This commit moves hint_byte into find_free_extent_ctl, so that we can
modify the hint_byte in the other functions. This will help us split
find_free_extent further. This commit also renames the function argument
"hint_byte" to "hint_byte_orig" to avoid misuse.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit introduces extent allocation policy for btrfs. This policy
controls how btrfs allocate an extents from block groups. There is no
functional change introduced with this commit.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we ignore a device whose available space is less than
"BTRFS_STRIPE_LEN * dev_stripes". This is a lower limit for current
allocation policy (to maximize the number of stripes). This commit
parameterizes dev_extent_min, so that other policies can set their own
lower limitat to ignore a device with insufficient space.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out create_chunk() from __btrfs_alloc_chunk(). This function
finally creates a chunk. There is no functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out decide_stripe_size() from __btrfs_alloc_chunk(). This
function calculates the actual stripe size to allocate.
decide_stripe_size() handles the common case to round down the 'ndevs'
to 'devs_increment' and check the upper and lower limitation of 'ndevs'.
decide_stripe_size_regular() decides the size of a stripe and the size
of a chunk. The policy is to maximize the number of stripes.
This commit has no functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out gather_device_info() from __btrfs_alloc_chunk(). This
function iterates over devices list and gather information about
devices. This commit also introduces "max_avail" and
"dev_extent_min" to fold the same calculation to one variable.
This commit has no functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out init_alloc_chunk_ctl() from __btrfs_alloc_chunk(). This
function initialises parameters of "struct alloc_chunk_ctl" for
allocation. init_alloc_chunk_ctl() handles a common part of the
initialisation to load the RAID parameters from btrfs_raid_array.
init_alloc_chunk_ctl_policy_regular() decides some parameters for its
allocation.
The last "else" case in the original code is moved to
__btrfs_alloc_chunk() to handle the error case in the common code.
Replace the BUG_ON with ASSERT() and error return at the same time.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce "struct alloc_chunk_ctl" to wrap needed parameters for the
chunk allocation. This will be used to split __btrfs_alloc_chunk() into
smaller functions.
This commit folds a number of local variables in __btrfs_alloc_chunk()
into one "struct alloc_chunk_ctl ctl". There is no functional change.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out two functions from find_free_dev_extent_start().
dev_extent_search_start() decides the starting position of the search.
dev_extent_hole_check() checks if a hole found is suitable for device
extent allocation.
These functions also have the switch-cases to change the allocation
behavior depending on the policy.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce chunk allocation policy for btrfs. This policy controls how
chunks and device extents are allocated from devices.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Do not BUG_ON() when an invalid profile is passed to __btrfs_alloc_chunk().
Instead return -EINVAL with ASSERT() to catch a bug in the development
stage.
Suggested-by: Johannes Thumshirn <Johannes.Thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While the "full_search" variable defined in find_free_extent() is bool,
but the full_search argument of find_free_extent_update_loop() is
defined as int. Let's trivially fix the argument type.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the previous patch, qgroup_rescan_running is protected by
btrfs_fs_info::qgroup_rescan_lock, thus no need for the extra spinlock.
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are some reports about btrfs wait forever to unmount itself, with
the following call trace:
INFO: task umount:4631 blocked for more than 491 seconds.
Tainted: G X 5.3.8-2-default #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
umount D 0 4631 3337 0x00000000
Call Trace:
([<00000000174adf7a>] __schedule+0x342/0x748)
[<00000000174ae3ca>] schedule+0x4a/0xd8
[<00000000174b1f08>] schedule_timeout+0x218/0x420
[<00000000174af10c>] wait_for_common+0x104/0x1d8
[<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs]
[<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs]
[<0000000016fa3136>] generic_shutdown_super+0x8e/0x158
[<0000000016fa34d6>] kill_anon_super+0x26/0x40
[<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs]
[<0000000016fa39f8>] deactivate_locked_super+0x68/0x98
[<0000000016fcb198>] cleanup_mnt+0xc0/0x140
[<0000000016d6a846>] task_work_run+0xc6/0x110
[<0000000016d04f76>] do_notify_resume+0xae/0xb8
[<00000000174b30ae>] system_call+0xe2/0x2c8
[CAUSE]
The problem happens when we have called qgroup_rescan_init(), but
not queued the worker. It can be caused mostly by error handling.
