Commit Graph

482155 Commits

Author SHA1 Message Date
David Sterba
fe864576de btrfs: sink blocksize parameter to btrfs_init_new_buffer
Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:20 +01:00
David Sterba
c0dcaa4d7b btrfs: sink blocksize parameter to reada_tree_block_flagged
Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:20 +01:00
David Sterba
b6ae40ec76 btrfs: remove blocksize from reada_extent
Replace with global nodesize instead.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:19 +01:00
David Sterba
d3e46fea1b btrfs: sink blocksize parameter to readahead_tree_block
All callers pass nodesize.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:18 +01:00
Chris Mason
9627aeee3e Merge branch 'raid56-scrub-replace' of git://github.com/miaoxie/linux-btrfs into for-linus 2014-12-02 18:42:03 -08:00
Josef Bacik
cb83b7b816 Btrfs: make get_caching_control unconditionally return the ctl
This was written when we didn't do a caching control for the fast free space
cache loading.  However we started doing that a long time ago, and there is
still a small window of time that we could be caching the block group the fast
way, so if there is a caching_ctl at all on the block group just return it, the
callers all wait properly for what they want.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:10 -08:00
Filipe Manana
8dbcd10f69 Btrfs: fix unprotected deletion from pending_chunks list
On block group remove if the corresponding extent map was on the
transaction->pending_chunks list, we were deleting the extent map
from that list, through remove_extent_mapping(), without any
synchronization with chunk allocation (which iterates that list
and adds new elements to it). Fix this by ensure that this is done
while the chunk mutex is held, since that's the mutex that protects
the list in the chunk allocation code path.

This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"

But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:10 -08:00
Filipe Manana
495e64f4fe Btrfs: fix fs mapping extent map leak
On chunk allocation error (label "error_del_extent"), after adding the
extent map to the tree and to the pending chunks list, we would leave
decrementing the extent map's refcount by 2 instead of 3 (our allocation
+ tree reference + list reference).

Also, on chunk/block group removal, if the block group was on the list
pending_chunks we weren't decrementing the respective list reference.

Detected by 'rmmod btrfs':

[20770.105881] kmem_cache_destroy btrfs_extent_map: Slab cache still has objects
[20770.106127] CPU: 2 PID: 11093 Comm: rmmod Tainted: G        W    L 3.17.0-rc5-btrfs-next-1+ #1
[20770.106128] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[20770.106130]  0000000000000000 ffff8800ba867eb8 ffffffff813e7a13 ffff8800a2e11040
[20770.106132]  ffff8800ba867ed0 ffffffff81105d0c 0000000000000000 ffff8800ba867ee0
[20770.106134]  ffffffffa035d65e ffff8800ba867ef0 ffffffffa03b0654 ffff8800ba867f78
[20770.106136] Call Trace:
[20770.106142]  [<ffffffff813e7a13>] dump_stack+0x45/0x56
[20770.106145]  [<ffffffff81105d0c>] kmem_cache_destroy+0x4b/0x90
[20770.106164]  [<ffffffffa035d65e>] extent_map_exit+0x1a/0x1c [btrfs]
[20770.106176]  [<ffffffffa03b0654>] exit_btrfs_fs+0x27/0x9d3 [btrfs]
[20770.106179]  [<ffffffff8109dc97>] SyS_delete_module+0x153/0x1c4
[20770.106182]  [<ffffffff8121261b>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[20770.106184]  [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b

This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"

But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:10 -08:00
Filipe Manana
946ddbe805 Btrfs: fix memory leak after block remove + trimming
There was a free space entry structure memeory leak if a block
group is remove while a free space entry is being trimmed, which
the following diagram explains:

           CPU 1                                          CPU 2

  btrfs_trim_block_group()
      trim_no_bitmap()
          remove free space entry from
          block group cache's rbtree
          do_trimming()

                                                btrfs_remove_block_group()
                                                    btrfs_remove_free_space_cache()

              add back free space entry to
              block group's cache rbtree
  btrfs_put_block_group()

                                                    (...)
                                                    btrfs_put_block_group()
                                                        kfree(bg->free_space_ctl)
                                                        kfree(bg)

The free space entry added after doing the discard of its respective
range ends up never being freed.
Detected after doing an "rmmod btrfs" after running the stress test
recently submitted for fstests:

[ 8234.642212] kmem_cache_destroy btrfs_free_space: Slab cache still has objects
[ 8234.642657] CPU: 1 PID: 32276 Comm: rmmod Tainted: G        W    L 3.17.0-rc5-btrfs-next-2+ #1
[ 8234.642660] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 8234.642664]  0000000000000000 ffff8801af1b3eb8 ffffffff8140c7b6 ffff8801dbedd0c0
[ 8234.642670]  ffff8801af1b3ed0 ffffffff811149ce 0000000000000000 ffff8801af1b3ee0
[ 8234.642676]  ffffffffa042dbe7 ffff8801af1b3ef0 ffffffffa0487422 ffff8801af1b3f78
[ 8234.642682] Call Trace:
[ 8234.642692]  [<ffffffff8140c7b6>] dump_stack+0x4d/0x66
[ 8234.642699]  [<ffffffff811149ce>] kmem_cache_destroy+0x4d/0x92
[ 8234.642731]  [<ffffffffa042dbe7>] btrfs_destroy_cachep+0x63/0x76 [btrfs]
[ 8234.642757]  [<ffffffffa0487422>] exit_btrfs_fs+0x9/0xbe7 [btrfs]
[ 8234.642762]  [<ffffffff810a76a5>] SyS_delete_module+0x155/0x1c6
[ 8234.642768]  [<ffffffff8122a7eb>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 8234.642773]  [<ffffffff814122d2>] system_call_fastpath+0x16/0x1b

This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Filipe Manana
c92f6be34c Btrfs: make btrfs_abort_transaction consider existence of new block groups
If the transaction handle doesn't have used blocks but has created new block
groups make sure we turn the fs into readonly mode too. This is because the
new block groups didn't get all their metadata persisted into the chunk and
device trees, and therefore if a subsequent transaction starts, allocates
space from the new block groups, writes data or metadata into that space,
commits successfully and then after we unmount and mount the filesystem
again, the same space can be allocated again for a new block group,
resulting in file data or metadata corruption.

Example where we don't abort the transaction when we fail to finish the
chunk allocation (add items to the chunk and device trees) and later a
future transaction where the block group is removed fails because it can't
find the chunk item in the chunk tree:

