When cpudl_find() returns any among free_cpus, the CPU might not be
closer than others, considering sched domain. For example:
this_cpu: 15
free_cpus: 0, 1,..., 14 (== later_mask)
best_cpu: 0
topology:
0 --+
+--+
1 --+ |
+-- ... --+
2 --+ | |
+--+ |
3 --+ |
... ...
12 --+ |
+--+ |
13 --+ | |
+-- ... -+
14 --+ |
+--+
15 --+
In this case, it would be best to select 14 since it's a free CPU and
closest to 15 (this_cpu). However, currently the code selects 0 (best_cpu)
even though that's just any among free_cpus. Fix it.
This (re)aligns the deadline behaviour with the rt behaviour.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <bristot@redhat.com>
Cc: <juri.lelli@gmail.com>
Cc: <kernel-team@lge.com>
Cc: <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1495504859-10960-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Running 80 tasks in the same group, or as threads of the same process,
results in the memory getting scanned 80x as fast as it would be if a
single task was using the memory.
This really hurts some workloads.
Scale the scan period by the number of tasks in the numa group, and
the shared / private ratio, so the average rate at which memory in
the group is scanned corresponds roughly to the rate at which a single
task would scan its memory.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: lvenanci@redhat.com
Link: http://lkml.kernel.org/r/20170731192847.23050-3-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment above update_task_scan_period() says the scan period should
be increased (scanning slows down) if the majority of memory accesses
are on the local node, or if the majority of the page accesses are
shared with other tasks.
However, with the current code, all a high ratio of shared accesses
does is slow down the rate at which scanning is made faster.
This patch changes things so either lots of shared accesses or
lots of local accesses will slow down scanning, and numa scanning
is sped up only when there are lots of private faults on remote
memory pages.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: lvenanci@redhat.com
Link: http://lkml.kernel.org/r/20170731192847.23050-2-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The running state is a subset of runnable state which means that running
can't be set if runnable (weight) is cleared. There are corner cases
where the current sched_entity has been already dequeued but cfs_rq->curr
has not been updated yet and still points to the dequeued sched_entity.
If ___update_load_avg() is called at that time, weight will be 0 and running
will be set which is not possible.
This case happens during pick_next_task_fair() when a cfs_rq becomes idles.
The current sched_entity has been dequeued so se->on_rq is cleared and
cfs_rq->weight is null. But cfs_rq->curr still points to se (it will be
cleared when picking the idle thread). Because the cfs_rq becomes idle,
idle_balance() is called and ends up to call update_blocked_averages()
with these wrong running and runnable states.
Add a test in ___update_load_avg() to correct the running state in this case.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Link: http://lkml.kernel.org/r/1498885573-18984-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
pick_next_task_dl() and build_sched_domain() aren't used outside
deadline.c and topology.c.
Make them static.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/36e4cbb6210002cadae89920ae97e19e7e513008.1493281605.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'struct cpupri' passed to cpupri_init() is already initialized to
zero. Don't do that again.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/8a71d48c5a077500b6ddc1a41484c0ac8d3aad94.1492065513.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'struct cpudl' passed to cpudl_init() is already initialized to zero.
Don't do that again.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/bd4c229806bc96694b15546207afcc221387d2f5.1492065513.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are only two callers of init_rootdomain(). One of them passes a
global to it and another one sends dynamically allocated root-domain.
There is no need to memset the root-domain in the first case as the
structure is already reset.
Update alloc_rootdomain() to allocate the memory with kzalloc() and
remove the memset() call from init_rootdomain().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/fc2f6cc90b098040970c85a97046512572d765bc.1492065513.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
update_freq is always true and there is no need to pass it to
update_cfs_rq_load_avg(). Remove it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/2d28d295f3f591ede7e931462bce1bda5aaa4896.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rearrange pick_next_task_fair() a bit to avoid checking
cfs_rq->nr_running twice for the case where FAIR_GROUP_SCHED is enabled
and the previous task doesn't belong to the fair class.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/000903ab3df3350943d3271c53615893a230dc95.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
weighted_cpuload() uses the cpu number passed to it get pointer to the
runqueue. Almost all callers of weighted_cpuload() already have the rq
pointer with them and can send that directly to weighted_cpuload(). In
some cases the callers actually get the CPU number by doing cpu_of(rq).
It would be simpler to pass rq to weighted_cpuload().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/b7720627e0576dc29b4ba3f9b6edbc913bb4f684.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For SMP systems, update_load_avg() calls the cpufreq update util
handlers only for the top level cfs_rq (i.e. rq->cfs).
But that is not the case for UP systems. update_load_avg() calls util
handler for any cfs_rq for which it is called. This would result in way
too many calls from the scheduler to the cpufreq governors when
CONFIG_FAIR_GROUP_SCHED is enabled.
Reduce the frequency of these calls by copying the behavior from the SMP
case, i.e. Only call util handlers for the top level cfs_rq.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Fixes: 536bd00cdb ("sched/fair: Fix !CONFIG_SMP kernel cpufreq governor breakage")
Link: http://lkml.kernel.org/r/6abf69a2107525885b616a2c1ec03d9c0946171c.1495603536.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CPUFREQ_ENTRY_INVALID is a special symbol which is used to specify that
an entry in the cpufreq table is invalid. But using it outside of the
scope of the cpufreq table looks a bit incorrect.
We can represent an invalid frequency by writing it as 0 instead if we
need. Note that it is already done that way for the return value of the
->get() callback.
Lets do the same for ->fast_switch() and not use CPUFREQ_ENTRY_INVALID
outside of the scope of cpufreq table.
Also update the comment over cpufreq_driver_fast_switch() to clearly
mention what this returns.
None of the drivers return CPUFREQ_ENTRY_INVALID as of now from
->fast_switch() callback and so we don't need to update any of those.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
With Android UI and benchmarks the latency of cpufreq response to
certain scheduling events can become very critical. Currently, callbacks
into cpufreq governors are only made from the scheduler if the target
CPU of the event is the same as the current CPU. This means there are
certain situations where a target CPU may not run the cpufreq governor
for some time.
One testcase to show this behavior is where a task starts running on
CPU0, then a new task is also spawned on CPU0 by a task on CPU1. If the
system is configured such that the new tasks should receive maximum
demand initially, this should result in CPU0 increasing frequency
immediately. But because of the above mentioned limitation though, this
does not occur.
This patch updates the scheduler core to call the cpufreq callbacks for
remote CPUs as well.
The schedutil, ondemand and conservative governors are updated to
process cpufreq utilization update hooks called for remote CPUs where
the remote CPU is managed by the cpufreq policy of the local CPU.
The intel_pstate driver is updated to always reject remote callbacks.
This is tested with couple of usecases (Android: hackbench, recentfling,
galleryfling, vellamo, Ubuntu: hackbench) on ARM hikey board (64 bit
octa-core, single policy). Only galleryfling showed minor improvements,
while others didn't had much deviation.
