This patch introduces the vGPU workload submission logics.
Under virtualization environment, guest will submit workload through
virtual execlist submit port. The submitted workload load will be wrapped
into an gvt workload which will be picked by GVT workload scheduler and
executed on host i915 later.
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces the vGPU execlist virtualization.
Under virtulization environment, HW execlist interface are fully emulated
including virtual CSB emulation, virtual execlist emulation. The framework
will emulate the virtual CSB according to the guest workload running status
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces the GVT-g display virtualization.
It consists a collection of display MMIO handlers, like power well register
handler, pipe register handler, plane register handler, which will emulate
all display MMIOs behavior to support virtual mode setting sequence for
guest.
Signed-off-by: Bing Niu <bing.niu@intel.com>
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces the generic vGPU MMIO emulation intercept
framework. The MPT modules will request GVT-g core logic to
emulate MMIO read/write through IO emulation operations
callback when hypervisor trapped a guest GTTMMIO read/write.
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces vGPU PCI configuration space virtualization.
- Adjust the trapped GPFN(Guest Page Frame Number) window of virtual GEN
PCI BAR 0 when guest initializes PCI BAR 0 address.
- Emulate OpRegion when guest touches OpRegion.
- Pass-through a part of aperture to guest when guest initializes
aperture BAR.
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
The vGPU graphics memory emulation framework is responsible for graphics
memory table virtualization. Under virtualization environment, a VM will
populate the page table entry with guest page frame number(GPFN/GFN), while
HW needs a page table filled with MFN(Machine frame number). The
relationship between GFN and MFN(Machine frame number) is managed by
hypervisor, while GEN HW doesn't have such knowledge to translate a GFN.
To solve this gap, shadow GGTT/PPGTT page table is introdcued.
For GGTT, the GFN inside the guest GGTT page table entry will be translated
into MFN and written into physical GTT MMIO registers when guest write
virtual GTT MMIO registers.
For PPGTT, a shadow PPGTT page table will be created and write-protected
translated from guest PPGTT page table. And the shadow page table root
pointers will be written into the shadow context after a guest workload
is shadowed.
vGPU graphics memory emulation framework consists:
- Per-GEN HW platform page table entry bits extract/de-extract routines.
- GTT MMIO register emulation handlers, which will call hypercall to do
GFN->MFN translation when guest write GTT MMIO register
- PPGTT shadow page table routines, e.g. shadow create/destroy/out-of-sync
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces vGPU interrupt emulation framework.
The vGPU intrerrupt emulation framework is an event-based interrupt
emulation framework. It's responsible for emulating GEN hardware interrupts
during emulating other HW behaviour.
It consists several components:
- Descriptions of interrupt register bit
- Upper level <-> lower level interrupt mapping
- GEN HW IER/IMR/IIR register emulation routines
- Event-based interrupt propagation interface
When a GVT-g component wants to inject an interrupt to a VM during a
emulation, first it should specify the event needs to be emulated and the
framework will deal with the rest of emulation:
- Generating related virtual IIR bit according to virtual IER and IMRs,
- Generate related virtual upper level virtual IIR bit accodring to the
per-platform interrupt mapping
- Injecting a MSI to VM
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
A vGPU represents a virtual Intel GEN hardware, which consists following
virtual resources:
- Configuration space (virtualized)
- HW registers (virtualized)
- GGTT memory space (partitioned)
- GPU page table (shadowed)
- Fence registers (partitioned)
* virtualized: fully emulated by GVT-g.
* partitioned: Only a part of the HW resource is allowed to be accessed
by VM.
* shadowed: Resource needs to be translated and shadowed before getting
applied into HW.
This patch introduces vGPU life cycle management framework, which is
responsible for creating/destroying a vGPU and preparing/free resources
related to a vGPU.
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
Each vGPU expects a golden virtual HW state, which is just the state after
system is freshly powered on. GVT-g will try to load the golden virtual HW
state via kernel firmware interface.
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces a framework for tracking HW registers on different
GEN platforms.
Accesses to GEN HW registers from VMs will be trapped by hypervisor. It
will forward these emulation requests to GVT-g device model, which
requires this framework to search for related register descriptions.
Each MMIO entry in this framework describes a GEN HW registers, e.g.
offset, length, whether it contains RO bits, whether it can be accessed by
LRIs...and also emulation handlers for emulating register reading and
writing.
- Use i915 MMIO register definition & statement.(Joonas)
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces the GVT-g vGPU HW resource management. Under
GVT-g virtualizaion environment, each vGPU requires portions HW
resources, including aperture, hidden GM space, and fence registers.
When creating a vGPU, GVT-g will request these HW resources from host,
and return them to host after a vGPU is destroyed.
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
This patch introduces the very basic framework of GVT-g device model,
includes basic prototypes, definitions, initialization.
v12:
- Call intel_gvt_init() in driver early initialization stage. (Chris)
v8:
- Remove the GVT idr and mutex in intel_gvt_host. (Joonas)
v7:
- Refine the URL link in Kconfig. (Joonas)
- Refine the introduction of GVT-g host support in Kconfig. (Joonas)
- Remove the macro GVT_ALIGN(), use round_down() instead. (Joonas)
- Make "struct intel_gvt" a data member in struct drm_i915_private.(Joonas)
- Remove {alloc, free}_gvt_device()
- Rename intel_gvt_{create, destroy}_gvt_device()
- Expost intel_gvt_init_host()
- Remove the dummy "struct intel_gvt" declaration in intel_gvt.h (Joonas)
v6:
- Refine introduction in Kconfig. (Chris)
- The exposed API functions will take struct intel_gvt * instead of
void *. (Chris/Tvrtko)
- Remove most memebers of strct intel_gvt_device_info. Will add them
in the device model patches.(Chris)
- Remove gvt_info() and gvt_err() in debug.h. (Chris)
- Move GVT kernel parameter into i915_params. (Chris)
- Remove include/drm/i915_gvt.h, as GVT-g will be built within i915.
- Remove the redundant struct i915_gvt *, as the functions in i915
will directly take struct intel_gvt *.
- Add more comments for reviewer.
v5:
Take Tvrtko's comments:
- Fix the misspelled words in Kconfig
- Let functions take drm_i915_private * instead of struct drm_device *
- Remove redundant prints/local varible initialization
v3:
Take Joonas' comments:
- Change file name i915_gvt.* to intel_gvt.*
- Move GVT kernel parameter into intel_gvt.c
- Remove redundant debug macros
- Change error handling style
- Add introductions for some stub functions
- Introduce drm/i915_gvt.h.
Take Kevin's comments:
- Move GVT-g host/guest check into intel_vgt_balloon in i915_gem_gtt.c
v2:
- Introduce i915_gvt.c.
It's necessary to introduce the stubs between i915 driver and GVT-g host,
as GVT-g components is configurable in kernel config. When disabled, the
stubs here do nothing.
Take Joonas' comments:
- Replace boolean return value with int.
- Replace customized info/warn/debug macros with DRM macros.
- Document all non-static functions like i915.
- Remove empty and unused functions.
- Replace magic number with marcos.
- Set GVT-g in kernel config to "n" by default.
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Zhi Wang <zhi.a.wang@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1466078825-6662-5-git-send-email-zhi.a.wang@intel.com
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>