[25230.404300] WARNING: CPU: 0 PID: 7721 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x50/0xfc [btrfs]()
[25230.404301] BTRFS: Transaction aborted (error -28)
[25230.404302] Modules linked in: btrfs dm_flakey nls_utf8 fuse xor raid6_pq ntfs vfat msdos fat xfs crc32c_generic libcrc32c ext3 jbd ext2 dm_mod nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse i2c_piix4 i2ccore parport_pc parport processor button pcspkr serio_raw thermal_sys evdev microcode ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sg sd_mod crc_t10dif crct10dif_generic crct10dif_common virtio_scsi floppy e1000 ata_piix libata virtio_pci virtio_ring scsi_mod virtio [last unloaded: btrfs]
[25230.404325] CPU: 0 PID: 7721 Comm: xfs_io Not tainted 3.17.0-rc5-btrfs-next-1+ #1
[25230.404326] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[25230.404328]  0000000000000000 ffff88004581bb08 ffffffff813e7a13 ffff88004581bb50
[25230.404330]  ffff88004581bb40 ffffffff810423aa ffffffffa049386a 00000000ffffffe4
[25230.404332]  ffffffffa05214c0 000000000000240c ffff88010fc8f800 ffff88004581bba8
[25230.404334] Call Trace:
[25230.404338]  [<ffffffff813e7a13>] dump_stack+0x45/0x56
[25230.404342]  [<ffffffff810423aa>] warn_slowpath_common+0x7f/0x98
[25230.404351]  [<ffffffffa049386a>] ? __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404353]  [<ffffffff8104240b>] warn_slowpath_fmt+0x48/0x50
[25230.404362]  [<ffffffffa049386a>] __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404374]  [<ffffffffa04a8c43>] btrfs_create_pending_block_groups+0x10c/0x135 [btrfs]
[25230.404387]  [<ffffffffa04b77fd>] __btrfs_end_transaction+0x7e/0x2de [btrfs]
[25230.404398]  [<ffffffffa04b7a6d>] btrfs_end_transaction+0x10/0x12 [btrfs]
[25230.404408]  [<ffffffffa04a3d64>] btrfs_check_data_free_space+0x111/0x1f0 [btrfs]
[25230.404421]  [<ffffffffa04c53bd>] __btrfs_buffered_write+0x160/0x48d [btrfs]
[25230.404425]  [<ffffffff811a9268>] ? cap_inode_need_killpriv+0x2d/0x37
[25230.404429]  [<ffffffff810f6501>] ? get_page+0x1a/0x2b
[25230.404441]  [<ffffffffa04c7c95>] btrfs_file_write_iter+0x321/0x42f [btrfs]
[25230.404443]  [<ffffffff8110f5d9>] ? handle_mm_fault+0x7f3/0x846
[25230.404446]  [<ffffffff813e98c5>] ? mutex_unlock+0x16/0x18
[25230.404449]  [<ffffffff81138d68>] new_sync_write+0x7c/0xa0
[25230.404450]  [<ffffffff81139401>] vfs_write+0xb0/0x112
[25230.404452]  [<ffffffff81139c9d>] SyS_pwrite64+0x66/0x84
[25230.404454]  [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b
[25230.404455] ---[ end trace 5aa5684fdf47ab38 ]---
[25230.404458] BTRFS warning (device sdc): btrfs_create_pending_block_groups:9228: Aborting unused transaction(No space left).
[25288.084814] BTRFS: error (device sdc) in btrfs_free_chunk:2509: errno=-2 No such entry (Failed lookup while freeing chunk.)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Filipe Manana
55507ce361 Btrfs: fix race between writing free space cache and trimming
Trimming is completely transactionless, and the way it operates consists
of hiding free space entries from a block group, perform the trim/discard
and then make the free space entries visible again.
Therefore while a free space entry is being trimmed, we can have free space
cache writing running in parallel (as part of a transaction commit) which
will miss the free space entry. This means that an unmount (or crash/reboot)
after that transaction commit and mount again before another transaction
starts/commits after the discard finishes, we will have some free space
that won't be used again unless the free space cache is rebuilt. After the
unmount, fsck (btrfsck, btrfs check) reports the issue like the following
example:

        *** fsck.btrfs output ***
        checking extents
        checking free space cache
        There is no free space entry for 521764864-521781248
        There is no free space entry for 521764864-1103101952
        cache appears valid but isnt 29360128
        Checking filesystem on /dev/sdc
        UUID: b4789e27-4774-4626-98e9-ae8dfbfb0fb5
        found 1235681286 bytes used err is -22
        (...)

Another issue caused by this race is a crash while writing bitmap entries
to the cache, because while the cache writeout task accesses the bitmaps,
the trim task can be concurrently modifying the bitmap or worse might
be freeing the bitmap. The later case results in the following crash:

[55650.804460] general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC
[55650.804835] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop parport_pc parport i2c_piix4 psmouse evdev pcspkr microcode processor i2ccore serio_raw thermal_sys button ext4 crc16 jbd2 mbcache sg sd_mod crc_t10dif sr_mod cdrom crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring virtio scsi_mod e1000 [last unloaded: btrfs]
[55650.806169] CPU: 1 PID: 31002 Comm: btrfs-transacti Tainted: G        W      3.17.0-rc5-btrfs-next-1+ #1
[55650.806493] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[55650.806867] task: ffff8800b12f6410 ti: ffff880071538000 task.ti: ffff880071538000
[55650.807166] RIP: 0010:[<ffffffffa037cf45>]  [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.807514] RSP: 0018:ffff88007153bc30  EFLAGS: 00010246
[55650.807687] RAX: 000000005d1ec000 RBX: ffff8800a665df08 RCX: 0000000000000400
[55650.807885] RDX: ffff88005d1ec000 RSI: 6b6b6b6b6b6b6b6b RDI: ffff88005d1ec000
[55650.808017] RBP: ffff88007153bc58 R08: 00000000ddd51536 R09: 00000000000001e0
[55650.808017] R10: 0000000000000000 R11: 0000000000000037 R12: 6b6b6b6b6b6b6b6b
[55650.808017] R13: ffff88007153bca8 R14: 6b6b6b6b6b6b6b6b R15: ffff88007153bc98
[55650.808017] FS:  0000000000000000(0000) GS:ffff88023ec80000(0000) knlGS:0000000000000000
[55650.808017] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[55650.808017] CR2: 0000000002273b88 CR3: 00000000b18f6000 CR4: 00000000000006e0
[55650.808017] Stack:
[55650.808017]  ffff88020e834e00 ffff880172d68db0 0000000000000000 ffff88019257c800
[55650.808017]  ffff8801d42ea720 ffff88007153bd10 ffffffffa037d2fa ffff880224e99180
[55650.808017]  ffff8801469a6188 ffff880224e99140 ffff880172d68c50 00000003000000b7
[55650.808017] Call Trace:
[55650.808017]  [<ffffffffa037d2fa>] __btrfs_write_out_cache+0x1ea/0x37f [btrfs]
[55650.808017]  [<ffffffffa037d959>] btrfs_write_out_cache+0xa1/0xd8 [btrfs]
[55650.808017]  [<ffffffffa033936b>] btrfs_write_dirty_block_groups+0x4b5/0x505 [btrfs]
[55650.808017]  [<ffffffffa03aa98e>] commit_cowonly_roots+0x15e/0x1f7 [btrfs]
[55650.808017]  [<ffffffff813eb9c7>] ? _raw_spin_lock+0xe/0x10
[55650.808017]  [<ffffffffa0346e46>] btrfs_commit_transaction+0x411/0x882 [btrfs]
[55650.808017]  [<ffffffffa03432a4>] transaction_kthread+0xf2/0x1a4 [btrfs]
[55650.808017]  [<ffffffffa03431b2>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[55650.808017]  [<ffffffff8105966b>] kthread+0xb7/0xbf
[55650.808017]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017]  [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[55650.808017]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017] Code: 4c 89 ef 8d 70 ff e8 d4 fc ff ff 41 8b 45 34 41 39 45 30 7d 5c 31 f6 4c 89 ef e8 80 f6 ff ff 49 8b 7d 00 4c 89 f6 b9 00 04 00 00 <f3> a5 4c 89 ef 41 8b 45 30 8d 70 ff e8 a3 fc ff ff 41 8b 45 34
[55650.808017] RIP  [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.808017]  RSP <ffff88007153bc30>
[55650.815725] ---[ end trace 1c032e96b149ff86 ]---

Fix this by serializing both tasks in such a way that cache writeout
doesn't wait for the trim/discard of free space entries to finish and
doesn't miss any free space entry.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Filipe Manana
04216820fe Btrfs: fix race between fs trimming and block group remove/allocation
Our fs trim operation, which is completely transactionless (doesn't start
or joins an existing transaction) consists of visiting all block groups
and then for each one to iterate its free space entries and perform a
discard operation against the space range represented by the free space
entries. However before performing a discard, the corresponding free space
entry is removed from the free space rbtree, and when the discard completes
it is added back to the free space rbtree.

If a block group remove operation happens while the discard is ongoing (or
before it starts and after a free space entry is hidden), we end up not
waiting for the discard to complete, remove the extent map that maps
logical address to physical addresses and the corresponding chunk metadata
from the the chunk and device trees. After that and before the discard
completes, the current running transaction can finish and a new one start,
allowing for new block groups that map to the same physical addresses to
be allocated and written to.

So fix this by keeping the extent map in memory until the discard completes
so that the same physical addresses aren't reused before it completes.