Qgroup ioctl thread | Unmount thread
----------------------------------------+-----------------------------------
|
btrfs_qgroup_rescan() |
|- qgroup_rescan_init() |
| |- qgroup_rescan_running = true; |
| |
|- trans = btrfs_join_transaction() |
| Some error happened |
| |
|- btrfs_qgroup_rescan() returns error |
But qgroup_rescan_running == true; |
| close_ctree()
| |- btrfs_qgroup_wait_for_completion()
| |- running == true;
| |- wait_for_completion();
btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake
up close_ctree() and we get a deadlock.
All involved qgroup_rescan_init() callers are:
- btrfs_qgroup_rescan()
The example above. It's possible to trigger the deadlock when error
happened.
- btrfs_quota_enable()
Not possible. Just after qgroup_rescan_init() we queue the work.
- btrfs_read_qgroup_config()
It's possible to trigger the deadlock. It only init the work, the
work queueing happens in btrfs_qgroup_rescan_resume().
Thus if error happened in between, deadlock is possible.
We shouldn't set fs_info->qgroup_rescan_running just in
qgroup_rescan_init(), as at that stage we haven't yet queued qgroup
rescan worker to run.
[FIX]
Set qgroup_rescan_running before queueing the work, so that we ensure
the rescan work is queued when we wait for it.
Fixes: 8d9eddad19 ("Btrfs: fix qgroup rescan worker initialization")
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ Change subject and cause analyse, use a smaller fix ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
uuid_le_gen() is no used anymore, remove it for good.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are new types and helpers that are supposed to be used in new code.
As a preparation to get rid of legacy types and API functions do
the conversion here.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In some cases we would like to generate a GUID and export it. Though it
would require either casting to internal kernel types or an intermediate
buffer. Instead we may achieve this by supplying a pointer to raw buffer
and make a complimentary API to existing one for UUIDs.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Sometimes we may need to import UUID from or export to the raw buffer,
which is provided outside of kernel and can't be declared as UUID type.
With current API this operation will require an explicit casting
to one of UUID types and length, that is always a constant derived as sizeof
the certain UUID type.
Provide a helpful set of inline helpers to minimize developer's effort
in the cases when raw buffers are involved.
Suggested-by: David Sterba <dsterba@suse.cz>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a fuzzed image which could cause KASAN report at unmount time.
BUG: KASAN: use-after-free in btrfs_queue_work+0x2c1/0x390
Read of size 8 at addr ffff888067cf6848 by task umount/1922
CPU: 0 PID: 1922 Comm: umount Tainted: G W 5.0.21 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x5b/0x8b
print_address_description+0x70/0x280
kasan_report+0x13a/0x19b
btrfs_queue_work+0x2c1/0x390
btrfs_wq_submit_bio+0x1cd/0x240
btree_submit_bio_hook+0x18c/0x2a0
submit_one_bio+0x1be/0x320
flush_write_bio.isra.41+0x2c/0x70
btree_write_cache_pages+0x3bb/0x7f0
do_writepages+0x5c/0x130
__writeback_single_inode+0xa3/0x9a0
writeback_single_inode+0x23d/0x390
write_inode_now+0x1b5/0x280
iput+0x2ef/0x600
close_ctree+0x341/0x750
generic_shutdown_super+0x126/0x370
kill_anon_super+0x31/0x50
btrfs_kill_super+0x36/0x2b0
deactivate_locked_super+0x80/0xc0
deactivate_super+0x13c/0x150
cleanup_mnt+0x9a/0x130
task_work_run+0x11a/0x1b0
exit_to_usermode_loop+0x107/0x130
do_syscall_64+0x1e5/0x280
entry_SYSCALL_64_after_hwframe+0x44/0xa9
[CAUSE]
The fuzzed image has a completely screwd up extent tree:
leaf 29421568 gen 8 total ptrs 6 free space 3587 owner EXTENT_TREE
refs 2 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 5938
item 0 key (12587008 168 4096) itemoff 3942 itemsize 53
extent refs 1 gen 9 flags 1
ref#0: extent data backref root 5 objectid 259 offset 0 count 1
item 1 key (12591104 168 8192) itemoff 3889 itemsize 53
extent refs 1 gen 9 flags 1
ref#0: extent data backref root 5 objectid 271 offset 0 count 1
item 2 key (12599296 168 4096) itemoff 3836 itemsize 53
extent refs 1 gen 9 flags 1
ref#0: extent data backref root 5 objectid 259 offset 4096 count 1
item 3 key (29360128 169 0) itemoff 3803 itemsize 33
extent refs 1 gen 9 flags 2
ref#0: tree block backref root 5
item 4 key (29368320 169 1) itemoff 3770 itemsize 33
extent refs 1 gen 9 flags 2
ref#0: tree block backref root 5
item 5 key (29372416 169 0) itemoff 3737 itemsize 33
extent refs 1 gen 9 flags 2
ref#0: tree block backref root 5
Note that leaf 29421568 doesn't have its backref in the extent tree.
