sched/topology: Fix overlapping sched_group_mask
The point of sched_group_mask is to select those CPUs from
sched_group_cpus that can actually arrive at this balance domain.
The current code gets it wrong, as can be readily demonstrated with a
topology like:
node 0 1 2 3
0: 10 20 30 20
1: 20 10 20 30
2: 30 20 10 20
3: 20 30 20 10
Where (for example) domain 1 on CPU1 ends up with a mask that includes
CPU0:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 (mask: 1), 2, 0
[] domain 1: span 0-3 level NUMA
[] groups: 0-2 (mask: 0-2) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)
This causes sched_balance_cpu() to compute the wrong CPU and
consequently should_we_balance() will terminate early resulting in
missed load-balance opportunities.
The fixed topology looks like:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 (mask: 1), 2, 0
[] domain 1: span 0-3 level NUMA
[] groups: 0-2 (mask: 1) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)
(note: this relies on OVERLAP domains to always have children, this is
true because the regular topology domains are still here -- this is
before degenerate trimming)
Debugged-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: e3589f6c81
("sched: Allow for overlapping sched_domain spans")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
af85596c74
commit
73bb059f9b
@ -495,6 +495,9 @@ enum s_alloc {
|
||||
/*
|
||||
* Build an iteration mask that can exclude certain CPUs from the upwards
|
||||
* domain traversal.
|
||||
*
|
||||
* Only CPUs that can arrive at this group should be considered to continue
|
||||
* balancing.
|
||||
*/
|
||||
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
|
||||
{
|
||||
@ -505,11 +508,24 @@ static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
|
||||
|
||||
for_each_cpu(i, sg_span) {
|
||||
sibling = *per_cpu_ptr(sdd->sd, i);
|
||||
if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
|
||||
|
||||
/*
|
||||
* Can happen in the asymmetric case, where these siblings are
|
||||
* unused. The mask will not be empty because those CPUs that
|
||||
* do have the top domain _should_ span the domain.
|
||||
*/
|
||||
if (!sibling->child)
|
||||
continue;
|
||||
|
||||
/* If we would not end up here, we can't continue from here */
|
||||
if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
|
||||
continue;
|
||||
|
||||
cpumask_set_cpu(i, sched_group_mask(sg));
|
||||
}
|
||||
|
||||
/* We must not have empty masks here */
|
||||
WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
|
||||
}
|
||||
|
||||
/*
|
||||
|
Loading…
Reference in New Issue
Block a user