If the physical locations that are under a discard operation end up being
used for a new metadata block group for example, and dirty metadata extents
are written before the discard finishes (the VM might call writepages() of
our btree inode's i_mapping for example, or an fsync log commit happens) we
end up overwriting metadata with zeroes, which leads to errors from fsck
like the following:

        checking extents
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        read block failed check_tree_block
        owner ref check failed [833912832 16384]
        Errors found in extent allocation tree or chunk allocation
        checking free space cache
        checking fs roots
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        read block failed check_tree_block
        root 5 root dir 256 error
        root 5 inode 260 errors 2001, no inode item, link count wrong
                unresolved ref dir 256 index 0 namelen 8 name foobar_3 filetype 1 errors 6, no dir index, no inode ref
        root 5 inode 262 errors 2001, no inode item, link count wrong
                unresolved ref dir 256 index 0 namelen 8 name foobar_5 filetype 1 errors 6, no dir index, no inode ref
        root 5 inode 263 errors 2001, no inode item, link count wrong
        (...)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Zhao Lei
5d3edd8f44 Btrfs, replace: enable dev-replace for raid56
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:20:48 +08:00
Filipe Manana
ae0ab003f2 Btrfs: fix freeing used extents after removing empty block group
There's a race between adding a block group to the list of the unused
block groups and removing an unused block group (cleaner kthread) that
leads to freeing extents that are in use or a crash during transaction
commmit. Basically the cleaner kthread, when executing
btrfs_delete_unused_bgs(), might catch the newly added block group to
the list fs_info->unused_bgs and clear the range representing the whole
group from fs_info->freed_extents[] before the task that added the block
group to the list (running update_block_group()) marked the last freed
extent as dirty in fs_info->freed_extents (pinned_extents).

That is:

     CPU 1                                CPU 2

                                  btrfs_delete_unused_bgs()
update_block_group()
   add block group to
   fs_info->unused_bgs
                                    got block group from the list
                                    clear_extent_bits for the whole
                                    block group range in freed_extents[]
   set_extent_dirty for the
   range covering the freed
   extent in freed_extents[]
   (fs_info->pinned_extents)

                                  block group deleted, and a new block
                                  group with the same logical address is
                                  created

                                  reserve space from the new block group
                                  for new data or metadata - the reserved
                                  space overlaps the range specified by
                                  CPU 1 for set_extent_dirty()

                                  commit transaction
                                    find all ranges marked as dirty in
                                    fs_info->pinned_extents, clear them
                                    and add them to the free space cache

Alternatively, if CPU 2 doesn't create a new block group with the same
logical address, we get a crash/BUG_ON at transaction commit when unpining
extent ranges because we can't find a block group for the range marked as
dirty by CPU 1. Sample trace:

[ 2163.426462] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
[ 2163.426640] Modules linked in: btrfs xor raid6_pq dm_thin_pool dm_persistent_data dm_bio_prison dm_bufio crc32c_generic libcrc32c dm_mod nfsd auth_rpc
gss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse parport_pc parport i2c_piix4 processor thermal_sys i2ccore evdev button pcspkr microcode serio_raw ext4 crc16 jbd2 mbcache
 sg sr_mod cdrom sd_mod crc_t10dif crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata e1000 scsi_mod virtio_pci virtio_ring virtio
[ 2163.428209] CPU: 0 PID: 11858 Comm: btrfs-transacti Tainted: G        W      3.17.0-rc5-btrfs-next-1+ #1
[ 2163.428519] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 2163.428875] task: ffff88009f2c0650 ti: ffff8801356bc000 task.ti: ffff8801356bc000
[ 2163.429157] RIP: 0010:[<ffffffffa037728e>]  [<ffffffffa037728e>] unpin_extent_range.isra.58+0x62/0x192 [btrfs]
[ 2163.429562] RSP: 0018:ffff8801356bfda8  EFLAGS: 00010246
[ 2163.429802] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 2163.429990] RDX: 0000000041bfffff RSI: 0000000001c00000 RDI: ffff880024307080
[ 2163.430042] RBP: ffff8801356bfde8 R08: 0000000000000068 R09: ffff88003734f118
[ 2163.430042] R10: ffff8801356bfcb8 R11: fffffffffffffb69 R12: ffff8800243070d0
[ 2163.430042] R13: 0000000083c04000 R14: ffff8800751b0f00 R15: ffff880024307000
[ 2163.430042] FS:  0000000000000000(0000) GS:ffff88013f400000(0000) knlGS:0000000000000000
[ 2163.430042] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 2163.430042] CR2: 00007ff10eb43fc0 CR3: 0000000004cb8000 CR4: 00000000000006f0
[ 2163.430042] Stack:
[ 2163.430042]  ffff8800243070d0 0000000083c08000 0000000083c07fff ffff88012d6bc800
[ 2163.430042]  ffff8800243070d0 ffff8800751b0f18 ffff8800751b0f00 0000000000000000
[ 2163.430042]  ffff8801356bfe18 ffffffffa037a481 0000000083c04000 0000000083c07fff
[ 2163.430042] Call Trace:
[ 2163.430042]  [<ffffffffa037a481>] btrfs_finish_extent_commit+0xac/0xbf [btrfs]
[ 2163.430042]  [<ffffffffa038c06d>] btrfs_commit_transaction+0x6ee/0x882 [btrfs]
[ 2163.430042]  [<ffffffffa03881f1>] transaction_kthread+0xf2/0x1a4 [btrfs]
[ 2163.430042]  [<ffffffffa03880ff>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[ 2163.430042]  [<ffffffff8105966b>] kthread+0xb7/0xbf
[ 2163.430042]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[ 2163.430042]  [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[ 2163.430042]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67

So fix this by making update_block_group() first set the range as dirty
in pinned_extents before adding the block group to the unused_bgs list.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:19:17 -08:00
Filipe Manana
4f69cb987e Btrfs: fix crash caused by block group removal
If we remove a block group (because it became empty), we might have left
a caching_ctl structure in fs_info->caching_block_groups that points to
the block group and is accessed at transaction commit time. This results
in accessing an invalid or incorrect block group. This issue became visible
after Josef's patch "Btrfs: remove empty block groups automatically".

So if the block group is removed make sure we don't leave a dangling
caching_ctl in caching_block_groups.

Sample crash trace:

[58380.439449] BUG: unable to handle kernel paging request at ffff8801446eaeb8
[58380.439707] IP: [<ffffffffa03f6d05>] block_group_cache_done.isra.21+0xc/0x1c [btrfs]
[58380.440879] PGD 1acb067 PUD 23f5ff067 PMD 23f5db067 PTE 80000001446ea060
[58380.441220] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
[58380.441486] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse processor i2c_piix4 parport_pc parport pcspkr serio_raw evdev i2ccore thermal_sys microcode button ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sg sd_mod crc_t10dif crct10dif_generic crct10dif_common virtio_scsi floppy ata_piix e1000 libata virtio_pci scsi_mod virtio_ring virtio [last unloaded: btrfs]
[58380.443238] CPU: 3 PID: 25728 Comm: btrfs-transacti Tainted: G        W      3.17.0-rc5-btrfs-next-1+ #1
[58380.443238] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[58380.443238] task: ffff88013ac82090 ti: ffff88013896c000 task.ti: ffff88013896c000
[58380.443238] RIP: 0010:[<ffffffffa03f6d05>]  [<ffffffffa03f6d05>] block_group_cache_done.isra.21+0xc/0x1c [btrfs]
[58380.443238] RSP: 0018:ffff88013896fdd8  EFLAGS: 00010283
[58380.443238] RAX: ffff880222cae850 RBX: ffff880119ba74c0 RCX: 0000000000000000
[58380.443238] RDX: 0000000000000000 RSI: ffff880185e16800 RDI: ffff8801446eaeb8
[58380.443238] RBP: ffff88013896fdd8 R08: ffff8801a9ca9fa8 R09: ffff88013896fc60
[58380.443238] R10: ffff88013896fd28 R11: 0000000000000000 R12: ffff880222cae000
[58380.443238] R13: ffff880222cae850 R14: ffff880222cae6b0 R15: ffff8801446eae00
[58380.443238] FS:  0000000000000000(0000) GS:ffff88023ed80000(0000) knlGS:0000000000000000
[58380.443238] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[58380.443238] CR2: ffff8801446eaeb8 CR3: 0000000001811000 CR4: 00000000000006e0
[58380.443238] Stack:
[58380.443238]  ffff88013896fe18 ffffffffa03fe2d5 ffff880222cae850 ffff880185e16800
[58380.443238]  ffff88000dc41c20 0000000000000000 ffff8801a9ca9f00 0000000000000000
[58380.443238]  ffff88013896fe80 ffffffffa040fbcf ffff88018b0dcdb0 ffff88013ac82090
[58380.443238] Call Trace:
[58380.443238]  [<ffffffffa03fe2d5>] btrfs_prepare_extent_commit+0x5a/0xd7 [btrfs]
[58380.443238]  [<ffffffffa040fbcf>] btrfs_commit_transaction+0x45c/0x882 [btrfs]
[58380.443238]  [<ffffffffa040c058>] transaction_kthread+0xf2/0x1a4 [btrfs]
[58380.443238]  [<ffffffffa040bf66>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[58380.443238]  [<ffffffff8105966b>] kthread+0xb7/0xbf
[58380.443238]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[58380.443238]  [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[58380.443238]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:19:17 -08:00
Filipe Manana
292cbd51ec Btrfs: fix invalid block group rbtree access after bg is removed
If we grab a block group, for example in btrfs_trim_fs(), we will be holding
a reference on it but the block group can be removed after we got it (via
btrfs_remove_block_group), which means it will no longer be part of the
rbtree.

