = 0x77DCFED5;
break;
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
ics_mask = 0x77DCFED5;
break;
default:
ics_mask = 0x7FFFFFFF;
break;
}
/* Test each interrupt */
for (; i < 31; i++) {
/* Interrupt to test */
mask = 1 << i;
if (!(mask & ics_mask))
continue;
if (!shared_int) {
/* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
/* Flush any pending interrupts */
wr32(E1000_ICR, ~0);
wr32(E1000_IMC, mask);
wr32(E1000_ICS, mask);
wrfl();
usleep_range(10000, 11000);
if (adapter->test_icr & mask) {
*data = 3;
break;
}
}
/* Enable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was not posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
/* Flush any pending interrupts */
wr32(E1000_ICR, ~0);
wr32(E1000_IMS, mask);
wr32(E1000_ICS, mask);
wrfl();
usleep_range(10000, 11000);
if (!(adapter->test_icr & mask)) {
*data = 4;
break;
}
if (!shared_int) {
/* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
/* Flush any pending interrupts */
wr32(E1000_ICR, ~0);
wr32(E1000_IMC, ~mask);
wr32(E1000_ICS, ~mask);
wrfl();
usleep_range(10000, 11000);
if (adapter->test_icr & mask) {
*data = 5;
break;
}
}
}
/* Disable all the interrupts */
wr32(E1000_IMC, ~0);
wrfl();
usleep_range(10000, 11000);
/* Unhook test interrupt handler */
if (adapter->flags & IGB_FLAG_HAS_MSIX)
free_irq(adapter->msix_entries[0].vector, adapter);
else
free_irq(irq, adapter);
return *data;
}
static void igb_free_desc_rings(struct igb_adapter *adapter)
{
igb_free_tx_resources(&adapter->test_tx_ring);
igb_free_rx_resources(&adapter->test_rx_ring);
}
static int igb_setup_desc_rings(struct igb_adapter *adapter)
{
struct igb_ring *tx_ring = &adapter->test_tx_ring;
struct igb_ring *rx_ring = &adapter->test_rx_ring;
struct e1000_hw *hw = &adapter->hw;
int ret_val;
/* Setup Tx descriptor ring and Tx buffers */
tx_ring->count = IGB_DEFAULT_TXD;
tx_ring->dev = &adapter->pdev->dev;
tx_ring->netdev = adapter->netdev;
tx_ring->reg_idx = adapter->vfs_allocated_count;
if (igb_setup_tx_resources(tx_ring)) {
ret_val = 1;
goto err_nomem;
}
igb_setup_tctl(adapter);
igb_configure_tx_ring(adapter, tx_ring);
/* Setup Rx descriptor ring and Rx buffers */
rx_ring->count = IGB_DEFAULT_RXD;
rx_ring->dev = &adapter->pdev->dev;
rx_ring->netdev = adapter->netdev;
rx_ring->reg_idx = adapter->vfs_allocated_count;
if (igb_setup_rx_resources(rx_ring)) {
ret_val = 3;
goto err_nomem;
}
/* set the default queue to queue 0 of PF */
wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
/* enable receive ring */
igb_setup_rctl(adapter);
igb_configure_rx_ring(adapter, rx_ring);
igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
return 0;
err_nomem:
igb_free_desc_rings(adapter);
return ret_val;
}
static void igb_phy_disable_receiver(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
igb_write_phy_reg(hw, 29, 0x001F);
igb_write_phy_reg(hw, 30, 0x8FFC);
igb_write_phy_reg(hw, 29, 0x001A);
igb_write_phy_reg(hw, 30, 0x8FF0);
}
static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg = 0;
hw->mac.autoneg = false;
if (hw->phy.type == e1000_phy_m88) {
if (hw->phy.id != I210_I_PHY_ID) {
/* Auto-MDI/MDIX Off */
igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */
igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
/* autoneg off */
igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
} else {
/* force 1000, set loopback */
igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
}
} else if (hw->phy.type == e1000_phy_82580) {
/* enable MII loopback */
igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
}
/* add small delay to avoid loopback test failure */
msleep(50);
/* force 1000, set loopback */
igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = rd32(E1000_CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD | /* Force Duplex to FULL */
E1000_CTRL_SLU); /* Set link up enable bit */
if (hw->phy.type == e1000_phy_m88)
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
wr32(E1000_CTRL, ctrl_reg);
/* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/
if (hw->phy.type == e1000_phy_m88)
igb_phy_disable_receiver(adapter);
mdelay(500);
return 0;
}
static int igb_set_phy_loopback(struct igb_adapter *adapter)
{
return igb_integrated_phy_loopback(adapter);
}