The reason being that this patch only targets a corner case, where
following are required to be true to improve performance and that
doesn't happen too often with these tests:
- Task is migrated to another CPU.
- The task has high demand, and should take the target CPU to higher
OPPs.
- And the target CPU doesn't call into the cpufreq governor until the
next tick.
Based on initial work from Steve Muckle.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Per-cpu workqueues have been tripping CPU affinity sanity checks while
a CPU is being offlined. A per-cpu kworker ends up running on a CPU
which isn't its target CPU while the CPU is online but inactive.
While the scheduler allows kthreads to wake up on an online but
inactive CPU, it doesn't allow a running kthread to be migrated to
such a CPU, which leads to an odd situation where setting affinity on
a sleeping and running kthread leads to different results.
Each mem-reclaim workqueue has one rescuer which guarantees forward
progress and the rescuer needs to bind itself to the CPU which needs
help in making forward progress; however, due to the above issue,
while set_cpus_allowed_ptr() succeeds, the rescuer doesn't end up on
the correct CPU if the CPU is in the process of going offline,
tripping the sanity check and executing the work item on the wrong
CPU.
This patch updates __migrate_task() so that kthreads can be migrated
into an inactive but online CPU.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Make iowait_boost and iowait_boost_max as unsigned int since its unit
is kHz and this is consistent with struct cpufreq_policy. Also change
the local variables in sugov_iowait_boost() to match this.
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently the iowait_boost feature in schedutil makes the frequency
go to max on iowait wakeups. This feature was added to handle a case
that Peter described where the throughput of operations involving
continuous I/O requests [1] is reduced due to running at a lower
frequency, however the lower throughput itself causes utilization to
be low and hence causing frequency to be low hence its "stuck".
Instead of going to max, its also possible to achieve the same effect
by ramping up to max if there are repeated in_iowait wakeups
happening. This patch is an attempt to do that. We start from a lower
frequency (policy->min) and double the boost for every consecutive
iowait update until we reach the maximum iowait boost frequency
(iowait_boost_max).
I ran a synthetic test (continuous O_DIRECT writes in a loop) on an
x86 machine with intel_pstate in passive mode using schedutil. In
this test the iowait_boost value ramped from 800MHz to 4GHz in 60ms.
The patch achieves the desired improved throughput as the existing
behavior.
[1] https://patchwork.kernel.org/patch/9735885/
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Set dynamic_switching to 'true' to disallow use of schedutil governor
for platforms with transition_latency set to CPUFREQ_ETERNAL, as they
may not want to do automatic dynamic frequency switching.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The kerneldoc comments for try_to_wake_up_local() were out of date, leading
to these documentation build warnings:
./kernel/sched/core.c:2080: warning: No description found for parameter 'rf'
./kernel/sched/core.c:2080: warning: Excess function parameter 'cookie' description in 'try_to_wake_up_local'
Update the comment to reflect current reality and give us some peace and
quiet.
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/20170724135628.695cecfc@lwn.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The policy->transition_delay_us field is used only by the schedutil
governor currently, and this field describes how fast the driver wants
the cpufreq governor to change CPUs frequency. It should rather be a
common thing across all governors, as it doesn't have any schedutil
dependency here.
Create a new helper cpufreq_policy_transition_delay_us() to get the
transition delay across all governors.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull scheduler fixes from Ingo Molnar:
"A cputime fix and code comments/organization fix to the deadline
scheduler"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Fix confusing comments about selection of top pi-waiter
sched/cputime: Don't use smp_processor_id() in preemptible context
This comment in the code is incomplete, and I believe it begs a definition of
dl_boosted to make sense of the condition that follows. Rewrite the comment and
also rearrange the condition that follows to reflect the first condition "we
have a top pi-waiter which is a SCHED_DEADLINE task" in that order. Also fix a
typo that follows.
Signed-off-by: Joel Fernandes <joelaf@google.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170713022429.10307-1-joelaf@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recent kernels trigger this warning:
BUG: using smp_processor_id() in preemptible [00000000] code: 99-trinity/181
caller is debug_smp_processor_id+0x17/0x19
CPU: 0 PID: 181 Comm: 99-trinity Not tainted 4.12.0-01059-g2a42eb9 #1
Call Trace:
dump_stack+0x82/0xb8
check_preemption_disabled()
debug_smp_processor_id()
vtime_delta()
task_cputime()
thread_group_cputime()
thread_group_cputime_adjusted()
wait_consider_task()
do_wait()
SYSC_wait4()
do_syscall_64()
entry_SYSCALL64_slow_path()
As Frederic pointed out:
| Although those sched_clock_cpu() things seem to only matter when the
| sched_clock() is unstable. And that stability is a condition for nohz_full
| to work anyway. So probably sched_clock() alone would be enough.
This patch fixes it by replacing sched_clock_cpu() with sched_clock() to
avoid calling smp_processor_id() in a preemptible context.
Reported-by: Xiaolong Ye <xiaolong.ye@intel.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1499586028-7402-1-git-send-email-wanpeng.li@hotmail.com
[ Prettified the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With a shared policy in place, when one of the CPUs in the policy is
hotplugged out and then brought back online, sugov_stop() and
sugov_start() are called in order.
sugov_stop() removes utilization hooks for each CPU in the policy and
does nothing else in the for_each_cpu() loop. sugov_start() on the
other hand iterates through the CPUs in the policy and re-initializes
the per-cpu structure _and_ adds the utilization hook. This implies
that the scheduler is allowed to invoke a CPU's utilization update
hook when the rest of the per-cpu structures have yet to be
re-inited.
Apart from some strange values in tracepoints this doesn't cause a
problem, but if we do end up accessing a pointer from the per-cpu
sugov_cpu structure somewhere in the sugov_update_shared() path,
we will likely see crashes since the memset for another CPU in the
policy is free to race with sugov_update_shared from the CPU that is
ready to go. So let's fix this now to first init all per-cpu
structures, and then add the per-cpu utilization update hooks all at
once.
Signed-off-by: Vikram Mulukutla <markivx@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If load_balance() fails to migrate any tasks because all tasks were
affined, load_balance() removes the source CPU from consideration and
attempts to redo and balance among the new subset of CPUs.
There is a bug in this code path where the algorithm considers all active
CPUs in the system (minus the source that was just masked out). This is
not valid for two reasons: some active CPUs may not be in the current
scheduling domain and one of the active CPUs is dst_cpu. These CPUs should
not be considered, as we cannot pull load from them.
Instead of failing out of load_balance(), we may end up redoing the search
with no valid CPUs and incorrectly concluding the domain is balanced.
Additionally, if the group_imbalance flag was just set, it may also be
incorrectly unset, thus the flag will not be seen by other CPUs in future
load_balance() runs as that algorithm intends.
