The kernel has several code paths that read CR3. Most of them assume that
CR3 contains the PGD's physical address, whereas some of them awkwardly
use PHYSICAL_PAGE_MASK to mask off low bits.
Add explicit mask macros for CR3 and convert all of the CR3 readers.
This will keep them from breaking when PCID is enabled.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/883f8fb121f4616c1c1427ad87350bb2f5ffeca1.1497288170.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
INFO: task gnome-terminal-:1734 blocked for more than 120 seconds.
Not tainted 4.12.0-rc4+ #8
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
gnome-terminal- D 0 1734 1015 0x00000000
Call Trace:
__schedule+0x3cd/0xb30
schedule+0x40/0x90
kvm_async_pf_task_wait+0x1cc/0x270
? __vfs_read+0x37/0x150
? prepare_to_swait+0x22/0x70
do_async_page_fault+0x77/0xb0
? do_async_page_fault+0x77/0xb0
async_page_fault+0x28/0x30
This is triggered by running both win7 and win2016 on L1 KVM simultaneously,
and then gives stress to memory on L1, I can observed this hang on L1 when
at least ~70% swap area is occupied on L0.
This is due to async pf was injected to L2 which should be injected to L1,
L2 guest starts receiving pagefault w/ bogus %cr2(apf token from the host
actually), and L1 guest starts accumulating tasks stuck in D state in
kvm_async_pf_task_wait() since missing PAGE_READY async_pfs.
This patch fixes the hang by doing async pf when executing L1 guest.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If "i" is the last element in the vcpu->arch.cpuid_entries[] array, it
potentially can be exploited the vulnerability. this will out-of-bounds
read and write. Luckily, the effect is small:
/* when no next entry is found, the current entry[i] is reselected */
for (j = i + 1; ; j = (j + 1) % nent) {
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
if (ej->function == e->function) {
It reads ej->maxphyaddr, which is user controlled. However...
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
After cpuid_entries there is
int maxphyaddr;
struct x86_emulate_ctxt emulate_ctxt; /* 16-byte aligned */
So we have:
- cpuid_entries at offset 1B50 (6992)
- maxphyaddr at offset 27D0 (6992 + 3200 = 10192)
- padding at 27D4...27DF
- emulate_ctxt at 27E0
And it writes in the padding. Pfew, writing the ops field of emulate_ctxt
would have been much worse.
This patch fixes it by modding the index to avoid the out-of-bounds
access. Worst case, i == j and ej->function == e->function,
the loop can bail out.
Reported-by: Moguofang <moguofang@huawei.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Guofang Mo <moguofang@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The guest-linear address field is set for VM exits due to attempts to
execute LMSW with a memory operand and VM exits due to attempts to
execute INS or OUTS for which the relevant segment is usable,
regardless of whether or not EPT is in use.
Fixes: 119a9c01a5 ("KVM: nVMX: pass valid guest linear-address to the L1")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The XSS-exiting bitmap is a VMCS control field that does not change
while the CPU is in non-root mode. Transferring the unchanged value
from vmcs02 to vmcs12 is unnecessary.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Bits 11:2 must be zero and the linear addess in bits 63:12 must be
canonical. Otherwise, WRMSR(BNDCFGS) should raise #GP.
Fixes: 0dd376e709 ("KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The BNDCFGS MSR should only be exposed to the guest if the guest
supports MPX. (cf. the TSC_AUX MSR and RDTSCP.)
Fixes: 0dd376e709 ("KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save")
Change-Id: I3ad7c01bda616715137ceac878f3fa7e66b6b387
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The MSR permission bitmaps are shared by all VMs. However, some VMs
may not be configured to support MPX, even when the host does. If the
host supports VMX and the guest does not, we should intercept accesses
to the BNDCFGS MSR, so that we can synthesize a #GP
fault. Furthermore, if the host does not support MPX and the
"ignore_msrs" kvm kernel parameter is set, then we should intercept
accesses to the BNDCFGS MSR, so that we can skip over the rdmsr/wrmsr
without raising a #GP fault.
Fixes: da8999d318 ("KVM: x86: Intel MPX vmx and msr handle")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
WARNING: CPU: 3 PID: 2840 at arch/x86/kvm/vmx.c:10966 nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel]
CPU: 3 PID: 2840 Comm: qemu-system-x86 Tainted: G OE 4.12.0-rc3+ #23
RIP: 0010:nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel]
Call Trace:
? kvm_check_async_pf_completion+0xef/0x120 [kvm]
? rcu_read_lock_sched_held+0x79/0x80
vmx_queue_exception+0x104/0x160 [kvm_intel]
? vmx_queue_exception+0x104/0x160 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x1171/0x1ce0 [kvm]
? kvm_arch_vcpu_load+0x47/0x240 [kvm]
? kvm_arch_vcpu_load+0x62/0x240 [kvm]
kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? __fget+0xf3/0x210
do_vfs_ioctl+0xa4/0x700
? __fget+0x114/0x210
SyS_ioctl+0x79/0x90
do_syscall_64+0x81/0x220
entry_SYSCALL64_slow_path+0x25/0x25
This is triggered occasionally by running both win7 and win2016 in L2, in
addition, EPT is disabled on both L1 and L2. It can't be reproduced easily.