Thus extent allocator can re-allocate leaf 29421568 for other trees.
In short, the bug is caused by:
- Existing tree block gets allocated to log tree
This got its generation bumped.
- Log tree balance cleaned dirty bit of offending tree block
It will not be written back to disk, thus no WRITTEN flag.
- Original owner of the tree block gets COWed
Since the tree block has higher transid, no WRITTEN flag, it's reused,
and not traced by transaction::dirty_pages.
- Transaction aborted
Tree blocks get cleaned according to transaction::dirty_pages. But the
offending tree block is not recorded at all.
- Filesystem unmount
All pages are assumed to be are clean, destroying all workqueue, then
call iput(btree_inode).
But offending tree block is still dirty, which triggers writeback, and
causes use-after-free bug.
The detailed sequence looks like this:
- Initial status
eb: 29421568, header=WRITTEN bflags_dirty=0, page_dirty=0, gen=8,
not traced by any dirty extent_iot_tree.
- New tree block is allocated
Since there is no backref for 29421568, it's re-allocated as new tree
block.
Keep in mind that tree block 29421568 is still referred by extent
tree.
- Tree block 29421568 is filled for log tree
eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9 << (gen bumped)
traced by btrfs_root::dirty_log_pages
- Some log tree operations
Since the fs is using node size 4096, the log tree can easily go a
level higher.
- Log tree needs balance
Tree block 29421568 gets all its content pushed to right, thus now
it is empty, and we don't need it.
btrfs_clean_tree_block() from __push_leaf_right() get called.
eb: 29421568, header=0 bflags_dirty=0, page_dirty=0, gen=9
traced by btrfs_root::dirty_log_pages
- Log tree write back
btree_write_cache_pages() goes through dirty pages ranges, but since
page of tree block 29421568 gets cleaned already, it's not written
back to disk. Thus it doesn't have WRITTEN bit set.
But ranges in dirty_log_pages are cleared.
eb: 29421568, header=0 bflags_dirty=0, page_dirty=0, gen=9
not traced by any dirty extent_iot_tree.
- Extent tree update when committing transaction
Since tree block 29421568 has transid equal to running trans, and has
no WRITTEN bit, should_cow_block() will use it directly without adding
it to btrfs_transaction::dirty_pages.
eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9
not traced by any dirty extent_iot_tree.
At this stage, we're doomed. We have a dirty eb not tracked by any
extent io tree.
- Transaction gets aborted due to corrupted extent tree
Btrfs cleans up dirty pages according to transaction::dirty_pages and
btrfs_root::dirty_log_pages.
But since tree block 29421568 is not tracked by neither of them, it's
still dirty.
eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9
not traced by any dirty extent_iot_tree.
- Filesystem unmount
Since all cleanup is assumed to be done, all workqueus are destroyed.
Then iput(btree_inode) is called, expecting no dirty pages.