static int igb_setup_loopback_test(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
reg = rd32(E1000_CTRL_EXT);
/* use CTRL_EXT to identify link type as SGMII can appear as copper */
if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
/* Enable DH89xxCC MPHY for near end loopback */
reg = rd32(E1000_MPHY_ADDR_CTL);
reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
E1000_MPHY_PCS_CLK_REG_OFFSET;
wr32(E1000_MPHY_ADDR_CTL, reg);
reg = rd32(E1000_MPHY_DATA);
reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
wr32(E1000_MPHY_DATA, reg);
}
reg = rd32(E1000_RCTL);
reg |= E1000_RCTL_LBM_TCVR;
wr32(E1000_RCTL, reg);
wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
reg = rd32(E1000_CTRL);
reg &= ~(E1000_CTRL_RFCE |
E1000_CTRL_TFCE |
E1000_CTRL_LRST);
reg |= E1000_CTRL_SLU |
E1000_CTRL_FD;
wr32(E1000_CTRL, reg);
/* Unset switch control to serdes energy detect */
reg = rd32(E1000_CONNSW);
reg &= ~E1000_CONNSW_ENRGSRC;
wr32(E1000_CONNSW, reg);
/* Unset sigdetect for SERDES loopback on
* 82580 and newer devices.
*/
if (hw->mac.type >= e1000_82580) {
reg = rd32(E1000_PCS_CFG0);
reg |= E1000_PCS_CFG_IGN_SD;
wr32(E1000_PCS_CFG0, reg);
}
/* Set PCS register for forced speed */
reg = rd32(E1000_PCS_LCTL);
reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
E1000_PCS_LCTL_FSD | /* Force Speed */
E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
wr32(E1000_PCS_LCTL, reg);
return 0;
}
return igb_set_phy_loopback(adapter);
}
static void igb_loopback_cleanup(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
u16 phy_reg;
if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
u32 reg;
/* Disable near end loopback on DH89xxCC */
reg = rd32(E1000_MPHY_ADDR_CTL);
reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
E1000_MPHY_PCS_CLK_REG_OFFSET;
wr32(E1000_MPHY_ADDR_CTL, reg);
reg = rd32(E1000_MPHY_DATA);
reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
wr32(E1000_MPHY_DATA, reg);
}
rctl = rd32(E1000_RCTL);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
wr32(E1000_RCTL, rctl);
hw->mac.autoneg = true;
igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
if (phy_reg & MII_CR_LOOPBACK) {
phy_reg &= ~MII_CR_LOOPBACK;
igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
igb_phy_sw_reset(hw);
}
}
static void igb_create_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
memset(skb->data, 0xFF, frame_size);
frame_size /= 2;
memset(&skb->data[frame_size], 0xAA, frame_size - 1);
memset(&skb->data[frame_size + 10], 0xBE, 1);
memset(&skb->data[frame_size + 12], 0xAF, 1);
}
static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
unsigned int frame_size)
{
unsigned char *data;
bool match = true;
frame_size >>= 1;
data = kmap(rx_buffer->page);
if (data[3] != 0xFF ||
data[frame_size + 10] != 0xBE ||
data[frame_size + 12] != 0xAF)
match = false;
kunmap(rx_buffer->page);
return match;
}
static int igb_clean_test_rings(struct igb_ring *rx_ring,
struct igb_ring *tx_ring,
unsigned int size)
{
union e1000_adv_rx_desc *rx_desc;
struct igb_rx_buffer *rx_buffer_info;
struct igb_tx_buffer *tx_buffer_info;
u16 rx_ntc, tx_ntc, count = 0;
/* initialize next to clean and descriptor values */
rx_ntc = rx_ring->next_to_clean;
tx_ntc = tx_ring->next_to_clean;
rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
/* check Rx buffer */
rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
/* sync Rx buffer for CPU read */
dma_sync_single_for_cpu(rx_ring->dev,
rx_buffer_info->dma,
IGB_RX_BUFSZ,
DMA_FROM_DEVICE);
/* verify contents of skb */
if (igb_check_lbtest_frame(rx_buffer_info, size))
count++;
/* sync Rx buffer for device write */
dma_sync_single_for_device(rx_ring->dev,
rx_buffer_info->dma,
IGB_RX_BUFSZ,
DMA_FROM_DEVICE);
/* unmap buffer on Tx side */
tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
/* increment Rx/Tx next to clean counters */
rx_ntc++;
if (rx_ntc == rx_ring->count)
rx_ntc = 0;
tx_ntc++;
if (tx_ntc == tx_ring->count)
tx_ntc = 0;
/* fetch next descriptor */
rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
}
netdev_tx_reset_queue(txring_txq(tx_ring));
/* re-map buffers to ring, store next to clean values */
igb_alloc_rx_buffers(rx_ring, count);
rx_ring->next_to_clean = rx_ntc;
tx_ring->next_to_clean = tx_ntc;
return count;
}