Commit 0b6ac343fc (KVM: nVMX: Correct handling of exception injection) mentioned
that "KVM wants to inject page-faults which it got to the guest. This function
assumes it is called with the exit reason in vmcs02 being a #PF exception".
Commit e011c663 (KVM: nVMX: Check all exceptions for intercept during delivery to
L2) allows to check all exceptions for intercept during delivery to L2. However,
there is no guarantee the exit reason is exception currently, when there is an
external interrupt occurred on host, maybe a time interrupt for host which should
not be injected to guest, and somewhere queues an exception, then the function
nested_vmx_check_exception() will be called and the vmexit emulation codes will
try to emulate the "Acknowledge interrupt on exit" behavior, the warning is
triggered.
Reusing the exit reason from the L2->L0 vmexit is wrong in this case,
the reason must always be EXCEPTION_NMI when injecting an exception into
L1 as a nested vmexit.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Fixes: e011c663b9 ("KVM: nVMX: Check all exceptions for intercept during delivery to L2")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When PCID is enabled, CR3's PCID bits can change during context
switches, so KVM won't be able to treat CR3 as a per-mm constant any
more.
I structured this like the existing CR4 handling. Under ordinary
circumstances (PCID disabled or if the current PCID and the value
that's already in the VMCS match), then we won't do an extra VMCS
write, and we'll never do an extra direct CR3 read. The overhead
should be minimal.
I disallowed using the new helper in non-atomic context because
PCID support will cause CR3 to stop being constant in non-atomic
process context.
(Frankly, it also scares me a bit that KVM ever treated CR3 as
constant, but it looks like it was okay before.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A first step in vcpu->requests encapsulation. Additionally, we now
use READ_ONCE() when accessing vcpu->requests, which ensures we
always load vcpu->requests when it's accessed. This is important as
other threads can change it any time. Also, READ_ONCE() documents
that vcpu->requests is used with other threads, likely requiring
memory barriers, which it does.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[ Documented the new use of READ_ONCE() and converted another check
in arch/mips/kvm/vz.c ]
Signed-off-by: Andrew Jones <drjones@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
em_fxstor previously called fxstor_fixup. Both created instances of
struct fxregs_state on the stack, which triggered the warning:
arch/x86/kvm/emulate.c:4018:12: warning: stack frame size of 1080 bytes
in function
'em_fxrstor' [-Wframe-larger-than=]
static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
^
with CONFIG_FRAME_WARN set to 1024.
This patch does the fixup in em_fxstor now, avoiding one additional
struct fxregs_state, and now fxstor_fixup can be removed as it has no
other call sites.
Further, the calculation for offsets into xmm_space can be shared
between em_fxstor and em_fxsave.
Signed-off-by: Nick Desaulniers <nick.desaulniers@gmail.com>
[Clean up calculation of offsets and fix it for 64-bit mode. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This should have been indented one more character over and it should use
tabs.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
I moved the || to the line before. Also I replaced some spaces with a
tab on the "return 0;" line. It looks OK in the diff but originally
that line was only indented 7 spaces.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When spin_lock_irqsave() deadlock occurs inside the guest, vcpu threads,
other than the lock-holding one, would enter into S state because of
pvspinlock. Then inject NMI via libvirt API "inject-nmi", the NMI could
not be injected into vm.
The reason is:
1 It sets nmi_queued to 1 when calling ioctl KVM_NMI in qemu, and sets
cpu->kvm_vcpu_dirty to true in do_inject_external_nmi() meanwhile.
2 It sets nmi_queued to 0 in process_nmi(), before entering guest, because
cpu->kvm_vcpu_dirty is true.
It's not enough just to check nmi_queued to decide whether to stay in
vcpu_block() or not. NMI should be injected immediately at any situation.
Add checking nmi_pending, and testing KVM_REQ_NMI replaces nmi_queued
in vm_vcpu_has_events().
Do the same change for SMIs.
Signed-off-by: Zhuang Yanying <ann.zhuangyanying@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is a fix for the problem [1], where VMCB.CPL was set to 0 and interrupt
was taken on userspace stack. The root cause lies in the specific AMD CPU
behaviour which manifests itself as unusable segment attributes on SYSRET.
The corresponding work around for the kernel is the following:
61f01dd941 ("x86_64, asm: Work around AMD SYSRET SS descriptor attribute issue")
In other turn virtualization side treated unusable segment incorrectly and
restored CPL from SS attributes, which were zeroed out few lines above.
In current patch it is assured only that P bit is cleared in VMCB.save state
and segment attributes are not zeroed out if segment is not presented or is
unusable, therefore CPL can be safely restored from DPL field.
This is only one part of the fix, since QEMU side should be fixed accordingly
not to zero out attributes on its side. Corresponding patch will follow.
[1] Message id: CAJrWOzD6Xq==b-zYCDdFLgSRMPM-NkNuTSDFEtX=7MreT45i7Q@mail.gmail.com
Signed-off-by: Roman Pen <roman.penyaev@profitbricks.com>
Signed-off-by: Mikhail Sennikovskii <mikhail.sennikovskii@profitbricks.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 19bca6ab75 ("KVM: SVM: Fix cross vendor migration issue with
unusable bit") added checking type when setting unusable.
So unusable can be set if present is 0 OR type is 0.
According to the AMD processor manual, long mode ignores the type value
in segment descriptor. And type can be 0 if it is read-only data segment.