Fix the check by removing CPUs not in the current domain and the dst_cpu
from considertation, thus limiting the evaluation to valid remaining CPUs
from which load might be migrated.
Co-authored-by: Austin Christ <austinwc@codeaurora.org>
Co-authored-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Austin Christ <austinwc@codeaurora.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Timur Tabi <timur@codeaurora.org>
Link: http://lkml.kernel.org/r/1496863138-11322-2-git-send-email-jhugo@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the cputime source used by vtime is jiffies. When we cross
a context boundary and jiffies have changed since the last snapshot, the
pending cputime is accounted to the switching out context.
This system works ok if the ticks are not aligned across CPUs. If they
instead are aligned (ie: all fire at the same time) and the CPUs run in
userspace, the jiffies change is only observed on tick exit and therefore
the user cputime is accounted as system cputime. This is because the
CPU that maintains timekeeping fires its tick at the same time as the
others. It updates jiffies in the middle of the tick and the other CPUs
see that update on IRQ exit:
CPU 0 (timekeeper) CPU 1
------------------- -------------
jiffies = N
... run in userspace for a jiffy
tick entry tick entry (sees jiffies = N)
set jiffies = N + 1
tick exit tick exit (sees jiffies = N + 1)
account 1 jiffy as stime
Fix this with using a nanosec clock source instead of jiffies. The
cputime is then accumulated and flushed everytime the pending delta
reaches a jiffy in order to mitigate the accounting overhead.
[ fweisbec: changelog, rebase on struct vtime, field renames, add delta
on cputime readers, keep idle vtime as-is (low overhead accounting),
harmonize clock sources. ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Luiz Capitulino <lcapitulino@redhat.com>
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are about to add vtime accumulation fields to the task struct. Let's
avoid more bloatification and gather vtime information to their own
struct.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current "snapshot" based naming on vtime fields suggests we record
some past event but that's a low level picture of their actual purpose
which comes out blurry. The real point of these fields is to run a basic
state machine that tracks down cputime entry while switching between
contexts.
So lets reflect that with more meaningful names.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Even though it doesn't have functional consequences, setting
the task's new context state after we actually accounted the pending
vtime from the old context state makes more sense from a review
perspective.
vtime_user_exit() is the only function that doesn't follow that rule
and that can bug the reviewer for a little while until he realizes there
is no reason for this special case.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 72298e5c92.
As Peter explains:
> Argh, no... That code was perfectly fine. The new code otoh is
> convoluted.
>
> The old code had the following form:
>
> if (exception1)
> deal with exception1
>
> if (execption2)
> deal with exception2
>
> do normal stuff
>
> Which is as simple and straight forward as it gets.
>
> The new code otoh reads like:
>
> if (!exception1) {
> if (exception2)
> deal with exception 2
> else
> do normal stuff
> }
So restore the old form.
Also fix the comment describing the logic, as it was confusing.
Requested-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gustavo A. R. Silva <garsilva@embeddedor.com>
Cc: Frans Klaver <fransklaver@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Add the SYSTEM_SCHEDULING bootup state to move various scheduler
debug checks earlier into the bootup. This turns silent and
sporadically deadly bugs into nice, deterministic splats. Fix some
of the splats that triggered. (Thomas Gleixner)
- A round of restructuring and refactoring of the load-balancing and
topology code (Peter Zijlstra)
- Another round of consolidating ~20 of incremental scheduler code
history: this time in terms of wait-queue nomenclature. (I didn't
get much feedback on these renaming patches, and we can still
easily change any names I might have misplaced, so if anyone hates
a new name, please holler and I'll fix it.) (Ingo Molnar)
- sched/numa improvements, fixes and updates (Rik van Riel)
- Another round of x86/tsc scheduler clock code improvements, in hope
of making it more robust (Peter Zijlstra)
- Improve NOHZ behavior (Frederic Weisbecker)
- Deadline scheduler improvements and fixes (Luca Abeni, Daniel
Bristot de Oliveira)
- Simplify and optimize the topology setup code (Lauro Ramos
Venancio)
- Debloat and decouple scheduler code some more (Nicolas Pitre)
- Simplify code by making better use of llist primitives (Byungchul
Park)
- ... plus other fixes and improvements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
sched/cputime: Refactor the cputime_adjust() code
sched/debug: Expose the number of RT/DL tasks that can migrate
sched/numa: Hide numa_wake_affine() from UP build
sched/fair: Remove effective_load()
sched/numa: Implement NUMA node level wake_affine()
sched/fair: Simplify wake_affine() for the single socket case
sched/numa: Override part of migrate_degrades_locality() when idle balancing
sched/rt: Move RT related code from sched/core.c to sched/rt.c
sched/deadline: Move DL related code from sched/core.c to sched/deadline.c
sched/cpuset: Only offer CONFIG_CPUSETS if SMP is enabled
sched/fair: Spare idle load balancing on nohz_full CPUs
nohz: Move idle balancer registration to the idle path
sched/loadavg: Generalize "_idle" naming to "_nohz"
sched/core: Drop the unused try_get_task_struct() helper function
sched/fair: WARN() and refuse to set buddy when !se->on_rq
sched/debug: Fix SCHED_WARN_ON() to return a value on !CONFIG_SCHED_DEBUG as well
sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming
sched/wait: Move bit_wait_table[] and related functionality from sched/core.c to sched/wait_bit.c
sched/wait: Split out the wait_bit*() APIs from <linux/wait.h> into <linux/wait_bit.h>
sched/wait: Re-adjust macro line continuation backslashes in <linux/wait.h>
...
Pull RCU updates from Ingo Molnar:
"The sole purpose of these changes is to shrink and simplify the RCU
code base, which has suffered from creeping bloat over the past couple
of years. The end result is a net removal of ~2700 lines of code:
79 files changed, 1496 insertions(+), 4211 deletions(-)
Plus there's a marked reduction in the Kconfig space complexity as
well, here's the number of matches on 'grep RCU' in the .config:
before after
x86-defconfig 17 15
x86-allmodconfig 33 20"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (86 commits)
rcu: Remove RCU CPU stall warnings from Tiny RCU
rcu: Remove event tracing from Tiny RCU
rcu: Move RCU debug Kconfig options to kernel/rcu
rcu: Move RCU non-debug Kconfig options to kernel/rcu
rcu: Eliminate NOCBs CPU-state Kconfig options
rcu: Remove debugfs tracing
srcu: Remove Classic SRCU
srcu: Fix rcutorture-statistics typo
rcu: Remove SPARSE_RCU_POINTER Kconfig option
rcu: Remove the now-obsolete PROVE_RCU_REPEATEDLY Kconfig option
rcu: Remove typecheck() from RCU locking wrapper functions
rcu: Remove #ifdef moving rcu_end_inkernel_boot from rcupdate.h
rcu: Remove nohz_full full-system-idle state machine
rcu: Remove the RCU_KTHREAD_PRIO Kconfig option
rcu: Remove *_SLOW_* Kconfig options
srcu: Use rnp->lock wrappers to replace explicit memory barriers
rcu: Move rnp->lock wrappers for SRCU use
rcu: Convert rnp->lock wrappers to macros for SRCU use
rcu: Refactor #includes from include/linux/rcupdate.h
bcm47xx: Fix build regression
...