However, btrfs_remove_block_group() was only calling rb_erase() which leaves
the block group's rb_node left and right child pointers with the same content
they had before calling rb_erase. This was dangerous because a call to
next_block_group() would access the node's left and right child pointers (via
rb_next), which can be no longer valid.

Fix this by clearing a block group's node after removing it from the tree,
and have next_block_group() do a tree search to get the next block group
instead of using rb_next() if our block group was removed.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:19:17 -08:00
Miao Xie
4245215d6a Btrfs, raid56: fix use-after-free problem in the final device replace procedure on raid56
The commit c404e0dc (Btrfs: fix use-after-free in the finishing
procedure of the device replace) fixed a use-after-free problem
which happened when removing the source device at the end of device
replace, but at that time, btrfs didn't support device replace
on raid56, so we didn't fix the problem on the raid56 profile.
Currently, we implemented device replace for raid56, so we need
kick that problem out before we enable that function for raid56.

The fix method is very simple, we just increase the bio per-cpu
counter before we submit a raid56 io, and decrease the counter
when the raid56 io ends.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:47 +08:00
Miao Xie
7603597690 Btrfs, replace: write raid56 parity into the replace target device
This function reused the code of parity scrub, and we just write
the right parity or corrected parity into the target device before
the parity scrub end.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:46 +08:00
Miao Xie
2c8cdd6ee4 Btrfs, replace: write dirty pages into the replace target device
The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
  RAID56, we add the stripes of the replace target devices at the
  end of the stripe array in btrfs bio, and we sort those target
  device stripes in the array. And we keep the number of the target
  device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
  take the target device stripes into account.
- When we do write operation, we read the data from the common devices
  and calculate the parity. Then write the dirty data and new parity
  out, at this time, we will find the relative replace target stripes
  and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:46 +08:00
Miao Xie
5a6ac9eacb Btrfs, raid56: support parity scrub on raid56
The implementation is:
- Read and check all the data with checksum in the same stripe.
  All the data which has checksum is COW data, and we are sure
  that it is not changed though we don't lock the stripe. because
  the space of that data just can be reclaimed after the current
  transction is committed, and then the fs can use it to store the
  other data, but when doing scrub, we hold the current transaction,
  that is that data can not be recovered, it is safe that read and check
  it out of the stripe lock.
- Lock the stripe
- Read out all the data without checksum and parity
  The data without checksum and the parity may be changed if we don't
  lock the stripe, so we need read it in the stripe lock context.
- Check the parity
- Re-calculate the new parity and write back it if the old parity
  is not right
- Unlock the stripe

If we can not read out the data or the data we read is corrupted,
we will try to repair it. If the repair fails. we will mark the
horizontal sub-stripe(pages on the same horizontal) as corrupted
sub-stripe, and we will skip the parity check and repair of that
horizontal sub-stripe.

And in order to skip the horizontal sub-stripe that has no data, we
introduce a bitmap. If there is some data on the horizontal sub-stripe,
we will the relative bit to 1, and when we check and repair the
parity, we will skip those horizontal sub-stripes that the relative
bits is 0.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:45 +08:00
Miao Xie
1b94b5567e Btrfs, raid56: use a variant to record the operation type
We will introduce new operation type later, if we still use integer
variant as bool variant to record the operation type, we would add new
variant and increase the size of raid bio structure. It is not good,
by this patch, we define different number for different operation,
and we can just use a variant to record the operation type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:45 +08:00
Miao Xie
af8e2d1df9 Btrfs, scrub: repair the common data on RAID5/6 if it is corrupted
This patch implement the RAID5/6 common data repair function, the
implementation is similar to the scrub on the other RAID such as
RAID1, the differentia is that we don't read the data from the
mirror, we use the data repair function of RAID5/6.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:45 +08:00
Miao Xie
b89e1b012c Btrfs, raid56: don't change bbio and raid_map
Because we will reuse bbio and raid_map during the scrub later, it is
better that we don't change any variant of bbio and don't free it at
the end of IO request. So we introduced similar variants into the raid
bio, and don't access those bbio's variants any more.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:44 +08:00
Zhao Lei
6de6565075 Btrfs: remove unnecessary code of stripe_index assignment in __btrfs_map_block
stripe_index's value was set again in latter line:
stripe_index = 0;

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
2014-12-03 10:18:44 +08:00
Zhao Lei
f90523d1aa Btrfs: remove noused bbio_ret in __btrfs_map_block in condition
bbio_ret in this condition is always !NULL because previous code
already have a check-and-skip:
4908 if (!bbio_ret)
4909     goto out;

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
2014-12-03 10:18:44 +08:00
Filipe Manana
9ea24bbe17 Btrfs: fix snapshot inconsistency after a file write followed by truncate
If right after starting the snapshot creation ioctl we perform a write against a
file followed by a truncate, with both operations increasing the file's size, we
can get a snapshot tree that reflects a state of the source subvolume's tree where
the file truncation happened but the write operation didn't. This leaves a gap
between 2 file extent items of the inode, which makes btrfs' fsck complain about it.

For example, if we perform the following file operations:

    $ mkfs.btrfs -f /dev/vdd
    $ mount /dev/vdd /mnt
    $ xfs_io -f \
          -c "pwrite -S 0xaa -b 32K 0 32K" \
          -c "fsync" \
          -c "pwrite -S 0xbb -b 32770 16K 32770" \
          -c "truncate 90123" \
          /mnt/foobar

and the snapshot creation ioctl was just called before the second write, we often
can get the following inode items in the snapshot's btree:

        item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160
                inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0
        item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20
                inode ref index 282 namelen 10 name: foobar
        item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53
                extent data disk byte 1104855040 nr 32768
                extent data offset 0 nr 32768 ram 32768
                extent compression 0
        item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53
                extent data disk byte 0 nr 0
                extent data offset 0 nr 40960 ram 40960
                extent compression 0

There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[
for which there's no file extent item covering it. This is because the file write
and file truncate operations happened both right after the snapshot creation ioctl
called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the
ordered extent that matches the write and, in btrfs_setsize(), we were able to call
btrfs_cont_expand() before being able to commit the current transaction in the
snapshot creation ioctl. So this made it possibe to insert the hole file extent
item in the source subvolume (which represents the region added by the truncate)
right before the transaction commit from the snapshot creation ioctl.

Btrfs' fsck tool complains about such cases with a message like the following:

    "root 331 inode 257 errors 100, file extent discount"

>From a user perspective, the expectation when a snapshot is created while those
file operations are being performed is that the snapshot will have a file that
either:

1) is empty
2) only the first write was captured
3) only the 2 writes were captured
4) both writes and the truncation were captured

But never capture a state where only the first write and the truncation were
captured (since the second write was performed before the truncation).

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 07:41:23 -08:00
Filipe Manana
e5fa8f865b Btrfs: ensure send always works on roots without orphans
Move the logic from the snapshot creation ioctl into send. This avoids
doing the transaction commit if send isn't used, and ensures that if
a crash/reboot happens after the transaction commit that created the
snapshot and before the transaction commit that switched the commit
root, send will not get a commit root that differs from the main root
(that has orphan items).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 07:41:23 -08:00
Filipe Manana
758eb51e71 Btrfs: fix freeing used extent after removing empty block group
Due to ignoring errors returned by clear_extent_bits (at the moment only
-ENOMEM is possible), we can end up freeing an extent that is actually in
use (i.e. return the extent to the free space cache).