But tree 29421568 is still dirty, thus triggering writeback.
Since all workqueues are already freed, we cause use-after-free.
This shows us that, log tree blocks + bad extent tree can cause wild
dirty pages.
[FIX]
To fix the problem, don't submit any btree write bio if the filesytem
has any error. This is the last safe net, just in case other cleanup
haven't caught catch it.
Link: https://github.com/bobfuzzer/CVE/tree/master/CVE-2019-19377
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no point to inform the user about size change if there's none.
Update the message to conform to a commonly used format where the path
and devid are printed and also print old and new sizes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Marcos Paulo de Souza <marcos@mpdesouza.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ enhance message ]
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_update_global_block_rsv the lines:
num_bytes = block_rsv->size - block_rsv->reserved;
block_rsv->reserved += num_bytes;
imply:
block_rsv->reserved = block_rsv->size;
Assign block_rsv->size to block_rsv->reserved directly and reorder lines
so they match the other branch.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree_log_mutex and reloc_mutex locks are properly nested so we can
simplify error handling and add labels for them. This reduces line count
of the function.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All we need to read is checksum size from fs_info superblock, and
fs_info is provided by extent buffer so we can get rid of the wild
pointer indirections from page/inode/root.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The message seems to be for debugging and has little value for users.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't use the u_XX types anywhere, though they're defined.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove trivial comprator and open coded swap of two values.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
An unrecognized option is a failure that should get user/administrator
attention, the info level is often below what gets logged, so make it
error.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass extent buffer start and length so the extent buffer
itself should work fine.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_header_chunk_tree_uuid follows naming convention of
other struct accessors but does something compeletly different. As the
offsetof calculation is clear in the context of extent buffer operations
we can remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_header_fsid follows naming convention of other struct
accessors but does something compeletly different. As the offsetof
calculation is clear in the context of extent buffer operations we can
remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a simple forwarded call based on the operation that would better
fit the caller btrfs_map_block that's until now a trivial wrapper.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The struct_size macro does the same calculation and is safe regarding
overflows. Though we're not expecting them to happen, use the helper for
clarity.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch removes all haphazard code implementing nocow writers
exclusion from pending snapshot creation and switches to using the drew
lock to ensure this invariant still holds.
'Readers' are snapshot creators from create_snapshot and 'writers' are
nocow writers from buffered write path or btrfs_setsize. This locking
scheme allows for multiple snapshots to happen while any nocow writers
are blocked, since writes to page cache in the nocow path will make
snapshots inconsistent.
So for performance reasons we'd like to have the ability to run multiple
concurrent snapshots and also favors readers in this case. And in case
there aren't pending snapshots (which will be the majority of the cases)
we rely on the percpu's writers counter to avoid cacheline contention.
The main gain from using the drew lock is it's now a lot easier to
reason about the guarantees of the locking scheme and whether there is
some silent breakage lurking.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A (D)ouble (R)eader (W)riter (E)xclustion lock is a locking primitive
that allows to have multiple readers or multiple writers but not
multiple readers and writers holding it concurrently.
The code is factored out from the existing open-coded locking scheme
used to exclude pending snapshots from nocow writers and vice-versa.
Current implementation actually favors Readers (that is snapshot
creaters) to writers (nocow writers of the filesystem).
The API provides lock/unlock/trylock for reads and writes.
Formal specification for TLA+ provided by Valentin Schneider is at
https://lore.kernel.org/linux-btrfs/2dcaf81c-f0d3-409e-cb29-733d8b3b4cc9@arm.com/
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The error cleanup gotos in __btrfs_write_out_cache() needlessly jump
back making the code less readable then needed. Flatten them out so no
back-jump is necessary and the read flow is uninterrupted.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
free-space-cache.c has it's own set of DEBUG ifdefs which need to be
turned on instead of the global CONFIG_BTRFS_DEBUG to print debug
messages about failed block-group writes.