Address a Coverity false positive, which is caused by overly
convoluted code:
Value assigned to variable 'utime' at line 619:utime = rtime;
is overwritten at line 642:utime = rtime - stime; before it
can be used. This makes such variable assignment useless.
Remove this variable assignment and refactor the code related.
Addresses-Coverity-ID: 1371643
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Cc: Frans Klaver <fransklaver@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/20170629184128.GA5271@embeddedgus
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the value of the rt_rq.rt_nr_migratory and dl_rq.dl_nr_migratory
to the sched_debug output, for instance:
rt_rq[0]:
.rt_nr_running : 2
.rt_nr_migratory : 1 <--- Like this
.rt_throttled : 0
.rt_time : 828.645877
.rt_runtime : 1000.000000
This is useful to debug problems related to the RT/DL schedulers.
This also fixes the format of some variables, that were unsigned, rather
than signed.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Link: http://lkml.kernel.org/r/7896f71cada54ee7dd8507bb666063a2e051c3d4.1498482127.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephen reported the following build warning in UP:
kernel/sched/fair.c:2657:9: warning: 'struct sched_domain' declared inside
parameter list
^
/home/sfr/next/next/kernel/sched/fair.c:2657:9: warning: its scope is only this
definition or declaration, which is probably not what you want
Hide the numa_wake_affine() inline stub on UP builds to get rid of it.
Fixes: 3fed382b46 ("sched/numa: Implement NUMA node level wake_affine()")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
The effective_load() function was only used by the NUMA balancing
code, and not by the regular load balancing code. Now that the
NUMA balancing code no longer uses it either, get rid of it.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-5-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since select_idle_sibling() can place a task anywhere on a socket,
comparing loads between individual CPU cores makes no real sense
for deciding whether to do an affine wakeup across sockets, either.
Instead, compare the load between the sockets in a similar way the
load balancer and the numa balancing code do.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-4-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Then 'this_cpu' and 'prev_cpu' are in the same socket, select_idle_sibling()
will do its thing regardless of the return value of wake_affine().
Just return true and don't look at all the other things.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jhladky@redhat.com
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-3-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Several tests in the NAS benchmark seem to run a lot slower with
NUMA balancing enabled, than with NUMA balancing disabled. The
slower run time corresponds with increased idle time.
Overriding the final test of migrate_degrades_locality (but still
doing the other NUMA tests first) seems to improve performance
of those benchmarks.
Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20170623165530.22514-2-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This helps making sched/core.c smaller and hopefully easier to understand and maintain.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170621182203.30626-3-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This helps making sched/core.c smaller and hopefully easier to understand and maintain.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170621182203.30626-2-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make CONFIG_CPUSETS=y depend on SMP as this feature makes no sense
on UP. This allows for configuring out cpuset_cpumask_can_shrink()
and task_can_attach() entirely, which shrinks the kernel a bit.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614171926.8345-2-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Although idle load balancing obviously only concerns idle CPUs, it can
be a disturbance on a busy nohz_full CPU. Indeed a CPU can only get rid
of an idle load balancing duty once a tick fires while it runs a task
and this can take a while on a nohz_full CPU.
We could fix that and escape the idle load balancing duty from the very
idle exit path but that would bring unecessary overhead. Lets just not
bother and leave that job to housekeeping CPUs (those outside nohz_full
range). The nohz_full CPUs simply don't want any disturbance.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497838322-10913-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The loadavg naming code still assumes that nohz == idle whereas its code
is actually handling well both nohz idle and nohz full.
So lets fix the naming according to what the code actually does, to
unconfuse the reader.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497838322-10913-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
kernel/sched/Makefile
Pick up the waitqueue related renames - it didn't get much feedback,
so it appears to be uncontroversial. Famous last words? ;-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we set a next or last buddy for a se that is not on_rq, we will
end up taking a NULL pointer dereference in wakeup_preempt_entity
via pick_next_task_fair.
Detect when we would be about to do that, throw a warning and
then refuse to actually set it.
This has been suggested at least twice:
https://marc.info/?l=linux-kernel&m=146651668921468&w=2https://lkml.org/lkml/2016/6/16/663
I recently had to debug a problem with these (we hadn't backported
Konstantin's patches in this area) and this would have saved a lot
of time/pain.
Just do it.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Cc: Ben Segall <bsegall@google.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170510201139.16236-1-dja@axtens.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This definition of SCHED_WARN_ON():
#define SCHED_WARN_ON(x) ((void)(x))
is not fully compatible with the 'real' WARN_ON_ONCE() primitive, as it
has no return value, so it cannot be used in conditionals.
Fix it.
Cc: Daniel Axtens <dja@axtens.net>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So I've noticed a number of instances where it was not obvious from the
code whether ->task_list was for a wait-queue head or a wait-queue entry.
Furthermore, there's a number of wait-queue users where the lists are
not for 'tasks' but other entities (poll tables, etc.), in which case
the 'task_list' name is actively confusing.
To clear this all up, name the wait-queue head and entry list structure
fields unambiguously:
struct wait_queue_head::task_list => ::head
struct wait_queue_entry::task_list => ::entry
For example, this code:
rqw->wait.task_list.next != &wait->task_list
... is was pretty unclear (to me) what it's doing, while now it's written this way:
rqw->wait.head.next != &wait->entry
... which makes it pretty clear that we are iterating a list until we see the head.
Other examples are:
list_for_each_entry_safe(pos, next, &x->task_list, task_list) {
list_for_each_entry(wq, &fence->wait.task_list, task_list) {
... where it's unclear (to me) what we are iterating, and during review it's
hard to tell whether it's trying to walk a wait-queue entry (which would be
a bug), while now it's written as:
list_for_each_entry_safe(pos, next, &x->head, entry) {
list_for_each_entry(wq, &fence->wait.head, entry) {
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The key hashed waitqueue data structures and their initialization
was done in the main scheduler file for no good reason, move them
to sched/wait_bit.c instead.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The wait_bit*() types and APIs are mixed into wait.h, but they
are a pretty orthogonal extension of wait-queues.
Furthermore, only about 50 kernel files use these APIs, while
over 1000 use the regular wait-queue functionality.
So clean up the main wait.h by moving the wait-bit functionality
out of it, into a separate .h and .c file:
include/linux/wait_bit.h for types and APIs
kernel/sched/wait_bit.c for the implementation
Update all header dependencies.