The sequence of steps that lead to this:

1) Cleaner thread starts execution and calls btrfs_delete_unused_bgs(), with
   the goal of freeing empty block groups;

2) btrfs_delete_unused_bgs() finds an empty block group, joins the current
   transaction (or starts a new one if none is running) and attempts to
   clear the EXTENT_DIRTY bit for the block group's range from freed_extents[0]
   and freed_extents[1] (of which one corresponds to fs_info->pinned_extents);

3) Clearing the EXTENT_DIRTY bit (via clear_extent_bits()) fails with
   -ENOMEM, but such error is ignored and btrfs_delete_unused_bgs() proceeds
   to delete the block group and the respective chunk, while pinned_extents
   remains with that bit set for the whole (or a part of the) range covered
   by the block group;

4) Later while the transaction is still running, the chunk ends up being reused
   for a new block group (maybe for different purpose, data or metadata), and
   extents belonging to the new block group are allocated for file data or btree
   nodes/leafs;

5) The current transaction is committed, meaning that we unpinned one or more
   extents from the new block group (through btrfs_finish_extent_commit() and
   unpin_extent_range()) which are now being used for new file data or new
   metadata (through btrfs_finish_extent_commit() and unpin_extent_range()).
   And unpinning means we returned the extents to the free space cache of the
   new block group, which implies those extents can be used for future allocations
   while they're still in use.

Alternatively, we can hit a BUG_ON() when doing a lookup for a block group's cache
object in unpin_extent_range() if a new block group didn't end up being allocated for
the same chunk (step 4 above).

Fix this by not freeing the block group and chunk if we fail to clear the dirty bit.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 07:41:23 -08:00
Chris Mason
8f608de699 Btrfs: include vmalloc.h in check-integrity.c
Fengguang's build monster reported warnings on some arches because we
don't have vmalloc.h included

Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: fengguang.wu@intel.com
2014-11-25 06:01:11 -08:00
Qu Wenruo
084b6e7c76 btrfs: Fix a lockdep warning when running xfstest.
The following lockdep warning is triggered during xfstests:

[ 1702.980872] =========================================================
[ 1702.981181] [ INFO: possible irq lock inversion dependency detected ]
[ 1702.981482] 3.18.0-rc1 #27 Not tainted
[ 1702.981781] ---------------------------------------------------------
[ 1702.982095] kswapd0/77 just changed the state of lock:
[ 1702.982415]  (&delayed_node->mutex){+.+.-.}, at: [<ffffffffa03b0b51>] __btrfs_release_delayed_node+0x41/0x1f0 [btrfs]
[ 1702.982794] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1702.983160]  (&fs_info->dev_replace.lock){+.+.+.}

and interrupts could create inverse lock ordering between them.

[ 1702.984675]
other info that might help us debug this:
[ 1702.985524] Chain exists of:
  &delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock

[ 1702.986799]  Possible interrupt unsafe locking scenario:

[ 1702.987681]        CPU0                    CPU1
[ 1702.988137]        ----                    ----
[ 1702.988598]   lock(&fs_info->dev_replace.lock);
[ 1702.989069]                                local_irq_disable();
[ 1702.989534]                                lock(&delayed_node->mutex);
[ 1702.990038]                                lock(&found->groups_sem);
[ 1702.990494]   <Interrupt>
[ 1702.990938]     lock(&delayed_node->mutex);
[ 1702.991407]
 *** DEADLOCK ***

It is because the btrfs_kobj_{add/rm}_device() will call memory
allocation with GFP_KERNEL,
which may flush fs page cache to free space, waiting for it self to do
the commit, causing the deadlock.

To solve the problem, move btrfs_kobj_{add/rm}_device() out of the
dev_replace lock range, also involing split the
btrfs_rm_dev_replace_srcdev() function into remove and free parts.

Now only btrfs_rm_dev_replace_remove_srcdev() is called in dev_replace
lock range, and kobj_{add/rm} and btrfs_rm_dev_replace_free_srcdev() are
called out of the lock range.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 05:55:38 -08:00
Chris Mason
ad27c0dab7 Merge branch 'dev/pending-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 2014-11-25 05:45:30 -08:00
Linus Torvalds
5d01410fe4 Linux 3.18-rc6 2014-11-23 15:25:20 -08:00
Andy Lutomirski
82975bc6a6 uprobes, x86: Fix _TIF_UPROBE vs _TIF_NOTIFY_RESUME
x86 call do_notify_resume on paranoid returns if TIF_UPROBE is set but
not on non-paranoid returns.  I suspect that this is a mistake and that
the code only works because int3 is paranoid.

Setting _TIF_NOTIFY_RESUME in the uprobe code was probably a workaround
for the x86 bug.  With that bug fixed, we can remove _TIF_NOTIFY_RESUME
from the uprobes code.

Reported-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 14:25:28 -08:00
Thomas Gleixner
90e362f4a7 sched: Provide update_curr callbacks for stop/idle scheduling classes
Chris bisected a NULL pointer deference in task_sched_runtime() to
commit 6e998916df 'sched/cputime: Fix clock_nanosleep()/clock_gettime()
inconsistency'.

Chris observed crashes in atop or other /proc walking programs when he
started fork bombs on his machine.  He assumed that this is a new exit
race, but that does not make any sense when looking at that commit.

What's interesting is that, the commit provides update_curr callbacks
for all scheduling classes except stop_task and idle_task.

While nothing can ever hit that via the clock_nanosleep() and
clock_gettime() interfaces, which have been the target of the commit in
question, the author obviously forgot that there are other code paths
which invoke task_sched_runtime()

do_task_stat(()
 thread_group_cputime_adjusted()
   thread_group_cputime()
     task_cputime()
       task_sched_runtime()
        if (task_current(rq, p) && task_on_rq_queued(p)) {
          update_rq_clock(rq);
          up->sched_class->update_curr(rq);
        }

If the stats are read for a stomp machine task, aka 'migration/N' and
that task is current on its cpu, this will happily call the NULL pointer
of stop_task->update_curr.  Ooops.

Chris observation that this happens faster when he runs the fork bomb
makes sense as the fork bomb will kick migration threads more often so
the probability to hit the issue will increase.

Add the missing update_curr callbacks to the scheduler classes stop_task
and idle_task.  While idle tasks cannot be monitored via /proc we have
other means to hit the idle case.

Fixes: 6e998916df 'sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency'
Reported-by: Chris Mason <clm@fb.com>
Reported-and-tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 14:14:40 -08:00
Linus Torvalds
00c89b2f11 Merge branch 'x86-traps' (trap handling from Andy Lutomirski)
Merge x86-64 iret fixes from Andy Lutomirski:
 "This addresses the following issues:

   - an unrecoverable double-fault triggerable with modify_ldt.
   - invalid stack usage in espfix64 failed IRET recovery from IST
     context.
   - invalid stack usage in non-espfix64 failed IRET recovery from IST
     context.

  It also makes a good but IMO scary change: non-espfix64 failed IRET
  will now report the correct error.  Hopefully nothing depended on the
  old incorrect behavior, but maybe Wine will get confused in some
  obscure corner case"

* emailed patches from Andy Lutomirski <luto@amacapital.net>:
  x86_64, traps: Rework bad_iret
  x86_64, traps: Stop using IST for #SS
  x86_64, traps: Fix the espfix64 #DF fixup and rewrite it in C
2014-11-23 13:56:55 -08:00
Andy Lutomirski
b645af2d59 x86_64, traps: Rework bad_iret
It's possible for iretq to userspace to fail.  This can happen because
of a bad CS, SS, or RIP.

Historically, we've handled it by fixing up an exception from iretq to
land at bad_iret, which pretends that the failed iret frame was really
the hardware part of #GP(0) from userspace.  To make this work, there's
an extra fixup to fudge the gs base into a usable state.

This is suboptimal because it loses the original exception.  It's also
buggy because there's no guarantee that we were on the kernel stack to
begin with.  For example, if the failing iret happened on return from an
NMI, then we'll end up executing general_protection on the NMI stack.
This is bad for several reasons, the most immediate of which is that
general_protection, as a non-paranoid idtentry, will try to deliver
signals and/or schedule from the wrong stack.

This patch throws out bad_iret entirely.  As a replacement, it augments
the existing swapgs fudge into a full-blown iret fixup, mostly written
in C.  It's should be clearer and more correct.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 13:56:19 -08:00
Andy Lutomirski
6f442be2fb x86_64, traps: Stop using IST for #SS
On a 32-bit kernel, this has no effect, since there are no IST stacks.