static int igb_run_loopback_test(struct igb_adapter *adapter)
{
struct igb_ring *tx_ring = &adapter->test_tx_ring;
struct igb_ring *rx_ring = &adapter->test_rx_ring;
u16 i, j, lc, good_cnt;
int ret_val = 0;
unsigned int size = IGB_RX_HDR_LEN;
netdev_tx_t tx_ret_val;
struct sk_buff *skb;
/* allocate test skb */
skb = alloc_skb(size, GFP_KERNEL);
if (!skb)
return 11;
/* place data into test skb */
igb_create_lbtest_frame(skb, size);
skb_put(skb, size);
/* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64
* send/receive pairs during each loop
*/
if (rx_ring->count <= tx_ring->count)
lc = ((tx_ring->count / 64) * 2) + 1;
else
lc = ((rx_ring->count / 64) * 2) + 1;
for (j = 0; j <= lc; j++) { /* loop count loop */
/* reset count of good packets */
good_cnt = 0;
/* place 64 packets on the transmit queue*/
for (i = 0; i < 64; i++) {
skb_get(skb);
tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
if (tx_ret_val == NETDEV_TX_OK)
good_cnt++;
}
if (good_cnt != 64) {
ret_val = 12;
break;
}
/* allow 200 milliseconds for packets to go from Tx to Rx */
msleep(200);
good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
if (good_cnt != 64) {
ret_val = 13;
break;
}
} /* end loop count loop */
/* free the original skb */
kfree_skb(skb);
return ret_val;
}
static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
{
/* PHY loopback cannot be performed if SoL/IDER
* sessions are active
*/
if (igb_check_reset_block(&adapter->hw)) {
dev_err(&adapter->pdev->dev,
"Cannot do PHY loopback test when SoL/IDER is active.\n");
*data = 0;
goto out;
}
if (adapter->hw.mac.type == e1000_i354) {
dev_info(&adapter->pdev->dev,
"Loopback test not supported on i354.\n");
*data = 0;
goto out;
}
*data = igb_setup_desc_rings(adapter);
if (*data)
goto out;
*data = igb_setup_loopback_test(adapter);
if (*data)
goto err_loopback;
*data = igb_run_loopback_test(adapter);
igb_loopback_cleanup(adapter);
err_loopback:
igb_free_desc_rings(adapter);
out:
return *data;
}
static int igb_link_test(struct igb_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
*data = 0;
if (hw->phy.media_type == e1000_media_type_internal_serdes) {
int i = 0;
hw->mac.serdes_has_link = false;
/* On some blade server designs, link establishment
* could take as long as 2-3 minutes
*/
do {
hw->mac.ops.check_for_link(&adapter->hw);
if (hw->mac.serdes_has_link)
return *data;
msleep(20);
} while (i++ < 3750);
*data = 1;
} else {
hw->mac.ops.check_for_link(&adapter->hw);
if (hw->mac.autoneg)
msleep(5000);
if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
*data = 1;
}
return *data;
}
static void igb_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, u64 *data)
{
struct igb_adapter *adapter = netdev_priv(netdev);
u16 autoneg_advertised;
u8 forced_speed_duplex, autoneg;
bool if_running = netif_running(netdev);
set_bit(__IGB_TESTING, &adapter->state);
/* can't do offline tests on media switching devices */
if (adapter->hw.dev_spec._82575.mas_capable)
eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
/* Offline tests */
/* save speed, duplex, autoneg settings */
autoneg_advertised = adapter->hw.phy.autoneg_advertised;
forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
autoneg = adapter->hw.mac.autoneg;
dev_info(&adapter->pdev->dev, "offline testing starting\n");
/* power up link for link test */
igb_power_up_link(adapter);
/* Link test performed before hardware reset so autoneg doesn't
* interfere with test result
*/
if (igb_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
if (if_running)
/* indicate we're in test mode */
dev_close(netdev);
else
igb_reset(adapter);
if (igb_reg_test(adapter, &data[0]))
eth_test->flags |= ETH_TEST_FL_FAILED;
igb_reset(adapter);
if (igb_eeprom_test(adapter, &data[1]))
eth_test->flags |= ETH_TEST_FL_FAILED;
igb_reset(adapter);
if (igb_intr_test(adapter, &data[2]))
eth_test->flags |= ETH_TEST_FL_FAILED;
igb_reset(adapter);
/* power up link for loopback test */
igb_power_up_link(adapter);
if (igb_loopback_test(adapter, &data[3]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore speed, duplex, autoneg settings */
adapter->hw.phy.autoneg_advertised = autoneg_advertised;
adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
adapter->hw.mac.autoneg = autoneg;