This reduces the size of wait.h rather significantly, by about 30%.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So wait-bit-queue head variables are often named:
struct wait_bit_queue *q
... which is a bit ambiguous and super confusing, because
they clearly suggest wait-queue head semantics and behavior
(they rhyme with the old wait_queue_t *q naming), while they
are extended wait-queue _entries_, not heads!
They are misnomers in two ways:
- the 'wait_bit_queue' leaves open the question of whether
it's an entry or a head
- the 'q' parameter and local variable naming falsely implies
that it's a 'queue' - while it's an entry.
This resulted in sometimes confusing cases such as:
finish_wait(wq, &q->wait);
where the 'q' is not a wait-queue head, but a wait-bit-queue entry.
So improve this all by standardizing wait-bit-queue nomenclature
similar to wait-queue head naming:
struct wait_bit_queue => struct wait_bit_queue_entry
q => wbq_entry
Which makes it all a much clearer:
struct wait_bit_queue_entry *wbq_entry
... and turns the former confusing piece of code into:
finish_wait(wq_head, &wbq_entry->wq_entry;
which IMHO makes it apparently clear what we are doing,
without having to analyze the context of the code: we are
adding a wait-queue entry to a regular wait-queue head,
which entry is embedded in a wait-bit-queue entry.
I'm not a big fan of acronyms, but repeating wait_bit_queue_entry
in field and local variable names is too long, so Hopefully it's
clear enough that 'wq_' prefixes stand for wait-queues, while
'wbq_' prefixes stand for wait-bit-queues.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename 'struct wait_bit_queue::wait' to ::wq_entry, to more clearly
name it as a wait-queue entry.
Propagate it to a couple of usage sites where the wait-bit-queue internals
are exposed.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The wait-queue head parameters and variables are named in a
couple of ways, we have the following variants currently:
wait_queue_head_t *q
wait_queue_head_t *wq
wait_queue_head_t *head
In particular the 'wq' naming is ambiguous in the sense whether it's
a wait-queue head or entry name - as entries were often named 'wait'.
( Not to mention the confusion of any readers coming over from
workqueue-land. )
Standardize all this around a single, unambiguous parameter and
variable name:
struct wait_queue_head *wq_head
which is easy to grep for and also rhymes nicely with the wait-queue
entry naming:
struct wait_queue_entry *wq_entry
Also rename:
struct __wait_queue_head => struct wait_queue_head
... and use this struct type to migrate from typedefs usage to 'struct'
usage, which is more in line with existing kernel practices.
Don't touch any external users and preserve the main wait_queue_head_t
typedef.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the various wait-queue entry variables in include/linux/wait.h
and kernel/sched/wait.c are named in a colorfully inconsistent
way:
wait_queue_entry_t *wait
wait_queue_entry_t *__wait (even in plain C code!)
wait_queue_entry_t *q (!)
wait_queue_entry_t *new (making anyone who knows C++ cringe)
wait_queue_entry_t *old
I think part of the reason for the inconsistency is the constant
apparent confusion about what a wait queue 'head' versus 'entry' is.
( Some of the documentation talks about a 'wait descriptor', which is
the wait-queue entry itself - further adding to the confusion. )
The most common name is 'wait', but that in itself is somewhat
ambiguous as well, as it does not really make it clear whether
it's a wait-queue entry or head.
To improve all this name the wait-queue entry structure parameters
and variables consistently and push through this naming into all
the wait.h and wait.c code:
struct wait_queue_entry *wq_entry
The 'wq_' prefix makes it easy to grep for, and we also use the
opportunity to move away from the typedef to a plain 'struct' naming:
in the kernel we typically reserve typedefs for cases where a
C structure is really small and somewhat opaque - such as pte_t.
wait-queue entries are neither small nor opaque, so use the more
standard 'struct xxx_entry' list management code nomenclature instead.
( We don't touch external users, and we preserve the typedef as well
for actual wait-queue users, to reduce unnecessary churn. )
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Thomas Gleixner:
"Two small fixes for the schedulre core:
- Use the proper switch_mm() variant in idle_task_exit() because that
code is not called with interrupts disabled.
- Fix a confusing typo in a printk"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Idle_task_exit() shouldn't use switch_mm_irqs_off()
sched/fair: Fix typo in printk message
Revert commit 39b64aa1c0 (cpufreq: schedutil: Reduce frequencies
slower) that introduced unintentional changes in behavior leading
to adverse effects on some systems.
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
idle_task_exit() can be called with IRQs on x86 on and therefore
should use switch_mm(), not switch_mm_irqs_off().
This doesn't seem to cause any problems right now, but it will
confuse my upcoming TLB flush changes. Nonetheless, I think it
should be backported because it's trivial. There won't be any
meaningful performance impact because idle_task_exit() is only
used when offlining a CPU.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: f98db6013c ("sched/core: Add switch_mm_irqs_off() and use it in the scheduler")
Link: http://lkml.kernel.org/r/ca3d1a9fa93a0b49f5a8ff729eda3640fb6abdf9.1497034141.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'schedstats' kernel parameter should be set to enable/disable, so
correct the printk hint saying that it should be set to 'enable'
rather than 'enabled' to enable scheduler tracepoints.
Signed-off-by: Marcin Nowakowski <marcin.nowakowski@imgtec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1496995229-31245-1-git-send-email-marcin.nowakowski@imgtec.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The synchronize_rcu_mult() function now detects duplicate requests
for the same grace-period flavor and waits only once for each flavor.
This commit therefore removes the ugly #ifdef from sched_cpu_deactivate()
because synchronize_rcu_mult(call_rcu, call_rcu_sched) now does what
the #ifdef used to be needed for.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Deferrable vmstat_updater was missing in commit:
c1de45ca83 ("sched/idle: Add support for tasks that inject idle")
Add it back.
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1496803742-38274-1-git-send-email-aubrey.li@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The stop class is invoked through stop_machine only.
This is dead code on UP builds.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170529210302.26868-3-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have been facing some problems with self-suspending constrained
deadline tasks. The main reason is that the original CBS was not
designed for such sort of tasks.
One problem reported by Xunlei Pang takes place when a task
suspends, and then is awakened before the deadline, but so close
to the deadline that its remaining runtime can cause the task
to have an absolute density higher than allowed. In such situation,
the original CBS assumes that the task is facing an early activation,
and so it replenishes the task and set another deadline, one deadline
in the future. This rule works fine for implicit deadline tasks.
Moreover, it allows the system to adapt the period of a task in which
the external event source suffered from a clock drift.
However, this opens the window for bandwidth leakage for constrained
deadline tasks. For instance, a task with the following parameters:
runtime = 5 ms
deadline = 7 ms
[density] = 5 / 7 = 0.71
period = 1000 ms
If the task runs for 1 ms, and then suspends for another 1ms,
it will be awakened with the following parameters:
remaining runtime = 4
laxity = 5
presenting a absolute density of 4 / 5 = 0.80.