Therefore type value is not related to unusable flag.
This patch is based on linux-next v4.12.0-rc3.
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_skip_emulated_instruction() will return 0 if userspace is
single-stepping the guest.
kvm_skip_emulated_instruction() uses return status convention of exit
handler: 0 means "exit to userspace" and 1 means "continue vm entries".
The problem is that nested_vmx_check_vmptr() return status means
something else: 0 is ok, 1 is error.
This means we would continue executing after a failure. Static checker
noticed it because vmptr was not initialized.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Fixes: 6affcbedca ("KVM: x86: Add kvm_skip_emulated_instruction and use it.")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel SDM says, that at most one LAPIC should be configured with ExtINT
delivery. KVM configures all LAPICs this way. This causes pic_unlock()
to kick the first available vCPU from the internal KVM data structures.
If this vCPU is not the BSP, but some not-yet-booted AP, the BSP may
never realize that there is an interrupt.
Fix that by enabling ExtINT delivery only for the BSP.
This allows booting a Linux guest without a TSC in the above situation.
Otherwise the BSP gets stuck in calibrate_delay_converge().
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The decision whether or not to exit from L2 to L1 on an lmsw instruction is
based on bogus values: instead of using the information encoded within the
exit qualification, it uses the data also used for the mov-to-cr
instruction, which boils down to using whatever is in %eax at that point.
Use the correct values instead.
Without this fix, an L1 may not get notified when a 32-bit Linux L2
switches its secondary CPUs to protected mode; the L1 is only notified on
the next modification of CR0. This short time window poses a problem, when
there is some other reason to exit to L1 in between. Then, L2 will be
resumed in real mode and chaos ensues.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Preemption can occur during cancel preemption timer, and there will be
inconsistent status in lapic, vmx and vmcs field.
CPU0 CPU1
preemption timer vmexit
handle_preemption_timer(vCPU0)
kvm_lapic_expired_hv_timer
vmx_cancel_hv_timer
vmx->hv_deadline_tsc = -1
vmcs_clear_bits
/* hv_timer_in_use still true */
sched_out
sched_in
kvm_arch_vcpu_load
vmx_set_hv_timer
write vmx->hv_deadline_tsc
vmcs_set_bits
/* back in kvm_lapic_expired_hv_timer */
hv_timer_in_use = false
...
vmx_vcpu_run
vmx_arm_hv_run
write preemption timer deadline
spurious preemption timer vmexit
handle_preemption_timer(vCPU0)
kvm_lapic_expired_hv_timer
WARN_ON(!apic->lapic_timer.hv_timer_in_use);
This can be reproduced sporadically during boot of L2 on a
preemptible L1, causing a splat on L1.
WARNING: CPU: 3 PID: 1952 at arch/x86/kvm/lapic.c:1529 kvm_lapic_expired_hv_timer+0xb5/0xd0 [kvm]
CPU: 3 PID: 1952 Comm: qemu-system-x86 Not tainted 4.12.0-rc1+ #24 RIP: 0010:kvm_lapic_expired_hv_timer+0xb5/0xd0 [kvm]
Call Trace:
handle_preemption_timer+0xe/0x20 [kvm_intel]
vmx_handle_exit+0xc9/0x15f0 [kvm_intel]
? lock_acquire+0xdb/0x250
? lock_acquire+0xdb/0x250
? kvm_arch_vcpu_ioctl_run+0xdf3/0x1ce0 [kvm]
kvm_arch_vcpu_ioctl_run+0xe55/0x1ce0 [kvm]
kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? __fget+0xf3/0x210
do_vfs_ioctl+0xa4/0x700
? __fget+0x114/0x210
SyS_ioctl+0x79/0x90
do_syscall_64+0x8f/0x750
? trace_hardirqs_on_thunk+0x1a/0x1c
entry_SYSCALL64_slow_path+0x25/0x25
This patch fixes it by disabling preemption while cancelling
preemption timer. This way cancel_hv_timer is atomic with
respect to kvm_arch_vcpu_load.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
get_msr() of MSR_EFER is currently always going to succeed, but static
checker doesn't see that far.
Don't complicate stuff and just use 0 for the fallback -- it means that
the feature is not present.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Static analysis noticed that pmu->nr_arch_gp_counters can be 32
(INTEL_PMC_MAX_GENERIC) and therefore cannot be used to shift 'int'.
I didn't add BUILD_BUG_ON for it as we have a better checker.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Fixes: 25462f7f52 ("KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch")
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Static checker noticed that base3 could be used uninitialized if the
segment was not present (useable). Random stack values probably would
not pass VMCS entry checks.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Fixes: 1aa366163b ("KVM: x86 emulator: consolidate segment accessors")
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Huawei folks reported a read out-of-bounds vulnerability in kvm pio emulation.
- "inb" instruction to access PIT Mod/Command register (ioport 0x43, write only,
a read should be ignored) in guest can get a random number.
- "rep insb" instruction to access PIT register port 0x43 can control memcpy()
in emulator_pio_in_emulated() to copy max 0x400 bytes but only read 1 bytes,
which will disclose the unimportant kernel memory in host but no crash.