On a 64-bit kernel, #SS can only happen in user code, on a failed iret
to user space, a canonical violation on access via RSP or RBP, or a
genuine stack segment violation in 32-bit kernel code.  The first two
cases don't need IST, and the latter two cases are unlikely fatal bugs,
and promoting them to double faults would be fine.

This fixes a bug in which the espfix64 code mishandles a stack segment
violation.

This saves 4k of memory per CPU and a tiny bit of code.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 13:56:19 -08:00
Andy Lutomirski
af726f21ed x86_64, traps: Fix the espfix64 #DF fixup and rewrite it in C
There's nothing special enough about the espfix64 double fault fixup to
justify writing it in assembly.  Move it to C.

This also fixes a bug: if the double fault came from an IST stack, the
old asm code would return to a partially uninitialized stack frame.

Fixes: 3891a04aaf
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 13:56:18 -08:00
Linus Torvalds
27946315d2 ARM: SoC fixes for 3.18-rc6
A collection of fixes this week:
 
 - A set of clock fixes for shmobile platforms
 - A fix for tegra that moves serial port labels to be per board.
   We're choosing to merge this for 3.18 because the labels will start
   being parsed in 3.19, and without this change serial port numbers that
   used to be stable since the dawn of time will change numbers.
 - A few other DT tweaks for Tegra.
 - A fix for multi_v7_defconfig that makes it stop spewing cpufreq errors on
   Arndale (Exynos).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJUciiGAAoJEIwa5zzehBx3jwgQAIHjp02NcGah/8TYwQr9TqW9
 PGRvByKshSCQz8Q/MldSKyp1Ni86m/ZAR27KcPXuPs4Jp7Wuur88PuHOfijO4AvE
 z5s92TIZUaj74emlBbUAT5og8iG5h8+EwzRkcemobgKwTS6xHv6Wch1bBWQbu0Vc
 Zm2/z8ByYD17jCD8Nu6hnBZNs64SjYZixt+DAvRoW0nCm/N7mXajYesCbr/EWt7S
 WtHKcRQwWwr6XixDhCjsgCpsdba6HqX0dvPb4HRUDOCL5jLj8vc65cZZgMOBRsU/
 XSHixBbtSvMiFzfrqppMMjeqp/eo0vcyAi86RpGWRC+t9iqrqCfqysGyfed/tYgc
 t4DAaRC5JBdLSjznuQMSTyexJhVmsxqoByCJcsc/pnaRKXJ2/xlOgTtVNdx70ckf
 w2wrYjCafj/PprOqjUdrvcXDwkzDvvG05Ma4kbhyvmV0fbWqc5DmGVr8VNS0urWZ
 oLpI5R2/A7XpA8n8prfAgzJRhK3qZEwvhYBsSW4JzfnVL0p+LrxnWmfKecl3iizK
 t50vDbcvr/yo9Te08t+iJQGm0Sb2AzXG4dfQgBeIj9rmI892ikBwUKeeusp/XprA
 SOvyZk28rqWRsfPIEJD16vEYFFt2EEWHcQoonf/Dsu62v4i1+goAxoWY6G8NHbA9
 gTaItn0wA+Hv5msYs4HJ
 =FXz0
 -----END PGP SIGNATURE-----

Merge tag 'armsoc-for-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC fixes from Olof Johansson:
 "A collection of fixes this week:

   - A set of clock fixes for shmobile platforms
   - A fix for tegra that moves serial port labels to be per board.
     We're choosing to merge this for 3.18 because the labels will start
     being parsed in 3.19, and without this change serial port numbers
     that used to be stable since the dawn of time will change numbers.
   - A few other DT tweaks for Tegra.
   - A fix for multi_v7_defconfig that makes it stop spewing cpufreq
     errors on Arndale (Exynos)"

* tag 'armsoc-for-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
  ARM: multi_v7_defconfig: fix failure setting CPU voltage by enabling dependent I2C controller
  ARM: tegra: roth: Fix SD card VDD_IO regulator
  ARM: tegra: Remove eMMC vmmc property for roth/tn7
  ARM: dts: tegra: move serial aliases to per-board
  ARM: tegra: Add serial port labels to Tegra124 DT
  ARM: shmobile: kzm9g legacy: Set i2c clks_per_count to 2
  ARM: shmobile: r8a7740 dtsi: Correct IIC0 parent clock
  ARM: shmobile: r8a7790: Fix SD3CKCR address to device tree
  ARM: shmobile: r8a7740 legacy: Correct IIC0 parent clock
  ARM: shmobile: r8a7740 legacy: Add missing INTCA clock for irqpin module
  ARM: shmobile: r8a7790: Fix SD3CKCR address
  ARM: dts: sun6i: Re-parent ahb1_mux to pll6 as required by dma controller
2014-11-23 11:46:01 -08:00
Linus Torvalds
9f2e0f6370 Merge branch 'for-3.18-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu fix from Tejun Heo:
 "This contains one patch to fix a race condition which can lead to
  percpu_ref using a percpu pointer which is corrupted with a set DEAD
  bit.  The bug was introduced while separating out the ATOMIC mode flag
  from the DEAD flag.  The fix is pretty straight forward.

  I just committed the patch to the percpu tree but am sending out the
  pull request early as I'll be on vacation for a week.  The patch
  should be fairly safe and while the latency will be higher I'll be
  checking emails"

* 'for-3.18-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
  percpu-ref: fix DEAD flag contamination of percpu pointer
2014-11-23 11:33:49 -08:00
Linus Torvalds
d038a63ace Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs deadlock fix from Chris Mason:
 "This has a fix for a long standing deadlock that we've been trying to
  nail down for a while.  It ended up being a bad interaction with the
  fair reader/writer locks and the order btrfs reacquires locks in the
  btree"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix lockups from btrfs_clear_path_blocking
2014-11-23 11:16:36 -08:00
Tejun Heo
4aab3b5b3c percpu-ref: fix DEAD flag contamination of percpu pointer
While decoupling ATOMIC and DEAD flags, f47ad45784 ("percpu_ref:
decouple switching to percpu mode and reinit") updated
__ref_is_percpu() so that it only tests ATOMIC flag to determine
whether the ref is in percpu mode or not; however, while DEAD implies
ATOMIC, the two flags are set separately during percpu_ref_kill() and
if __ref_is_percpu() races percpu_ref_kill(), it may see DEAD w/o
ATOMIC.  Because __ref_is_percpu() returns @ref->percpu_count_ptr
value verbatim as the percpu pointer after testing ATOMIC, the pointer
may now be contaminated with the DEAD flag.

This can be fixed by clearing the flag bits before returning the
pointer which was the fix proposed by Shaohua; however, as DEAD
implies ATOMIC, we can just test for both flags at once and avoid the
explicit masking.

Update __ref_is_percpu() so that it tests that both ATOMIC and DEAD
are clear before returning @ref->percpu_count_ptr as the percpu
pointer.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-Reviewed-by: Shaohua Li <shli@kernel.org>
Link: http://lkml.kernel.org/r/995deb699f5b873c45d667df4add3b06f73c2c25.1416638887.git.shli@kernel.org
Fixes: f47ad45784 ("percpu_ref: decouple switching to percpu mode and reinit")
2014-11-23 12:36:06 -05:00
Linus Torvalds
cb95413971 Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Thomas Gleixner:
 "A single bugfix for an init order problem in the sun4i subarch
  clockevents code"

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  clockevent: sun4i: Fix race condition in the probe code
2014-11-22 14:33:11 -08:00
Linus Torvalds
ecde00642c Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fixes from Al Viro:
 "Assorted fixes, most in overlayfs land"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  ovl: ovl_dir_fsync() cleanup
  ovl: update MAINTAINERS
  ovl: pass dentry into ovl_dir_read_merged()
  ovl: use lockless_dereference() for upperdentry
  ovl: allow filenames with comma
  ovl: fix race in private xattr checks
  ovl: fix remove/copy-up race
  ovl: rename filesystem type to "overlay"
  isofs: avoid unused function warning
  vfs: fix reference leak in d_prune_aliases()
2014-11-22 14:15:27 -08:00
Linus Torvalds
8a84e01e14 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Pull networking fixes from David Miller:

 1) Fix BUG when decrypting empty packets in mac80211, from Ronald Wahl.