In this case, the original CBS would assume the task had an early
wakeup. Then, CBS will reset the runtime, and the absolute deadline will
be postponed by one relative deadline, allowing the task to run.
The problem is that, if the task runs this pattern forever, it will keep
receiving bandwidth, being able to run 1ms every 2ms. Following this
behavior, the task would be able to run 500 ms in 1 sec. Thus running
more than the 5 ms / 1 sec the admission control allowed it to run.
Trying to address the self-suspending case, Luca Abeni, Giuseppe
Lipari, and Juri Lelli [1] revisited the CBS in order to deal with
self-suspending tasks. In the new approach, rather than
replenishing/postponing the absolute deadline, the revised wakeup rule
adjusts the remaining runtime, reducing it to fit into the allowed
density.
A revised version of the idea is:
At a given time t, the maximum absolute density of a task cannot be
higher than its relative density, that is:
runtime / (deadline - t) <= dl_runtime / dl_deadline
Knowing the laxity of a task (deadline - t), it is possible to move
it to the other side of the equality, thus enabling to define max
remaining runtime a task can use within the absolute deadline, without
over-running the allowed density:
runtime = (dl_runtime / dl_deadline) * (deadline - t)
For instance, in our previous example, the task could still run:
runtime = ( 5 / 7 ) * 5
runtime = 3.57 ms
Without causing damage for other deadline tasks. It is note worthy
that the laxity cannot be negative because that would cause a negative
runtime. Thus, this patch depends on the patch:
df8eac8caf ("sched/deadline: Throttle a constrained deadline task activated after the deadline")
Which throttles a constrained deadline task activated after the
deadline.
Finally, it is also possible to use the revised wakeup rule for
all other tasks, but that would require some more discussions
about pros and cons.
Reported-by: Xunlei Pang <xpang@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
[peterz: replaced dl_is_constrained with dl_is_implicit]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/5c800ab3a74a168a84ee5f3f84d12a02e11383be.1495803804.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a contrained task is throttled by dl_check_constrained_dl(),
it may carry the remaining positive runtime, as a result when
dl_task_timer() fires and calls replenish_dl_entity(), it will
not be replenished correctly due to the positive dl_se->runtime.
This patch assigns its runtime to 0 if positive after throttling.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: df8eac8caf ("sched/deadline: Throttle a constrained deadline task activated after the deadline)
Link: http://lkml.kernel.org/r/1494421417-27550-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit introduces a per-runqueue "extra utilization" that can be
reclaimed by deadline tasks. In this way, the maximum fraction of CPU
time that can reclaimed by deadline tasks is fixed (and configurable)
and does not depend on the total deadline utilization.
The GRUB accounting rule is modified to add this "extra utilization"
to the inactive utilization of the runqueue, and to avoid reclaiming
more than a maximum fraction of the CPU time.
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-10-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of decreasing the runtime as "dq = -Uact dt" (eventually
divided by the maximum utilization available for deadline tasks),
decrease it as "dq = -max{u, (1 - Uinact)} dt", where u is the task
utilization and Uinact is the "inactive utilization".
In this way, the maximum fraction of CPU time that can be reclaimed
is given by the total utilization of deadline tasks.
This approach solves a fairness issue with "traditional" global GRUB
reclaiming: using the traditional GRUB algorithm, if tasks are
allocated to the various cores in a non-uniform way, the
reclaiming mechanism allows some tasks to reclaim more time than
others. This issue is visible starting 11 time-consuming tasks with
runtime 10ms and period 30ms (total utilization 3.666) on a 4-cores
system: some tasks will receive much more than the reserved runtime
(thanks to the reclaiming mechanism), while other tasks will receive
less than the reserved runtime.
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-9-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The total rq utilization is defined as the sum of the utilisations of
tasks that are "assigned" to a runqueue, independently from their state
(TASK_RUNNING or blocked)
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-8-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch introduces the SCHED_FLAG_RECLAIM flag to specify
that a DL task is allowed to reclaim unused CPU time (using
the GRUB algorithm).
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-7-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Original GRUB tends to reclaim 100% of the CPU time... And this
allows a CPU hog to starve non-deadline tasks.
To address this issue, allow the scheduler to reclaim only a
specified fraction of CPU time, stored in the new "bw_ratio"
field of the dl runqueue structure.
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-6-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
According to the GRUB (Greedy Reclaimation of Unused Bandwidth)
reclaiming algorithm, the runtime is not decreased as "dq = -dt",
but as "dq = -Uact dt" (where Uact is the per-runqueue active
utilization).
Hence, this commit modifies the runtime accounting rule in
update_curr_dl() to implement the GRUB rule.
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-5-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the inactive timer can be armed to fire at the 0-lag time,
it is possible to use inactive_task_timer() to update the total
-deadline utilization (dl_b->total_bw) at the correct time, fixing
dl_overflow() and __setparam_dl().
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-4-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch implements a more theoretically sound algorithm for
tracking active utilization: instead of decreasing it when a
task blocks, use a timer (the "inactive timer", named after the
"Inactive" task state of the GRUB algorithm) to decrease the
active utilization at the so called "0-lag time".
Tested-by: Claudio Scordino <claudio@evidence.eu.com>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-3-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Active utilization is defined as the total utilization of active
(TASK_RUNNING) tasks queued on a runqueue. Hence, it is increased
when a task wakes up and is decreased when a task blocks.
When a task is migrated from CPUi to CPUj, immediately subtract the
task's utilization from CPUi and add it to CPUj. This mechanism is
implemented by modifying the pull and push functions.
Note: this is not fully correct from the theoretical point of view
(the utilization should be removed from CPUi only at the 0 lag
time), a more theoretically sound solution is presented in the
next patches.
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-2-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hackbench recently suffered a bunch of pain, first by commit:
4c77b18cf8 ("sched/fair: Make select_idle_cpu() more aggressive")
and then by commit:
c743f0a5c5 ("sched/fair, cpumask: Export for_each_cpu_wrap()")
which fixed a bug in the initial for_each_cpu_wrap() implementation
that made select_idle_cpu() even more expensive. The bug was that it
would skip over CPUs when bits were consequtive in the bitmask.
This however gave me an idea to fix select_idle_cpu(); where the old
scheme was a cliff-edge throttle on idle scanning, this introduces a
more gradual approach. Instead of stopping to scan entirely, we limit
how many CPUs we scan.
Initial benchmarks show that it mostly recovers hackbench while not
hurting anything else, except Mason's schbench, but not as bad as the
old thing.
It also appears to recover the tbench high-end, which also suffered like
hackbench.