The similar test program below can reproduce the read out-of-bounds vulnerability:
void hexdump(void *mem, unsigned int len)
{
unsigned int i, j;
for(i = 0; i < len + ((len % HEXDUMP_COLS) ? (HEXDUMP_COLS - len % HEXDUMP_COLS) : 0); i++)
{
/* print offset */
if(i % HEXDUMP_COLS == 0)
{
printf("0x%06x: ", i);
}
/* print hex data */
if(i < len)
{
printf("%02x ", 0xFF & ((char*)mem)[i]);
}
else /* end of block, just aligning for ASCII dump */
{
printf(" ");
}
/* print ASCII dump */
if(i % HEXDUMP_COLS == (HEXDUMP_COLS - 1))
{
for(j = i - (HEXDUMP_COLS - 1); j <= i; j++)
{
if(j >= len) /* end of block, not really printing */
{
putchar(' ');
}
else if(isprint(((char*)mem)[j])) /* printable char */
{
putchar(0xFF & ((char*)mem)[j]);
}
else /* other char */
{
putchar('.');
}
}
putchar('\n');
}
}
}
int main(void)
{
int i;
if (iopl(3))
{
err(1, "set iopl unsuccessfully\n");
return -1;
}
static char buf[0x40];
/* test ioport 0x40,0x41,0x42,0x43,0x44,0x45 */
memset(buf, 0xab, sizeof(buf));
asm volatile("push %rdi;");
asm volatile("mov %0, %%rdi;"::"q"(buf));
asm volatile ("mov $0x40, %rdx;");
asm volatile ("in %dx,%al;");
asm volatile ("stosb;");
asm volatile ("mov $0x41, %rdx;");
asm volatile ("in %dx,%al;");
asm volatile ("stosb;");
asm volatile ("mov $0x42, %rdx;");
asm volatile ("in %dx,%al;");
asm volatile ("stosb;");
asm volatile ("mov $0x43, %rdx;");
asm volatile ("in %dx,%al;");
asm volatile ("stosb;");
asm volatile ("mov $0x44, %rdx;");
asm volatile ("in %dx,%al;");
asm volatile ("stosb;");
asm volatile ("mov $0x45, %rdx;");
asm volatile ("in %dx,%al;");
asm volatile ("stosb;");
asm volatile ("pop %rdi;");
hexdump(buf, 0x40);
printf("\n");
/* ins port 0x40 */
memset(buf, 0xab, sizeof(buf));
asm volatile("push %rdi;");
asm volatile("mov %0, %%rdi;"::"q"(buf));
asm volatile ("mov $0x20, %rcx;");
asm volatile ("mov $0x40, %rdx;");
asm volatile ("rep insb;");
asm volatile ("pop %rdi;");
hexdump(buf, 0x40);
printf("\n");
/* ins port 0x43 */
memset(buf, 0xab, sizeof(buf));
asm volatile("push %rdi;");
asm volatile("mov %0, %%rdi;"::"q"(buf));
asm volatile ("mov $0x20, %rcx;");
asm volatile ("mov $0x43, %rdx;");
asm volatile ("rep insb;");
asm volatile ("pop %rdi;");
hexdump(buf, 0x40);
printf("\n");
return 0;
}
The vcpu->arch.pio_data buffer is used by both in/out instrutions emulation
w/o clear after using which results in some random datas are left over in
the buffer. Guest reads port 0x43 will be ignored since it is write only,
however, the function kernel_pio() can't distigush this ignore from successfully
reads data from device's ioport. There is no new data fill the buffer from
port 0x43, however, emulator_pio_in_emulated() will copy the stale data in
the buffer to the guest unconditionally. This patch fixes it by clearing the
buffer before in instruction emulation to avoid to grant guest the stale data
in the buffer.
In addition, string I/O is not supported for in kernel device. So there is no
iteration to read ioport %RCX times for string I/O. The function kernel_pio()
just reads one round, and then copy the io size * %RCX to the guest unconditionally,
actually it copies the one round ioport data w/ other random datas which are left
over in the vcpu->arch.pio_data buffer to the guest. This patch fixes it by
introducing the string I/O support for in kernel device in order to grant the right
ioport datas to the guest.
Before the patch:
0x000000: fe 38 93 93 ff ff ab ab .8......
0x000008: ab ab ab ab ab ab ab ab ........
0x000010: ab ab ab ab ab ab ab ab ........
0x000018: ab ab ab ab ab ab ab ab ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........
0x000000: f6 00 00 00 00 00 00 00 ........
0x000008: 00 00 00 00 00 00 00 00 ........
0x000010: 00 00 00 00 4d 51 30 30 ....MQ00
0x000018: 30 30 20 33 20 20 20 20 00 3
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........
0x000000: f6 00 00 00 00 00 00 00 ........
0x000008: 00 00 00 00 00 00 00 00 ........
0x000010: 00 00 00 00 4d 51 30 30 ....MQ00
0x000018: 30 30 20 33 20 20 20 20 00 3
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........
After the patch:
0x000000: 1e 02 f8 00 ff ff ab ab ........
0x000008: ab ab ab ab ab ab ab ab ........
0x000010: ab ab ab ab ab ab ab ab ........
0x000018: ab ab ab ab ab ab ab ab ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........
0x000000: d2 e2 d2 df d2 db d2 d7 ........
0x000008: d2 d3 d2 cf d2 cb d2 c7 ........
0x000010: d2 c4 d2 c0 d2 bc d2 b8 ........