 2) nf_nat_range is not fully initialized and this is copied back to
    userspace, from Daniel Borkmann.

 3) Fix read past end of b uffer in netfilter ipset, also from Dan
    Carpenter.

 4) Signed integer overflow in ipv4 address mask creation helper
    inet_make_mask(), from Vincent BENAYOUN.

 5) VXLAN, be2net, mlx4_en, and qlcnic need ->ndo_gso_check() methods to
    properly describe the device's capabilities, from Joe Stringer.

 6) Fix memory leaks and checksum miscalculations in openvswitch, from
    Pravin B SHelar and Jesse Gross.

 7) FIB rules passes back ambiguous error code for unreachable routes,
    making behavior confusing for userspace.  Fix from Panu Matilainen.

 8) ieee802154fake_probe() doesn't release resources properly on error,
    from Alexey Khoroshilov.

 9) Fix skb_over_panic in add_grhead(), from Daniel Borkmann.

10) Fix access of stale slave pointers in bonding code, from Nikolay
    Aleksandrov.

11) Fix stack info leak in PPP pptp code, from Mathias Krause.

12) Cure locking bug in IPX stack, from Jiri Bohac.

13) Revert SKB fclone memory freeing optimization that is racey and can
    allow accesses to freed up memory, from Eric Dumazet.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (71 commits)
  tcp: Restore RFC5961-compliant behavior for SYN packets
  net: Revert "net: avoid one atomic operation in skb_clone()"
  virtio-net: validate features during probe
  cxgb4 : Fix DCB priority groups being returned in wrong order
  ipx: fix locking regression in ipx_sendmsg and ipx_recvmsg
  openvswitch: Don't validate IPv6 label masks.
  pptp: fix stack info leak in pptp_getname()
  brcmfmac: don't include linux/unaligned/access_ok.h
  cxgb4i : Don't block unload/cxgb4 unload when remote closes TCP connection
  ipv6: delete protocol and unregister rtnetlink when cleanup
  net/mlx4_en: Add VXLAN ndo calls to the PF net device ops too
  bonding: fix curr_active_slave/carrier with loadbalance arp monitoring
  mac80211: minstrel_ht: fix a crash in rate sorting
  vxlan: Inline vxlan_gso_check().
  can: m_can: update to support CAN FD features
  can: m_can: fix incorrect error messages
  can: m_can: add missing delay after setting CCCR_INIT bit
  can: m_can: fix not set can_dlc for remote frame
  can: m_can: fix possible sleep in napi poll
  can: m_can: add missing message RAM initialization
  ...
2014-11-21 17:20:36 -08:00
Linus Torvalds
928352e9ee Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
Pull drm fixes from Dave Airlie:
 "Just two radeon and two intel fixes: endian and regression fixes"

* 'drm-fixes' of git://people.freedesktop.org/~airlied/linux:
  drm/radeon: fix endian swapping in vbios fetch for tdp table
  drm/radeon: disable native backlight control on pre-r6xx asics (v2)
  drm/i915: Kick fbdev before vgacon
  drm/i915: drop WaSetupGtModeTdRowDispatch:snb
2014-11-21 17:15:28 -08:00
Linus Torvalds
9a7e4f5633 sound fixes for 3.18-rc6
This batch ended up as a relatively high volume due to pending
 ASoC fixes.  But most of fixes there are trivial and/or device-
 specific fixes and quirks, so safe to apply.  The only (ASoC)
 core fixes are the DPCM race fix and the machine-driver matching
 fix for componentization.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABAgAGBQJUbMUBAAoJEGwxgFQ9KSmkM7MQALi2oHeu089YX0nl2aJr/LeU
 R55yuOCiKmkvikJIccInWbtwAW57K41CbLK9lDZx+6iSfpzAs7Nd554VdACDhtP1
 wnnBGKhUZHF3NMim8UMjXRX/IAwJS1DvTKfULdLyAdG+ptNrmeCA2xBVPSCU+5Fb
 q6QPSuM0A5qP//Ufsi4gHJsTZpe/S42PIh46XK5Z2nOO7Y/J+Ytwi/g6TaauYjDU
 GZK3XNa7vjtZIw42nNyjn8qIIByhji591uHJpizIPVjbVKxhqm3wM1lU5xCYj/cd
 fi1uWOOQ1Gp+DYTScfu0DZj1BaoBCqeQ27pvnDU15+yqDJHmmKvtQbBbETtbba9t
 ajZvg+1J6ONf/wYkNqaSAkSFEMyOQ1NpSRsGMri28ahndkC72h6NBmH5FFEwIg1X
 3XcxEf1BKw3oQXvaoeL8Qin6d+zWBjWHzNSmVeft4MYMf+AxnoXoD0+HmRIGQhVK
 qFFtcuPVnIDHLUHsiVTNvMi7kejzgl8NUW3lGzbaWSSPKdUFHK2lE60uKzvQ5yHm
 0K4CD2H4FVrMM3iqwSsDmUDk+++HOr7LjvC9jMZM5KobZQ9t25Imkt+ZdypQfzJC
 wKz480viZcu3VimEdHYNivM2RLh2kxZtUB26O8DodEI28wr6b4PYlX/4Nzt+rXwu
 YMf3SOUNdPEoAqlcEi9l
 =oc6T
 -----END PGP SIGNATURE-----

Merge tag 'sound-3.18-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound

Pull sound fixes from Takashi Iwai:
 "This batch ended up as a relatively high volume due to pending ASoC
  fixes.  But most of fixes there are trivial and/or device- specific
  fixes and quirks, so safe to apply.  The only (ASoC) core fixes are
  the DPCM race fix and the machine-driver matching fix for
  componentization"

* tag 'sound-3.18-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound:
  ALSA: hda - fix the mic mute led problem for Latitude E5550
  ALSA: hda - move DELL_WMI_MIC_MUTE_LED to the tail in the quirk chain
  ASoC: wm_adsp: Avoid attempt to free buffers that might still be in use
  ALSA: usb-audio: Set the Control Selector to SU_SELECTOR_CONTROL for UAC2
  ALSA: usb-audio: Add ctrl message delay quirk for Marantz/Denon devices
  ASoC: sgtl5000: Fix SMALL_POP bit definition
  ASoC: cs42l51: re-hook of_match_table pointer
  ASoC: rt5670: change dapm routes of PLL connection
  ASoC: rt5670: correct the incorrect default values
  ASoC: samsung: Add MODULE_DEVICE_TABLE for Snow
  ASoC: max98090: Correct pclk divisor settings
  ASoC: dpcm: Fix race between FE/BE updates and trigger
  ASoC: Fix snd_soc_find_dai() matching component by name
  ASoC: rsnd: remove unsupported PAUSE flag
  ASoC: fsi: remove unsupported PAUSE flag
  ASoC: rt5645: Mark RT5645_TDM_CTRL_3 as readable
  ASoC: rockchip-i2s: fix infinite loop in rockchip_snd_rxctrl
  ASoC: es8328-i2c: Fix i2c_device_id name field in es8328_id
  ASoC: fsl_asrc: Add reg_defaults for regmap to fix kernel dump
2014-11-21 17:11:56 -08:00
Linus Torvalds
f100a74674 ACPI power management fix for 3.18-rc6
This is just a one-liner fixing a regression introduced in 3.13 that
 broke system suspend on some Chromebooks.
 
 On those machines there are ACPI device objects for some I2C devices
 that can wake up the system from sleep states, but that is done via
 a platform-specific mechanism and the ACPI objects don't contain any
 wakeup-related information.  When we started to use ACPI power
 management with those devices (which happened during the 3.13 cycle),
 their configuration confused the ACPI PM layer that returned error
 codes from suspend callbacks for them causing system suspend to fail.
 