Tested-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Cc: kitsunyan <kitsunyan@inbox.ru>
Cc: linux-kernel@vger.kernel.org
Cc: lvenanci@redhat.com
Cc: riel@redhat.com
Cc: xiaolong.ye@intel.com
Link: http://lkml.kernel.org/r/20170517105350.hk5m4h4jb6dfr65a@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The more strict early boot preemption warnings found that
__set_sched_clock_stable() was incorrectly assuming we'd still be
running on a single CPU:
BUG: using smp_processor_id() in preemptible [00000000] code: swapper/0/1
caller is debug_smp_processor_id+0x1c/0x1e
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc2-00108-g1c3c5ea #1
Call Trace:
dump_stack+0x110/0x192
check_preemption_disabled+0x10c/0x128
? set_debug_rodata+0x25/0x25
debug_smp_processor_id+0x1c/0x1e
sched_clock_init_late+0x27/0x87
[...]
Fix it by disabling IRQs.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: lkp@01.org
Cc: tipbuild@zytor.com
Link: http://lkml.kernel.org/r/20170524065202.v25vyu7pvba5mhpd@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
might_sleep() and smp_processor_id() checks are enabled after the boot
process is done. That hides bugs in the SMP bringup and driver
initialization code.
Enable it right when the scheduler starts working, i.e. when init task and
kthreadd have been created and right before the idle task enables
preemption.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170516184736.272225698@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A customer has reported a soft-lockup when running an intensive
memory stress test, where the trace on multiple CPU's looks like this:
RIP: 0010:[<ffffffff810c53fe>]
[<ffffffff810c53fe>] native_queued_spin_lock_slowpath+0x10e/0x190
...
Call Trace:
[<ffffffff81182d07>] queued_spin_lock_slowpath+0x7/0xa
[<ffffffff811bc331>] change_protection_range+0x3b1/0x930
[<ffffffff811d4be8>] change_prot_numa+0x18/0x30
[<ffffffff810adefe>] task_numa_work+0x1fe/0x310
[<ffffffff81098322>] task_work_run+0x72/0x90
Further investigation showed that the lock contention here is pmd_lock().
The task_numa_work() function makes sure that only one thread is let to perform
the work in a single scan period (via cmpxchg), but if there's a thread with
mmap_sem locked for writing for several periods, multiple threads in
task_numa_work() can build up a convoy waiting for mmap_sem for read and then
all get unblocked at once.
This patch changes the down_read() to the trylock version, which prevents the
build up. For a workload experiencing mmap_sem contention, it's probably better
to postpone the NUMA balancing work anyway. This seems to have fixed the soft
lockups involving pmd_lock(), which is in line with the convoy theory.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170515131316.21909-1-vbabka@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_RT_GROUP_SCHED=y, do_sched_rt_period_timer() sequentially
takes each CPU's rq->lock. On a large, busy system, the cumulative time it
takes to acquire each lock can be excessive, even triggering a watchdog
timeout.
If rt_rq->rt_time and rt_rq->rt_nr_running are both zero, this function does
nothing while holding the lock, so don't bother taking it at all.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a767637b-df85-912f-ba69-c90ee00a3fb6@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When priority inheritance was added back in 2.6.18 to sched_setscheduler(), it
added a path to taking an rt-mutex wait_lock, which is not IRQ safe. As PI
is not a common occurrence, lockdep will likely never trigger if
sched_setscheduler was called from interrupt context. A BUG_ON() was added
to trigger if __sched_setscheduler() was ever called from interrupt context
because there was a possibility to take the wait_lock.
Today the wait_lock is irq safe, but the path to taking it in
sched_setscheduler() is the same as the path to taking it from normal
context. The wait_lock is taken with raw_spin_lock_irq() and released with
raw_spin_unlock_irq() which will indiscriminately enable interrupts,
which would be bad in interrupt context.
The problem is that normalize_rt_tasks, which is called by triggering the
sysrq nice-all-RT-tasks was changed to call __sched_setscheduler(), and this
is done from interrupt context!
Now __sched_setscheduler() takes a "pi" parameter that is used to know if
the priority inheritance should be called or not. As the BUG_ON() only cares
about calling the PI code, it should only bug if called from interrupt
context with the "pi" parameter set to true.
Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: dbc7f069b9 ("sched: Use replace normalize_task() with __sched_setscheduler()")
Link: http://lkml.kernel.org/r/20170308124654.10e598f2@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
pick_next_pushable_dl_task(rq) has BUG_ON(rq->cpu != task_cpu(task))
when it returns a task other than NULL, which means that task_cpu(task)
must be rq->cpu. So if task == next_task, then task_cpu(next_task) must
be rq->cpu as well. Remove the redundant condition and make the code simpler.
This way one unnecessary branch and two LOAD operations can be avoided.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Juri Lelli <juri.lelli@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: <kernel-team@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1494551159-22367-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
pick_next_pushable_task(rq) has BUG_ON(rq_cpu != task_cpu(task)) when
it returns a task other than NULL, which means that task_cpu(task) must
be rq->cpu. So if task == next_task, then task_cpu(next_task) must be
rq->cpu as well. Remove the redundant condition and make the code simpler.
This way one unnecessary branch and two LOAD operations can be avoided.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Juri Lelli <juri.lelli@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: <kernel-team@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1494551143-22219-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we've added llist_for_each_entry_safe(), use it to simplify
an open coded version of it in sched_ttwu_pending().
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <kernel-team@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1494549584-11730-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* intel_pstate:
cpufreq: intel_pstate: Document the current behavior and user interface
* pm-cpufreq:
cpufreq: dbx500: add a Kconfig symbol
* pm-cpufreq-sched:
cpufreq: schedutil: use now as reference when aggregating shared policy requests
Currently, rq->leaf_cfs_rq_list is a traversal ordered list of all
live cfs_rqs which have ever been active on the CPU; unfortunately,
this makes update_blocked_averages() O(# total cgroups) which isn't
scalable at all.
This shows up as a small CPU consumption and scheduling latency
increase in the load balancing path in systems with CPU controller
enabled across most cgroups. In an edge case where temporary cgroups
were leaking, this caused the kernel to consume good several tens of
percents of CPU cycles running update_blocked_averages(), each run
taking multiple millisecs.
This patch fixes the issue by taking empty and fully decayed cfs_rqs
off the rq->leaf_cfs_rq_list.
Signed-off-by: Tejun Heo <tj@kernel.org>
[ Added cfs_rq_is_decayed() ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170426004350.GB3222@wtj.duckdns.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to allow leaf_cfs_rq_list to remove entries switch the
bandwidth hotplug code over to the task_groups list.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170504133122.a6qjlj3hlblbjxux@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's a discrepancy in naming between the sched_domain and
sched_group cpumask accessor. Since we're doing changes, fix it.