/* force this routine to wait until autoneg complete/timeout */
adapter->hw.phy.autoneg_wait_to_complete = true;
igb_reset(adapter);
adapter->hw.phy.autoneg_wait_to_complete = false;
clear_bit(__IGB_TESTING, &adapter->state);
if (if_running)
dev_open(netdev);
} else {
dev_info(&adapter->pdev->dev, "online testing starting\n");
/* PHY is powered down when interface is down */
if (if_running && igb_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
else
data[4] = 0;
/* Online tests aren't run; pass by default */
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
clear_bit(__IGB_TESTING, &adapter->state);
}
msleep_interruptible(4 * 1000);
}
static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct igb_adapter *adapter = netdev_priv(netdev);
wol->wolopts = 0;
if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
return;
wol->supported = WAKE_UCAST | WAKE_MCAST |
WAKE_BCAST | WAKE_MAGIC |
WAKE_PHY;
/* apply any specific unsupported masks here */
switch (adapter->hw.device_id) {
default:
break;
}
if (adapter->wol & E1000_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & E1000_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & E1000_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & E1000_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & E1000_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
return wol->wolopts ? -EOPNOTSUPP : 0;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_UCAST)
adapter->wol |= E1000_WUFC_EX;
if (wol->wolopts & WAKE_MCAST)
adapter->wol |= E1000_WUFC_MC;
if (wol->wolopts & WAKE_BCAST)
adapter->wol |= E1000_WUFC_BC;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= E1000_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= E1000_WUFC_LNKC;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
return 0;
}
/* bit defines for adapter->led_status */
#define IGB_LED_ON 0
static int igb_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
switch (state) {
case ETHTOOL_ID_ACTIVE:
igb_blink_led(hw);
return 2;
case ETHTOOL_ID_ON:
igb_blink_led(hw);
break;
case ETHTOOL_ID_OFF:
igb_led_off(hw);
break;
case ETHTOOL_ID_INACTIVE:
igb_led_off(hw);
clear_bit(IGB_LED_ON, &adapter->led_status);
igb_cleanup_led(hw);
break;
}
return 0;
}
static int igb_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct igb_adapter *adapter = netdev_priv(netdev);
int i;
if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
((ec->rx_coalesce_usecs > 3) &&
(ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
(ec->rx_coalesce_usecs == 2))
return -EINVAL;
if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
((ec->tx_coalesce_usecs > 3) &&
(ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
(ec->tx_coalesce_usecs == 2))
return -EINVAL;
if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
return -EINVAL;
/* If ITR is disabled, disable DMAC */
if (ec->rx_coalesce_usecs == 0) {
if (adapter->flags & IGB_FLAG_DMAC)
adapter->flags &= ~IGB_FLAG_DMAC;
}
/* convert to rate of irq's per second */
if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
adapter->rx_itr_setting = ec->rx_coalesce_usecs;
else
adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
/* convert to rate of irq's per second */
if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
adapter->tx_itr_setting = adapter->rx_itr_setting;
else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
adapter->tx_itr_setting = ec->tx_coalesce_usecs;
else
adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
for (i = 0; i < adapter->num_q_vectors; i++) {
struct igb_q_vector *q_vector = adapter->q_vector[i];
q_vector->tx.work_limit = adapter->tx_work_limit;
if (q_vector->rx.ring)
q_vector->itr_val = adapter->rx_itr_setting;
else
q_vector->itr_val = adapter->tx_itr_setting;
if (q_vector->itr_val && q_vector->itr_val <= 3)
q_vector->itr_val = IGB_START_ITR;
q_vector->set_itr = 1;
}
return 0;
}
static int igb_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (adapter->rx_itr_setting <= 3)
ec->rx_coalesce_usecs = adapter->rx_itr_setting;
else
ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
if (adapter->tx_itr_setting <= 3)
ec->tx_coalesce_usecs = adapter->tx_itr_setting;
else
ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
}
return 0;
}