0x000018: d2 b4 d2 b0 d2 ac d2 a8 ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........
0x000000: 00 00 00 00 00 00 00 00 ........
0x000008: 00 00 00 00 00 00 00 00 ........
0x000010: 00 00 00 00 00 00 00 00 ........
0x000018: 00 00 00 00 00 00 00 00 ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........
Reported-by: Moguofang <moguofang@huawei.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Moguofang <moguofang@huawei.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
BUG: using __this_cpu_read() in preemptible [00000000] code: qemu-system-x86/2809
caller is __this_cpu_preempt_check+0x13/0x20
CPU: 2 PID: 2809 Comm: qemu-system-x86 Not tainted 4.11.0+ #13
Call Trace:
dump_stack+0x99/0xce
check_preemption_disabled+0xf5/0x100
__this_cpu_preempt_check+0x13/0x20
get_kvmclock_ns+0x6f/0x110 [kvm]
get_time_ref_counter+0x5d/0x80 [kvm]
kvm_hv_process_stimers+0x2a1/0x8a0 [kvm]
? kvm_hv_process_stimers+0x2a1/0x8a0 [kvm]
? kvm_arch_vcpu_ioctl_run+0xac9/0x1ce0 [kvm]
kvm_arch_vcpu_ioctl_run+0x5bf/0x1ce0 [kvm]
kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? __fget+0xf3/0x210
do_vfs_ioctl+0xa4/0x700
? __fget+0x114/0x210
SyS_ioctl+0x79/0x90
entry_SYSCALL_64_fastpath+0x23/0xc2
RIP: 0033:0x7f9d164ed357
? __this_cpu_preempt_check+0x13/0x20
This can be reproduced by run kvm-unit-tests/hyperv_stimer.flat w/
CONFIG_PREEMPT and CONFIG_DEBUG_PREEMPT enabled.
Safe access to per-CPU data requires a couple of constraints, though: the
thread working with the data cannot be preempted and it cannot be migrated
while it manipulates per-CPU variables. If the thread is preempted, the
thread that replaces it could try to work with the same variables; migration
to another CPU could also cause confusion. However there is no preemption
disable when reads host per-CPU tsc rate to calculate the current kvmclock
timestamp.
This patch fixes it by utilizing get_cpu/put_cpu pair to guarantee both
__this_cpu_read() and rdtsc() are not preempted.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Smatch complains that we check cap the upper bound of "index" but don't
check for negatives. It's a false positive because "index" is never
negative. But it's also simple enough to make it unsigned which makes
the code easier to audit.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This fixes the new ept_access_test_read_only and ept_access_test_read_write
testcases from vmx.flat.
The problem is that gpte_access moves bits around to switch from EPT
bit order (XWR) to ACC_*_MASK bit order (RWX). This results in an
incorrect exit qualification. To fix this, make pt_access and
pte_access operate on raw PTE values (only with NX flipped to mean
"can execute") and call gpte_access at the end of the walk. This
lets us use pte_access to compute the exit qualification with XWR
bit order.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@tencent.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
We can observe eptad kvm_intel module parameter is still Y
even if ept is disabled which is weird. This patch will
not enable EPT A/D feature if EPT feature is disabled.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reported by syzkaller:
BUG: unable to handle kernel paging request at ffffffffc07f6a2e
IP: report_bug+0x94/0x120
PGD 348e12067
P4D 348e12067
PUD 348e14067
PMD 3cbd84067
PTE 80000003f7e87161
Oops: 0003 [#1] SMP
CPU: 2 PID: 7091 Comm: kvm_load_guest_ Tainted: G OE 4.11.0+ #8
task: ffff92fdfb525400 task.stack: ffffbda6c3d04000
RIP: 0010:report_bug+0x94/0x120
RSP: 0018:ffffbda6c3d07b20 EFLAGS: 00010202
do_trap+0x156/0x170
do_error_trap+0xa3/0x170
? kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm]
? mark_held_locks+0x79/0xa0
? retint_kernel+0x10/0x10
? trace_hardirqs_off_thunk+0x1a/0x1c
do_invalid_op+0x20/0x30
invalid_op+0x1e/0x30
RIP: 0010:kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm]
? kvm_load_guest_fpu.part.175+0x1c/0x170 [kvm]
kvm_arch_vcpu_ioctl_run+0xed6/0x1b70 [kvm]
kvm_vcpu_ioctl+0x384/0x780 [kvm]
? kvm_vcpu_ioctl+0x384/0x780 [kvm]
? sched_clock+0x13/0x20
? __do_page_fault+0x2a0/0x550
do_vfs_ioctl+0xa4/0x700
? up_read+0x1f/0x40
? __do_page_fault+0x2a0/0x550
SyS_ioctl+0x79/0x90
entry_SYSCALL_64_fastpath+0x23/0xc2
SDM mentioned that "The MXCSR has several reserved bits, and attempting to write
a 1 to any of these bits will cause a general-protection exception(#GP) to be
generated". The syzkaller forks' testcase overrides xsave area w/ random values
and steps on the reserved bits of MXCSR register. The damaged MXCSR register
values of guest will be restored to SSEx MXCSR register before vmentry. This
patch fixes it by catching userspace override MXCSR register reserved bits w/
random values and bails out immediately.