$ git grep sched_group_cpus | wc -l
28
$ git grep sched_domain_span | wc -l
38
Suggests changing sched_group_cpus() into sched_group_span():
for i in `git grep -l sched_group_cpus`
do
sed -ie 's/sched_group_cpus/sched_group_span/g' $i
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since sched_group_mask() is now an independent cpumask (it no longer
masks sched_group_cpus()), rename the thing.
Suggested-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While writing the comments, it occurred to me that:
sg_cpus & sg_mask == sg_mask
at least conceptually; the !overlap case sets the all 1s mask. If we
correct that we can simplify things and directly use sg_mask.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to attain:
sg_cpus() & sg_mask() == sg_mask()
for this to be so we must initialize sg_mask() to sg_cpus() for the
!overlap case (its currently cpumask_setall()).
Since the code makes my head hurt bad, rewrite it into a simpler form,
inspired by the now fixed overlap code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Try and describe what this code is about..
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building the overlapping groups we need to attach a consistent
sched_group_capacity structure. That is, all 'identical' sched_group's
should have the _same_ sched_group_capacity.
This can (once again) be demonstrated with a topology like:
node 0 1 2 3
0: 10 20 30 20
1: 20 10 20 30
2: 30 20 10 20
3: 20 30 20 10
But we need at least 2 CPUs per node for this to show up, after all,
if there is only one CPU per node, our CPU @i is per definition a
unique CPU that reaches this domain (aka balance-cpu).
Given the above NUMA topo and 2 CPUs per node:
[] CPU0 attaching sched-domain(s):
[] domain-0: span=0,4 level=DIE
[] groups: 0:{ span=0 }, 4:{ span=4 }
[] domain-1: span=0-1,3-5,7 level=NUMA
[] groups: 0:{ span=0,4 mask=0,4 cap=2048 }, 1:{ span=1,5 mask=1,5 cap=2048 }, 3:{ span=3,7 mask=3,7 cap=2048 }
[] domain-2: span=0-7 level=NUMA
[] groups: 0:{ span=0-1,3-5,7 mask=0,4 cap=6144 }, 2:{ span=1-3,5-7 mask=2,6 cap=6144 }
[] CPU1 attaching sched-domain(s):
[] domain-0: span=1,5 level=DIE
[] groups: 1:{ span=1 }, 5:{ span=5 }
[] domain-1: span=0-2,4-6 level=NUMA
[] groups: 1:{ span=1,5 mask=1,5 cap=2048 }, 2:{ span=2,6 mask=2,6 cap=2048 }, 4:{ span=0,4 mask=0,4 cap=2048 }
[] domain-2: span=0-7 level=NUMA
[] groups: 1:{ span=0-2,4-6 mask=1,5 cap=6144 }, 3:{ span=0,2-4,6-7 mask=3,7 cap=6144 }
Observe how CPU0-domain1-group0 and CPU1-domain1-group4 are the
'same' but have a different id (0 vs 4).
To fix this, use the group balance CPU to select the SGC. This means
we have to compute the full mask for each CPU and require a second
temporary mask to store the group mask in (it otherwise lives in the
SGC).
The fixed topology looks like:
[] CPU0 attaching sched-domain(s):
[] domain-0: span=0,4 level=DIE
[] groups: 0:{ span=0 }, 4:{ span=4 }
[] domain-1: span=0-1,3-5,7 level=NUMA
[] groups: 0:{ span=0,4 mask=0,4 cap=2048 }, 1:{ span=1,5 mask=1,5 cap=2048 }, 3:{ span=3,7 mask=3,7 cap=2048 }
[] domain-2: span=0-7 level=NUMA
[] groups: 0:{ span=0-1,3-5,7 mask=0,4 cap=6144 }, 2:{ span=1-3,5-7 mask=2,6 cap=6144 }
[] CPU1 attaching sched-domain(s):
[] domain-0: span=1,5 level=DIE
[] groups: 1:{ span=1 }, 5:{ span=5 }
[] domain-1: span=0-2,4-6 level=NUMA
[] groups: 1:{ span=1,5 mask=1,5 cap=2048 }, 2:{ span=2,6 mask=2,6 cap=2048 }, 0:{ span=0,4 mask=0,4 cap=2048 }
[] domain-2: span=0-7 level=NUMA
[] groups: 1:{ span=0-2,4-6 mask=1,5 cap=6144 }, 3:{ span=0,2-4,6-7 mask=3,7 cap=6144 }
Debugged-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: e3589f6c81 ("sched: Allow for overlapping sched_domain spans")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add sgc::id to easier spot domain construction issues.
Take the opportunity to slightly rework the group printing, because
adding more "(id: %d)" strings makes the entire thing very hard to
read. Also the individual groups are very hard to separate, so add
explicit visual grouping, which allows replacing all the "(%s: %d)"
format things with shorter "%s=%d" variants.
Then fix up some inconsistencies in surrounding prints for domains.
The end result looks like:
[] CPU0 attaching sched-domain(s):
[] domain-0: span=0,4 level=DIE
[] groups: 0:{ span=0 }, 4:{ span=4 }
[] domain-1: span=0-1,3-5,7 level=NUMA
[] groups: 0:{ span=0,4 mask=0,4 cap=2048 }, 1:{ span=1,5 mask=1,5 cap=2048 }, 3:{ span=3,7 mask=3,7 cap=2048 }
[] domain-2: span=0-7 level=NUMA
[] groups: 0:{ span=0-1,3-5,7 mask=0,4 cap=6144 }, 2:{ span=1-3,5-7 mask=2,6 cap=6144 }
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the allocation of topology specific cpumasks into the topology
code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The point of sched_group_mask is to select those CPUs from
sched_group_cpus that can actually arrive at this balance domain.
The current code gets it wrong, as can be readily demonstrated with a
topology like:
node 0 1 2 3
0: 10 20 30 20
1: 20 10 20 30
2: 30 20 10 20
3: 20 30 20 10
Where (for example) domain 1 on CPU1 ends up with a mask that includes
CPU0:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 (mask: 1), 2, 0
[] domain 1: span 0-3 level NUMA
[] groups: 0-2 (mask: 0-2) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)
This causes sched_balance_cpu() to compute the wrong CPU and
consequently should_we_balance() will terminate early resulting in
missed load-balance opportunities.
The fixed topology looks like:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 (mask: 1), 2, 0
[] domain 1: span 0-3 level NUMA
[] groups: 0-2 (mask: 1) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)
(note: this relies on OVERLAP domains to always have children, this is
true because the regular topology domains are still here -- this is
before degenerate trimming)
Debugged-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: e3589f6c81 ("sched: Allow for overlapping sched_domain spans")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Its an obsolete debug mechanism and future code wants to rely on
properties this undermines.
Namely, it would be good to assume that SD_OVERLAP domains have
children, but if we build the entire hierarchy with SD_OVERLAP this is
obviously false.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>