static int igb_nway_reset(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev))
igb_reinit_locked(adapter);
return 0;
}
static int igb_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return IGB_STATS_LEN;
case ETH_SS_TEST:
return IGB_TEST_LEN;
default:
return -ENOTSUPP;
}
}
static void igb_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct rtnl_link_stats64 *net_stats = &adapter->stats64;
unsigned int start;
struct igb_ring *ring;
int i, j;
char *p;
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter, net_stats);
for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
data[i] = (igb_gstrings_stats[i].sizeof_stat ==
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
}
for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
}
for (j = 0; j < adapter->num_tx_queues; j++) {
u64 restart2;
ring = adapter->tx_ring[j];
do {
start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
data[i] = ring->tx_stats.packets;
data[i+1] = ring->tx_stats.bytes;
data[i+2] = ring->tx_stats.restart_queue;
} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
do {
start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
restart2 = ring->tx_stats.restart_queue2;
} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
data[i+2] += restart2;
i += IGB_TX_QUEUE_STATS_LEN;
}
for (j = 0; j < adapter->num_rx_queues; j++) {
ring = adapter->rx_ring[j];
do {
start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
data[i] = ring->rx_stats.packets;
data[i+1] = ring->rx_stats.bytes;
data[i+2] = ring->rx_stats.drops;
data[i+3] = ring->rx_stats.csum_err;
data[i+4] = ring->rx_stats.alloc_failed;
} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
i += IGB_RX_QUEUE_STATS_LEN;
}
spin_unlock(&adapter->stats64_lock);
}
static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
struct igb_adapter *adapter = netdev_priv(netdev);
u8 *p = data;
int i;
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, *igb_gstrings_test,
IGB_TEST_LEN*ETH_GSTRING_LEN);
break;
case ETH_SS_STATS:
for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
memcpy(p, igb_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
memcpy(p, igb_gstrings_net_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
for (i = 0; i < adapter->num_tx_queues; i++) {
sprintf(p, "tx_queue_%u_packets", i);
p += ETH_GSTRING_LEN;
sprintf(p, "tx_queue_%u_bytes", i);
p += ETH_GSTRING_LEN;
sprintf(p, "tx_queue_%u_restart", i);
p += ETH_GSTRING_LEN;
}
for (i = 0; i < adapter->num_rx_queues; i++) {
sprintf(p, "rx_queue_%u_packets", i);
p += ETH_GSTRING_LEN;
sprintf(p, "rx_queue_%u_bytes", i);
p += ETH_GSTRING_LEN;
sprintf(p, "rx_queue_%u_drops", i);
p += ETH_GSTRING_LEN;
sprintf(p, "rx_queue_%u_csum_err", i);
p += ETH_GSTRING_LEN;
sprintf(p, "rx_queue_%u_alloc_failed", i);
p += ETH_GSTRING_LEN;
}
/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
break;
}
}
static int igb_get_ts_info(struct net_device *dev,
struct ethtool_ts_info *info)
{
struct igb_adapter *adapter = netdev_priv(dev);
if (adapter->ptp_clock)
info->phc_index = ptp_clock_index(adapter->ptp_clock);
else
info->phc_index = -1;
switch (adapter->hw.mac.type) {
case e1000_82575:
info->so_timestamping =
SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE;
return 0;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
info->so_timestamping =
SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types =
(1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON);
info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
/* 82576 does not support timestamping all packets. */
if (adapter->hw.mac.type >= e1000_82580)
info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
else
info->rx_filters |=
(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
struct ethtool_rxnfc *cmd)
{
cmd->data = 0;
/* Report default options for RSS on igb */
switch (cmd->flow_type) {
case TCP_V4_FLOW:
cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
/* Fall through */
case UDP_V4_FLOW:
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
/* Fall through */
case SCTP_V4_FLOW:
case AH_ESP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
case IPV4_FLOW:
cmd->data |= RXH_IP_SRC | RXH_IP_DST;
break;
case TCP_V6_FLOW:
cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