Switch this over to CONFIG_BTRFS_DEBUG so we always see these messages
when running a debug kernel.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make the uptodate argument of io_ctl_add_pages() boolean.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
io_ctl_prepare_pages() gets a 'struct btrfs_io_ctl' as well as a 'struct
inode', but btrfs_io_ctl::inode points to the same struct inode as this is
assgined in io_ctl_init().
Use the inode form io_ctl to reduce the arguments of io_ctl_prepare_pages.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This ioctl will be responsible for deleting a subvolume using its id.
This can be used when a system has a file system mounted from a
subvolume, rather than the root file system, like below:
/
@subvol1/
@subvol2/
@subvol_default/
If only @subvol_default is mounted, we have no path to reach @subvol1
and @subvol2, thus no way to delete them. Current subvolume delete ioctl
takes a file handle point as argument, and if @subvol_default is
mounted, we can't reach @subvol1 and @subvol2 from the same mount point.
This patch introduces a new ioctl BTRFS_IOC_SNAP_DESTROY_V2 that takes
the extended structure with flags to allow to delete subvolume using
subvolid.
Now, we can use this new ioctl specifying the subvolume id and refer to
the same mount point. It doesn't matter which subvolume was mounted,
since we can reach to the desired one using the subvolume id, and then
delete it.
The full path to the subvolume id is resolved internally and access is
verified as if the subvolume was accessed by path.
The volume args v2 structure is extended to use the existing union for
subvolume id specification, that's valid in case the
BTRFS_SUBVOL_SPEC_BY_ID is set.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The functions will be used outside of export.c and super.c to allow
resolving subvolume name from a given id, eg. for subvolume deletion by
id ioctl.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ split from the next patch ]
Signed-off-by: David Sterba <dsterba@suse.com>
When the device remove v2 ioctl was added, the full support mask was
added to sanity check the flags. However this would allow to let the
subvolume related flags to be accepted. This is not supposed to happen.
Use the correct support mask, which means that now any of
BTRFS_SUBVOL_CREATE_ASYNC, BTRFS_SUBVOL_RDONLY or
BTRFS_SUBVOL_QGROUP_INHERIT will be rejected as ENOTSUPP. Though this is
a user-visible change, specifying subvolume flags for device deletion
does not make sense and there are hopefully no applications doing that.
Reviewed-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using the defined mask instead of flag enumeration in the ioctl handler
is preferred. No functional changes.
Reviewed-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The ioctl data for devices or subvolumes can be passed via
btrfs_ioctl_vol_args or btrfs_ioctl_vol_args_v2. The latter is more
versatile and needs some caution as some of the flags make sense only
for some ioctls.
As we're going to extend the flags, define support masks for each ioctl
class separately.
Reviewed-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Sparse reports a warning at release_extent_buffer()
warning: context imbalance in release_extent_buffer() - unexpected unlock
The root cause is the missing annotation at release_extent_buffer()
Add the missing __releases(&eb->refs_lock) annotation
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In my EIO stress testing I noticed I was getting forced to rescan the
uuid tree pretty often, which was weird. This is because my error
injection stuff would sometimes inject an error after log replay but
before we loaded the UUID tree. If log replay committed the transaction
it wouldn't have updated the uuid tree generation, but the tree was
valid and didn't change, so there's no reason to not update the
generation here.
Fix this by setting the BTRFS_FS_UPDATE_UUID_TREE_GEN bit immediately
after reading all the fs roots if the uuid tree generation matches the
fs generation. Then any transaction commits that happen during mount
won't screw up our uuid tree state, forcing us to do needless uuid
rescans.
Fixes: 70f8017547 ("Btrfs: check UUID tree during mount if required")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In doing my fsstress+EIO stress testing I started running into issues
where umount would get stuck forever because the uuid checker was
chewing through the thousands of subvolumes I had created.