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
There are PML_ENTITY_NUM elements in the pml_address[] array so the >
should be >= or we write beyond the end of the array when we do:
pml_address[vmcs12->guest_pml_index--] = gpa;
Fixes: c5f983f6e8 ("nVMX: Implement emulated Page Modification Logging")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Advertise the PML bit in vmcs12 but don't try to enable
it in hardware when running L2 since L0 is emulating it. Also,
preserve L0's settings for PML since it may still
want to log writes.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With EPT A/D enabled, processor access to L2 guest
paging structures will result in a write violation.
When this happens, write the GUEST_PHYSICAL_ADDRESS
to the pml buffer provided by L1 if the access is
write and the dirty bit is being set.
This patch also adds necessary checks during VMEntry if L1
has enabled PML. If the PML index overflows, we change the
exit reason and run L1 to simulate a PML full event.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM updates accessed/dirty bits, this hook can be used
to invoke an arch specific function that implements/emulates
dirty logging such as PML.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the SDM, the CR3-target count must not be greater than
4. Future processors may support a different number of CR3-target
values. Software should read the VMX capability MSR IA32_VMX_MISC to
determine the number of values supported.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Merge more updates from Andrew Morton:
- the rest of MM
- various misc things
- procfs updates
- lib/ updates
- checkpatch updates
- kdump/kexec updates
- add kvmalloc helpers, use them
- time helper updates for Y2038 issues. We're almost ready to remove
current_fs_time() but that awaits a btrfs merge.
- add tracepoints to DAX
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4
selftests/vm: add a test for virtual address range mapping
dax: add tracepoint to dax_insert_mapping()
dax: add tracepoint to dax_writeback_one()
dax: add tracepoints to dax_writeback_mapping_range()
dax: add tracepoints to dax_load_hole()
dax: add tracepoints to dax_pfn_mkwrite()
dax: add tracepoints to dax_iomap_pte_fault()
mtd: nand: nandsim: convert to memalloc_noreclaim_*()
treewide: convert PF_MEMALLOC manipulations to new helpers
mm: introduce memalloc_noreclaim_{save,restore}
mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
mm/huge_memory.c: use zap_deposited_table() more
time: delete CURRENT_TIME_SEC and CURRENT_TIME
gfs2: replace CURRENT_TIME with current_time
apparmorfs: replace CURRENT_TIME with current_time()
lustre: replace CURRENT_TIME macro
fs: ubifs: replace CURRENT_TIME_SEC with current_time
fs: ufs: use ktime_get_real_ts64() for birthtime
...
Patch series "kvmalloc", v5.
There are many open coded kmalloc with vmalloc fallback instances in the
tree. Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.
As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.
Most callers, I could find, have been converted to use the helper
instead. This is patch 6. There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.
[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com
This patch (of 9):
Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code. Yet we do not have any common helper
for that and so users have invented their own helpers. Some of them are
really creative when doing so. Let's just add kv[mz]alloc and make sure
it is implemented properly. This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures. This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.
This patch also changes some existing users and removes helpers which
are specific for them. In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL). Those need to be
fixed separately.
While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers. Existing ones would have to die
slowly.
[sfr@canb.auug.org.au: f2fs fixup]
Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
According to the SDM, if the "activate secondary controls" primary
processor-based VM-execution control is 0, no checks are performed on
the secondary processor-based VM-execution controls.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bbd6411513.
I've been sitting on this revert for too long and it unfortunately
missed 4.11. It's also the reason why I haven't merged ring-based
dirty tracking for 4.12.
Using kvm_vcpu_memslots in kvm_gfn_to_hva_cache_init and
kvm_vcpu_write_guest_offset_cached means that the MSR value can
now be used to access SMRAM, simply by making it point to an SMRAM
physical address. This is problematic because it lets the guest
OS overwrite memory that it shouldn't be able to touch.
Cc: stable@vger.kernel.org
Fixes: bbd6411513
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We needed the lock to avoid racing with creation of the irqchip on x86. As
kvm_set_irq_routing() calls srcu_synchronize_expedited(), this lock
might be held for a longer time.
Let's introduce an arch specific callback to check if we can actually
add irq routes. For x86, all we have to do is check if we have an
irqchip in the kernel. We don't need kvm->lock at that point as the
irqchip is marked as inititalized only when actually fully created.
Reported-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes: 1df6ddede1 ("KVM: x86: race between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 mm updates from Ingo Molnar:
"The main x86 MM changes in this cycle were:
- continued native kernel PCID support preparation patches to the TLB
flushing code (Andy Lutomirski)
- various fixes related to 32-bit compat syscall returning address
over 4Gb in applications, launched from 64-bit binaries - motivated
by C/R frameworks such as Virtuozzo. (Dmitry Safonov)
- continued Intel 5-level paging enablement: in particular the
conversion of x86 GUP to the generic GUP code. (Kirill A. Shutemov)
- x86/mpx ABI corner case fixes/enhancements (Joerg Roedel)
- ... plus misc updates, fixes and cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
mm, zone_device: Replace {get, put}_zone_device_page() with a single reference to fix pmem crash
x86/mm: Fix flush_tlb_page() on Xen
x86/mm: Make flush_tlb_mm_range() more predictable
x86/mm: Remove flush_tlb() and flush_tlb_current_task()
x86/vm86/32: Switch to flush_tlb_mm_range() in mark_screen_rdonly()
x86/mm/64: Fix crash in remove_pagetable()
Revert "x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"
x86/boot/e820: Remove a redundant self assignment
x86/mm: Fix dump pagetables for 4 levels of page tables
x86/mpx, selftests: Only check bounds-vs-shadow when we keep shadow
x86/mpx: Correctly report do_mpx_bt_fault() failures to user-space
Revert "x86/mm/numa: Remove numa_nodemask_from_meminfo()"
x86/espfix: Add support for 5-level paging
x86/kasan: Extend KASAN to support 5-level paging
x86/mm: Add basic defines/helpers for CONFIG_X86_5LEVEL=y
x86/paravirt: Add 5-level support to the paravirt code
x86/mm: Define virtual memory map for 5-level paging
x86/asm: Remove __VIRTUAL_MASK_SHIFT==47 assert
x86/boot: Detect 5-level paging support
x86/mm/numa: Remove numa_nodemask_from_meminfo()
...