/* Fall through */
case UDP_V6_FLOW:
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
/* Fall through */
case SCTP_V6_FLOW:
case AH_ESP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
case IPV6_FLOW:
cmd->data |= RXH_IP_SRC | RXH_IP_DST;
break;
default:
return -EINVAL;
}
return 0;
}
static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct igb_adapter *adapter = netdev_priv(dev);
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
cmd->data = adapter->num_rx_queues;
ret = 0;
break;
case ETHTOOL_GRXFH:
ret = igb_get_rss_hash_opts(adapter, cmd);
break;
default:
break;
}
return ret;
}
#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
IGB_FLAG_RSS_FIELD_IPV6_UDP)
static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
struct ethtool_rxnfc *nfc)
{
u32 flags = adapter->flags;
/* RSS does not support anything other than hashing
* to queues on src and dst IPs and ports
*/
if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3))
return -EINVAL;
switch (nfc->flow_type) {
case TCP_V4_FLOW:
case TCP_V6_FLOW:
if (!(nfc->data & RXH_IP_SRC) ||
!(nfc->data & RXH_IP_DST) ||
!(nfc->data & RXH_L4_B_0_1) ||
!(nfc->data & RXH_L4_B_2_3))
return -EINVAL;
break;
case UDP_V4_FLOW:
if (!(nfc->data & RXH_IP_SRC) ||
!(nfc->data & RXH_IP_DST))
return -EINVAL;
switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
case 0:
flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
break;
case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
break;
default:
return -EINVAL;
}
break;
case UDP_V6_FLOW:
if (!(nfc->data & RXH_IP_SRC) ||
!(nfc->data & RXH_IP_DST))
return -EINVAL;
switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
case 0:
flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
break;
case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
break;
default:
return -EINVAL;
}
break;
case AH_ESP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
case SCTP_V4_FLOW:
case AH_ESP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
case SCTP_V6_FLOW:
if (!(nfc->data & RXH_IP_SRC) ||
!(nfc->data & RXH_IP_DST) ||
(nfc->data & RXH_L4_B_0_1) ||
(nfc->data & RXH_L4_B_2_3))
return -EINVAL;
break;
default:
return -EINVAL;
}
/* if we changed something we need to update flags */
if (flags != adapter->flags) {
struct e1000_hw *hw = &adapter->hw;
u32 mrqc = rd32(E1000_MRQC);
if ((flags & UDP_RSS_FLAGS) &&
!(adapter->flags & UDP_RSS_FLAGS))
dev_err(&adapter->pdev->dev,
"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
adapter->flags = flags;
/* Perform hash on these packet types */
mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP;
mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
E1000_MRQC_RSS_FIELD_IPV6_UDP);
if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
wr32(E1000_MRQC, mrqc);
}
return 0;
}
static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
struct igb_adapter *adapter = netdev_priv(dev);
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_SRXFH:
ret = igb_set_rss_hash_opt(adapter, cmd);
break;
default:
break;
}
return ret;
}
static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ret_val;
u16 phy_data;
if ((hw->mac.type < e1000_i350) ||
(hw->phy.media_type != e1000_media_type_copper))
return -EOPNOTSUPP;
edata->supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_100baseT_Full);
if (!hw->dev_spec._82575.eee_disable)
edata->advertised =
mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
/* The IPCNFG and EEER registers are not supported on I354. */
if (hw->mac.type == e1000_i354) {
igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
} else {
u32 eeer;
eeer = rd32(E1000_EEER);
/* EEE status on negotiated link */
if (eeer & E1000_EEER_EEE_NEG)
edata->eee_active = true;
if (eeer & E1000_EEER_TX_LPI_EN)
edata->tx_lpi_enabled = true;
}
/* EEE Link Partner Advertised */
switch (hw->mac.type) {
case e1000_i350:
ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
&phy_data);
if (ret_val)
return -ENODATA;
edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
break;
case e1000_i354:
case e1000_i210:
case e1000_i211:
ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
E1000_EEE_LP_ADV_DEV_I210,
&phy_data);
if (ret_val)
return -ENODATA;
edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