 However, the ACPI PM layer can safely ignore the wakeup setting from
 a device driver if the ACPI object corresponding to the device in
 question doesn't contain wakeup information in which case the driver
 itself is responsible for setting up the device for system wakeup.
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJUb0/DAAoJEILEb/54YlRxBKcQAIsQBoP6ogxC5DcOiOqCOF9t
 fQyUfrwgltGt8GDbbEeHWrDSBrgIVfZmtK2lm+ak8rkU66k3foD2BDDWv5f1cgDz
 H+Y/aQotkt2RbY67V7ga4HP+2CfWnGVL1E0MN2fcn0DrBei4fPoYfanfUj6dSTg+
 fdXnY5YmSgSfdmnN8MFde13uTxzkwe6bfMwi+PhFk7fp7j6d5+T8rc7Dd9OWRePJ
 +OYW/jrYCxixnIDQGbeaSVzTlunL+Q3mIB2D+Kj6Sy9s9jyEadXPy/bQRCeIdv3v
 Q6Ryi/tsGrs0XVSVy5uNusJcWDOcTcvXA1srwx6Rm8D4+nRAcwYxGyX4n5dew5L/
 uy9PcCLMP1PhI7aIkhZxkIvk+Rp8H2En3QdzqjFbk5YEo003Mq6Lj04pFpWl9W7u
 6wDTRm2eKPzPVyihs4G8gPGeu9CfkTTmLX7HX41FmczIFoMOANNMgF0COmGpgHzu
 v4QKwNsfRl+KPLQZHQlwZkm9RFVc2s6BVLS1//l7d6AGIeQx86WVBEr6qr86OQ/t
 NIPg2W9PsPuzT2SynYjtPnoRb1Mik/78ltx2WR05/yxtOgsOFxjJozdV0QHc7dc0
 Mt1xSqHbgg1fxcwM86QzY1cqaPSmjJQhi4Jk6B/SGFIf14VbCJP/PjYt8wqprIWB
 Ib4Ykw+oswhEtKHUnWNB
 =2pxa
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-3.18-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI power management fix from Rafael Wysocki:
 "This is just a one-liner fixing a regression introduced in 3.13 that
  broke system suspend on some Chromebooks.

  On those machines there are ACPI device objects for some I2C devices
  that can wake up the system from sleep states, but that is done via a
  platform-specific mechanism and the ACPI objects don't contain any
  wakeup-related information.  When we started to use ACPI power
  management with those devices (which happened during the 3.13 cycle),
  their configuration confused the ACPI PM layer that returned error
  codes from suspend callbacks for them causing system suspend to fail.

  However, the ACPI PM layer can safely ignore the wakeup setting from a
  device driver if the ACPI object corresponding to the device in
  question doesn't contain wakeup information in which case the driver
  itself is responsible for setting up the device for system wakeup"

* tag 'pm+acpi-3.18-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
  ACPI / PM: Ignore wakeup setting if the ACPI companion can't wake up
2014-11-21 16:56:25 -08:00
Linus Torvalds
2e29a6d086 DeviceTree fixes for 3.18:
- 2 fixes for OF selftest code
 - Fix for PowerPC address parsing to disable work-around except on old
   PowerMACs
 - Fix a crash when earlycon is enabled, but no device is found
 - DT documentation fixes and missing vendor prefixes
 
 All but the doc updates are also for stable.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJUbqAVAAoJEMhvYp4jgsXiNLUH/A5cpNKcs2D0GCpDxxkZa6X/
 o5vwuECwd7dFH83lkFWdNFCNJ6B7hUUG3RDO63SgzZch2auQR1yETJrXSbUNeDKM
 HMp3CVvVjqFz7h86H2x+mijxUPJl7YWtFuC1RQUJkMGULC16BnYLSVGrrqHI37BJ
 E5hdmfJtARUGcmZO291JB9bdfuR5gAfIR4GIYsAQHn0RbiuST/L1DyL2QFkh69eW
 yyeB9elIw+xYBUlEVMkq5LmH12l0VA1eSIofBWEfj40cCax1CblL1nzV1+s7oHpv
 JrATuyfxlTjs/tdUeeV/lMT4Vg/ICWsbPJKWb4UaJv0nH+u+oGiKSCyl5X4DH4c=
 =M65+
 -----END PGP SIGNATURE-----

Merge tag 'devicetree-fixes-for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux

Pull devicetree fixes from Rob Herring:
 "DeviceTree fixes for 3.18:

   - two fixes for OF selftest code
   - fix for PowerPC address parsing to disable work-around except on
     old PowerMACs
   - fix a crash when earlycon is enabled, but no device is found
   - DT documentation fixes and missing vendor prefixes

  All but the doc updates are also for stable"

* tag 'devicetree-fixes-for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux:
  of/selftest: Fix testing when /aliases is missing
  of/selftest: Fix off-by-one error in removal path
  documentation: pinctrl bindings: Fix trivial typo 'abitrary'
  devicetree: bindings: Add vendor prefix for Micron Technology, Inc.
  of: Add vendor prefix for Chips&Media, Inc.
  of/base: Fix PowerPC address parsing hack
  devicetree: vendor-prefixes.txt: fix whitespace
  of: Fix crash if an earlycon driver is not found
  of/irq: Drop obsolete 'interrupts' vs 'interrupts-extended' text
  of: Spelling s/stucture/structure/
  devicetree: bindings: add sandisk to the vendor prefixes
2014-11-21 16:40:41 -08:00
Linus Torvalds
08685897b3 PCI updates for v3.18:
Resource management
     - Support 64-bit bridge windows if we have 64-bit dma_addr_t (Yinghai Lu)
 
   PCI device hotplug
     - Apply _HPX Link Control settings to all devices with a link (Yinghai Lu)
 
   Generic host bridge driver
     - Add DT binding for "linux,pci-domain" property (Lucas Stach)
 
   APM X-Gene
     - Assign resources to bus before adding new devices (Duc Dang)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJUbkCkAAoJEFmIoMA60/r8HHcQAMBeaF4pbUYotzpd8kwjFQ2x
 d9DPU3bAfeMY3U4qKRkp/GXV1F1ueVP2KgwaKlV9ytrILFwVYlsy2DZ/JIS3ggw2
 BfjPTVB6rADzhfZB0HNSQQGOcGbKezd4sM45E6hsZqxzlgnVJQ5oL0u/PL5fuvC1
 +1goznoJwOhLMn9bsSS+b/2bgmPG1HYonFu1ehiSTt/g9e0Q2YsMkCZDo8R3i6nl
 W25g93m1yP7KO3AnPsnE9dm9oDEcbqVbfSu+Z8X2NllN8/+e6+z7CtDZx5OfMpRI
 GBQrLuPXi0NxFeFcj+gbAfhV8ZsFDdqNXPHuqC7pOKlveCmyk8tBhXcIr9gTnGQF
 /UjxgWDekH6Cb8DjFVQCj84D5f1U7RNRbpkeEr6gXtoM7vPDfQaCROC5qhBKGV+P
 XAQ4ujGkCe3A9ve2XNsgHzLQgRoRopfI6aN2VZxQYaxvobm+QzuMW7BtKJ72dUKJ
 LIPnlc+X1ccwg+ZyWFvgLByMKCriklTjeFA2UMP6WI7xD3r5N+Y0QP0no4zVPIMN
 no5RAx7sv71yE97Y/SSosirfjQ3YlJ55KJRJY2+j2obD9wLCCEwJuiNnrYU+EB6c
 Z/cPmZhGKZnBcDJMazjULe2gldVDRokIRk069ySob4iUdZ4n/vIdCbNR5Z0f6dAr
 w7SfdPXK2ARn0ulqzdT1
 =smv9
 -----END PGP SIGNATURE-----

Merge tag 'pci-v3.18-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci

Pull PCI fixes from Bjorn Helgaas:
 "These are fixes for an issue with 64-bit PCI bus addresses on 32-bit
  PAE kernels, an APM X-Gene problem (it depended on a generic change we
  removed before merging), a fix for my hotplug device configuration
  changes, and a devicetree documentation update.

  Resource management:
    - Support 64-bit bridge windows if we have 64-bit dma_addr_t (Yinghai Lu)

  PCI device hotplug:
    - Apply _HPX Link Control settings to all devices with a link (Yinghai Lu)

  Generic host bridge driver:
    - Add DT binding for "linux,pci-domain" property (Lucas Stach)

  APM X-Gene:
    - Assign resources to bus before adding new devices (Duc Dang)"

* tag 'pci-v3.18-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci:
  PCI: Support 64-bit bridge windows if we have 64-bit dma_addr_t
  PCI: Apply _HPX Link Control settings to all devices with a link
  PCI: Add missing DT binding for "linux,pci-domain" property
  PCI: xgene: Assign resources to bus before adding new devices
2014-11-21 16:36:42 -08:00