According to the Intel SDM, "Certain exceptions have priority over VM
exits. These include invalid-opcode exceptions, faults based on
privilege level*, and general-protection exceptions that are based on
checking I/O permission bits in the task-state segment (TSS)."
There is no need to check for faulting conditions that the hardware
has already checked.
* These include faults generated by attempts to execute, in
virtual-8086 mode, privileged instructions that are not recognized
in that mode.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On AMD, the effect of set_nmi_mask called by emulate_iret_real and em_rsm
on hflags is reverted later on in x86_emulate_instruction where hflags are
overwritten with ctxt->emul_flags (the kvm_set_hflags call). This manifests
as a hang when rebooting Windows VMs with QEMU, OVMF, and >1 vcpu.
Instead of trying to merge ctxt->emul_flags into vcpu->arch.hflags after
an instruction is emulated, this commit deletes emul_flags altogether and
makes the emulator access vcpu->arch.hflags using two new accessors. This
way all changes, on the emulator side as well as in functions called from
the emulator and accessing vcpu state with emul_to_vcpu, are preserved.
More details on the bug and its manifestation with Windows and OVMF:
It's a KVM bug in the interaction between SMI/SMM and NMI, specific to AMD.
I believe that the SMM part explains why we started seeing this only with
OVMF.
KVM masks and unmasks NMI when entering and leaving SMM. When KVM emulates
the RSM instruction in em_rsm, the set_nmi_mask call doesn't stick because
later on in x86_emulate_instruction we overwrite arch.hflags with
ctxt->emul_flags, effectively reverting the effect of the set_nmi_mask call.
The AMD-specific hflag of interest here is HF_NMI_MASK.
When rebooting the system, Windows sends an NMI IPI to all but the current
cpu to shut them down. Only after all of them are parked in HLT will the
initiating cpu finish the restart. If NMI is masked, other cpus never get
the memo and the initiating cpu spins forever, waiting for
hal!HalpInterruptProcessorsStarted to drop. That's the symptom we observe.
Fixes: a584539b24 ("KVM: x86: pass the whole hflags field to emulator and back")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_kick() must issue a general memory barrier prior to reading
vcpu->mode in order to ensure correctness of the mutual-exclusion
memory barrier pattern used with vcpu->requests. While the cmpxchg
called from kvm_vcpu_kick():
kvm_vcpu_kick
kvm_arch_vcpu_should_kick
kvm_vcpu_exiting_guest_mode
cmpxchg
implies general memory barriers before and after the operation, that
implication is only valid when cmpxchg succeeds. We need an explicit
barrier for when it fails, otherwise a VCPU thread on its entry path
that reads zero for vcpu->requests does not exclude the possibility
the requesting thread sees !IN_GUEST_MODE when it reads vcpu->mode.
kvm_make_all_cpus_request already had a barrier, so we remove it, as
now it would be redundant.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.
Make sure that requests are not directly accessed with bit operations.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The disablement of interrupts at KVM_SET_CLOCK/KVM_GET_CLOCK
attempts to disable software suspend from causing "non atomic behaviour" of
the operation:
Add a helper function to compute the kernel time and convert nanoseconds
back to CPU specific cycles. Note that these must not be called in preemptible
context, as that would mean the kernel could enter software suspend state,
which would cause non-atomic operation.
However, assume the kernel can enter software suspend at the following 2 points:
ktime_get_ts(&ts);
1.
hypothetical_ktime_get_ts(&ts)
monotonic_to_bootbased(&ts);
2.
monotonic_to_bootbased() should be correct relative to a ktime_get_ts(&ts)
performed after point 1 (that is after resuming from software suspend),
hypothetical_ktime_get_ts()
Therefore it is also correct for the ktime_get_ts(&ts) before point 1,
which is
ktime_get_ts(&ts) = hypothetical_ktime_get_ts(&ts) + time-to-execute-suspend-code
Note CLOCK_MONOTONIC does not count during suspension.
So remove the irq disablement, which causes the following warning on
-RT kernels:
With this reasoning, and the -RT bug that the irq disablement causes
(because spin_lock is now a sleeping lock), remove the IRQ protection as it
causes:
[ 1064.668109] in_atomic(): 0, irqs_disabled(): 1, pid: 15296, name:m
[ 1064.668110] INFO: lockdep is turned off.