break;
default:
break;
}
edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
if ((hw->mac.type == e1000_i354) &&
(edata->eee_enabled))
edata->tx_lpi_enabled = true;
/* Report correct negotiated EEE status for devices that
* wrongly report EEE at half-duplex
*/
if (adapter->link_duplex == HALF_DUPLEX) {
edata->eee_enabled = false;
edata->eee_active = false;
edata->tx_lpi_enabled = false;
edata->advertised &= ~edata->advertised;
}
return 0;
}
static int igb_set_eee(struct net_device *netdev,
struct ethtool_eee *edata)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct ethtool_eee eee_curr;
s32 ret_val;
if ((hw->mac.type < e1000_i350) ||
(hw->phy.media_type != e1000_media_type_copper))
return -EOPNOTSUPP;
memset(&eee_curr, 0, sizeof(struct ethtool_eee));
ret_val = igb_get_eee(netdev, &eee_curr);
if (ret_val)
return ret_val;
if (eee_curr.eee_enabled) {
if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
dev_err(&adapter->pdev->dev,
"Setting EEE tx-lpi is not supported\n");
return -EINVAL;
}
/* Tx LPI timer is not implemented currently */
if (edata->tx_lpi_timer) {
dev_err(&adapter->pdev->dev,
"Setting EEE Tx LPI timer is not supported\n");
return -EINVAL;
}
if (edata->advertised &
~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
dev_err(&adapter->pdev->dev,
"EEE Advertisement supports only 100Tx and or 100T full duplex\n");
return -EINVAL;
}
} else if (!edata->eee_enabled) {
dev_err(&adapter->pdev->dev,
"Setting EEE options are not supported with EEE disabled\n");
return -EINVAL;
}
adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
adapter->flags |= IGB_FLAG_EEE;
if (hw->mac.type == e1000_i350)
igb_set_eee_i350(hw);
else
igb_set_eee_i354(hw);
/* reset link */
if (netif_running(netdev))
igb_reinit_locked(adapter);
else
igb_reset(adapter);
}
return 0;
}
static int igb_get_module_info(struct net_device *netdev,
struct ethtool_modinfo *modinfo)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 status = 0;
u16 sff8472_rev, addr_mode;
bool page_swap = false;
if ((hw->phy.media_type == e1000_media_type_copper) ||
(hw->phy.media_type == e1000_media_type_unknown))
return -EOPNOTSUPP;
/* Check whether we support SFF-8472 or not */
status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
if (status)
return -EIO;
/* addressing mode is not supported */
status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
if (status)
return -EIO;
/* addressing mode is not supported */
if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
page_swap = true;
}
if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
/* We have an SFP, but it does not support SFF-8472 */
modinfo->type = ETH_MODULE_SFF_8079;
modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
} else {
/* We have an SFP which supports a revision of SFF-8472 */
modinfo->type = ETH_MODULE_SFF_8472;
modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
}
return 0;
}
static int igb_get_module_eeprom(struct net_device *netdev,
struct ethtool_eeprom *ee, u8 *data)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 status = 0;
u16 *dataword;
u16 first_word, last_word;
int i = 0;
if (ee->len == 0)
return -EINVAL;
first_word = ee->offset >> 1;
last_word = (ee->offset + ee->len - 1) >> 1;
dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
GFP_KERNEL);
if (!dataword)
return -ENOMEM;
/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
for (i = 0; i < last_word - first_word + 1; i++) {
status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
if (status) {
/* Error occurred while reading module */
kfree(dataword);
return -EIO;
}
be16_to_cpus(&dataword[i]);
}
memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
kfree(dataword);
return 0;
}
static int igb_ethtool_begin(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
pm_runtime_get_sync(&adapter->pdev->dev);
return 0;
}
static void igb_ethtool_complete(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
pm_runtime_put(&adapter->pdev->dev);
}
static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
{
return IGB_RETA_SIZE;
}
static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key)
{
struct igb_adapter *adapter = netdev_priv(netdev);
int i;
for (i = 0; i < IGB_RETA_SIZE; i++)
indir[i] = adapter->rss_indir_tbl[i];