We shouldn't block umount on this, simply bail if we're unmounting the
fs. We need to make sure we don't mark the UUID tree as ok, so we only
set that bit if we made it through the whole rescan operation, but
otherwise this is completely safe.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's used only during filesystem mount as such it can be made private to
disk-io.c file. Also use the occasion to move btrfs_uuid_rescan_kthread
as btrfs_check_uuid_tree is its sole caller.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_uuid_tree_iterate is called from only once place and its 2nd
argument is always btrfs_check_uuid_tree_entry. Simplify
btrfs_uuid_tree_iterate's signature by removing its 2nd argument and
directly calling btrfs_check_uuid_tree_entry. Also move the latter into
uuid-tree.h. No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are temporary variables tracking the index of P and Q stripes, but
none of them is really used as such, merely for determining if the Q
stripe is present. This leads to compiler warnings with
-Wunused-but-set-variable and has been reported several times.
fs/btrfs/raid56.c: In function ‘finish_rmw’:
fs/btrfs/raid56.c:1199:6: warning: variable ‘p_stripe’ set but not used [-Wunused-but-set-variable]
1199 | int p_stripe = -1;
| ^~~~~~~~
fs/btrfs/raid56.c: In function ‘finish_parity_scrub’:
fs/btrfs/raid56.c:2356:6: warning: variable ‘p_stripe’ set but not used [-Wunused-but-set-variable]
2356 | int p_stripe = -1;
| ^~~~~~~~
Replace the two variables with one that has a clear meaning and also get
rid of the warnings. The logic that verifies that there are only 2
valid cases is unchanged.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the following patches:
- btrfs: backref, only collect file extent items matching backref offset
- btrfs: backref, not adding refs from shared block when resolving normal backref
- btrfs: backref, only search backref entries from leaves of the same root
we only collect the normal data refs we want, so the imprecise upper
bound total_refs of that EXTENT_ITEM could now be changed to the count
of the normal backref entry we want to search.
Background and how the patches fit together:
Btrfs has two types of data backref.
For BTRFS_EXTENT_DATA_REF_KEY type of backref, we don't have the
exact block number. Therefore, we need to call resolve_indirect_refs.
It uses btrfs_search_slot to locate the leaf block. Then
we need to walk through the leaves to search for the EXTENT_DATA items
that have disk bytenr matching the extent item (add_all_parents).
When resolving indirect refs, we could take entries that don't
belong to the backref entry we are searching for right now.
For that reason when searching backref entry, we always use total
refs of that EXTENT_ITEM rather than individual count.
For example:
item 11 key (40831553536 EXTENT_ITEM 4194304) itemoff 15460 itemsize
extent refs 24 gen 7302 flags DATA
shared data backref parent 394985472 count 10 #1
extent data backref root 257 objectid 260 offset 1048576 count 3 #2
extent data backref root 256 objectid 260 offset 65536 count 6 #3
extent data backref root 257 objectid 260 offset 65536 count 5 #4
For example, when searching backref entry #4, we'll use total_refs
24, a very loose loop ending condition, instead of total_refs = 5.
But using total_refs = 24 is not accurate. Sometimes, we'll never find
all the refs from specific root. As a result, the loop keeps on going
until we reach the end of that inode.
The first 3 patches, handle 3 different types refs we might encounter.
These refs do not belong to the normal backref we are searching, and
hence need to be skipped.
This patch changes the total_refs to correct number so that we could
end loop as soon as we find all the refs we want.
btrfs send uses backref to find possible clone sources, the following
is a simple test to compare the results with and without this patch:
$ btrfs subvolume create /sub1
$ for i in `seq 1 163840`; do
dd if=/dev/zero of=/sub1/file bs=64K count=1 seek=$((i-1)) conv=notrunc oflag=direct
done
$ btrfs subvolume snapshot /sub1 /sub2
$ for i in `seq 1 163840`; do
dd if=/dev/zero of=/sub1/file bs=4K count=1 seek=$(((i-1)*16+10)) conv=notrunc oflag=direct
done
$ btrfs subvolume snapshot -r /sub1 /snap1
$ time btrfs send /snap1 | btrfs receive /volume2
Without this patch:
real 69m48.124s
user 0m50.199s
sys 70m15.600s
With this patch:
real 1m59.683s
user 0m35.421s
sys 2m42.684s
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
[ add patchset cover letter with background and numbers ]
Signed-off-by: David Sterba <dsterba@suse.com>