return 0;
}
void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg = E1000_RETA(0);
u32 shift = 0;
int i = 0;
switch (hw->mac.type) {
case e1000_82575:
shift = 6;
break;
case e1000_82576:
/* 82576 supports 2 RSS queues for SR-IOV */
if (adapter->vfs_allocated_count)
shift = 3;
break;
default:
break;
}
while (i < IGB_RETA_SIZE) {
u32 val = 0;
int j;
for (j = 3; j >= 0; j--) {
val <<= 8;
val |= adapter->rss_indir_tbl[i + j];
}
wr32(reg, val << shift);
reg += 4;
i += 4;
}
}
static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
const u8 *key)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int i;
u32 num_queues;
num_queues = adapter->rss_queues;
switch (hw->mac.type) {
case e1000_82576:
/* 82576 supports 2 RSS queues for SR-IOV */
if (adapter->vfs_allocated_count)
num_queues = 2;
break;
default:
break;
}
/* Verify user input. */
for (i = 0; i < IGB_RETA_SIZE; i++)
if (indir[i] >= num_queues)
return -EINVAL;
for (i = 0; i < IGB_RETA_SIZE; i++)
adapter->rss_indir_tbl[i] = indir[i];
igb_write_rss_indir_tbl(adapter);
return 0;
}
static unsigned int igb_max_channels(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
unsigned int max_combined = 0;
switch (hw->mac.type) {
case e1000_i211:
max_combined = IGB_MAX_RX_QUEUES_I211;
break;
case e1000_82575:
case e1000_i210:
max_combined = IGB_MAX_RX_QUEUES_82575;
break;
case e1000_i350:
if (!!adapter->vfs_allocated_count) {
max_combined = 1;
break;
}
/* fall through */
case e1000_82576:
if (!!adapter->vfs_allocated_count) {
max_combined = 2;
break;
}
/* fall through */
case e1000_82580:
case e1000_i354:
default:
max_combined = IGB_MAX_RX_QUEUES;
break;
}
return max_combined;
}
static void igb_get_channels(struct net_device *netdev,
struct ethtool_channels *ch)
{
struct igb_adapter *adapter = netdev_priv(netdev);
/* Report maximum channels */
ch->max_combined = igb_max_channels(adapter);
/* Report info for other vector */
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
ch->max_other = NON_Q_VECTORS;
ch->other_count = NON_Q_VECTORS;
}
ch->combined_count = adapter->rss_queues;
}
static int igb_set_channels(struct net_device *netdev,
struct ethtool_channels *ch)
{
struct igb_adapter *adapter = netdev_priv(netdev);
unsigned int count = ch->combined_count;
/* Verify they are not requesting separate vectors */
if (!count || ch->rx_count || ch->tx_count)
return -EINVAL;
/* Verify other_count is valid and has not been changed */
if (ch->other_count != NON_Q_VECTORS)
return -EINVAL;
/* Verify the number of channels doesn't exceed hw limits */
if (count > igb_max_channels(adapter))
return -EINVAL;
if (count != adapter->rss_queues) {
adapter->rss_queues = count;
/* Hardware has to reinitialize queues and interrupts to
* match the new configuration.
*/
return igb_reinit_queues(adapter);
}
return 0;
}
static const struct ethtool_ops igb_ethtool_ops = {
.get_settings = igb_get_settings,
.set_settings = igb_set_settings,
.get_drvinfo = igb_get_drvinfo,
.get_regs_len = igb_get_regs_len,
.get_regs = igb_get_regs,
.get_wol = igb_get_wol,
.set_wol = igb_set_wol,
.get_msglevel = igb_get_msglevel,
.set_msglevel = igb_set_msglevel,
.nway_reset = igb_nway_reset,
.get_link = igb_get_link,
.get_eeprom_len = igb_get_eeprom_len,
.get_eeprom = igb_get_eeprom,
.set_eeprom = igb_set_eeprom,
.get_ringparam = igb_get_ringparam,
.set_ringparam = igb_set_ringparam,
.get_pauseparam = igb_get_pauseparam,
.set_pauseparam = igb_set_pauseparam,
.self_test = igb_diag_test,
.get_strings = igb_get_strings,
.set_phys_id = igb_set_phys_id,
.get_sset_count = igb_get_sset_count,
.get_ethtool_stats = igb_get_ethtool_stats,
.get_coalesce = igb_get_coalesce,
.set_coalesce = igb_set_coalesce,
.get_ts_info = igb_get_ts_info,
.get_rxnfc = igb_get_rxnfc,
.set_rxnfc = igb_set_rxnfc,
.get_eee = igb_get_eee,
.set_eee = igb_set_eee,
.get_module_info = igb_get_module_info,
.get_module_eeprom = igb_get_module_eeprom,
.get_rxfh_indir_size = igb_get_rxfh_indir_size,
.get_rxfh = igb_get_rxfh,
.set_rxfh = igb_set_rxfh,
.get_channels = igb_get_channels,
.set_channels = igb_set_channels,
.begin = igb_ethtool_begin,
.complete = igb_ethtool_complete,
};
void igb_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &igb_ethtool_ops;
}