[ 1064.668110] irq event stamp: 0
[ 1064.668112] hardirqs last enabled at (0): [< (null)>] )
[ 1064.668116] hardirqs last disabled at (0): [] c0
[ 1064.668118] softirqs last enabled at (0): [] c0
[ 1064.668118] softirqs last disabled at (0): [< (null)>] )
[ 1064.668121] CPU: 13 PID: 15296 Comm: qemu-kvm Not tainted 3.10.0-1
[ 1064.668121] Hardware name: Dell Inc. PowerEdge R730/0H21J3, BIOS 5
[ 1064.668123] ffff8c1796b88000 00000000afe7344c ffff8c179abf3c68 f3
[ 1064.668125] ffff8c179abf3c90 ffffffff930ccb3d ffff8c1b992b3610 f0
[ 1064.668126] 00007ffc1a26fbc0 ffff8c179abf3cb0 ffffffff9375f694 f0
[ 1064.668126] Call Trace:
[ 1064.668132] [] dump_stack+0x19/0x1b
[ 1064.668135] [] __might_sleep+0x12d/0x1f0
[ 1064.668138] [] rt_spin_lock+0x24/0x60
[ 1064.668155] [] __get_kvmclock_ns+0x36/0x110 [k]
[ 1064.668159] [] ? futex_wait_queue_me+0x103/0x10
[ 1064.668171] [] kvm_arch_vm_ioctl+0xa2/0xd70 [k]
[ 1064.668173] [] ? futex_wait+0x1ac/0x2a0
v2: notice get_kvmclock_ns with the same problem (Pankaj).
v3: remove useless helper function (Pankaj).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guests that are heavy on futexes end up IPI'ing each other a lot. That
can lead to significant slowdowns and latency increase for those guests
when running within KVM.
If only a single guest is needed on a host, we have a lot of spare host
CPU time we can throw at the problem. Modern CPUs implement a feature
called "MWAIT" which allows guests to wake up sleeping remote CPUs without
an IPI - thus without an exit - at the expense of never going out of guest
context.
The decision whether this is something sensible to use should be up to the
VM admin, so to user space. We can however allow MWAIT execution on systems
that support it properly hardware wise.
This patch adds a CAP to user space and a KVM cpuid leaf to indicate
availability of native MWAIT execution. With that enabled, the worst a
guest can do is waste as many cycles as a "jmp ." would do, so it's not
a privilege problem.
We consciously do *not* expose the feature in our CPUID bitmap, as most
people will want to benefit from sleeping vCPUs to allow for over commit.
Reported-by: "Gabriel L. Somlo" <gsomlo@gmail.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
[agraf: fix amd, change commit message]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hardware support for faulting on the cpuid instruction is not required to
emulate it, because cpuid triggers a VM exit anyways. KVM handles the relevant
MSRs (MSR_PLATFORM_INFO and MSR_MISC_FEATURES_ENABLE) and upon a
cpuid-induced VM exit checks the cpuid faulting state and the CPL.
kvm_require_cpl is even kind enough to inject the GP fault for us.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[Return "1" from kvm_emulate_cpuid, it's not void. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmm_exclusive=0 leads to KVM setting X86_CR4_VMXE always and calling
VMXON only when the vcpu is loaded. X86_CR4_VMXE is used as an
indication in cpu_emergency_vmxoff() (called on kdump) if VMXOFF has to be
called. This is obviously not the case if both are used independtly.
Calling VMXOFF without a previous VMXON will result in an exception.
In addition, X86_CR4_VMXE is used as a mean to test if VMX is already in
use by another VMM in hardware_enable(). So there can't really be
co-existance. If the other VMM is prepared for co-existance and does a
similar check, only one VMM can exist. If the other VMM is not prepared
and blindly sets/clears X86_CR4_VMXE, we will get inconsistencies with
X86_CR4_VMXE.
As we also had bug reports related to clearing of vmcs with vmm_exclusive=0
this seems to be pretty much untested. So let's better drop it.
While at it, directly move setting/clearing X86_CR4_VMXE into
kvm_cpu_vmxon/off.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I have introduced this bug when applying and simplifying Paolo's patch
as we agreed on the list. The original was "x &= ~y; if (z) x |= y;".
Here is the story of a bad workflow:
A maintainer was already testing with the intended change, but it was
applied only to a testing repo on a different machine. When the time
to push tested patches to kvm/next came, he realized that this change
was missing and quickly added it to the maintenance repo, didn't test
again (because the change is trivial, right), and pushed the world to
fire.
Fixes: ae1e2d1082 ("kvm: nVMX: support EPT accessed/dirty bits")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Hyper-V writes 0x800000000000 to MSR_AMD64_DC_CFG when running on AMD CPUs
as recommended in erratum 383, analogous to our svm_init_erratum_383.
By ignoring the MSR, this patch enables running Hyper-V in L1 on AMD.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
VCPU TSC synchronization is perfromed in kvm_write_tsc() when the TSC
value being set is within 1 second from the expected, as obtained by
extrapolating of the TSC in already synchronized VCPUs.
This is naturally achieved on all VCPUs at VM start and resume;
however on VCPU hotplug it is not: the newly added VCPU is created
with TSC == 0 while others are well ahead.
To compensate for that, consider host-initiated kvm_write_tsc() with
TSC == 0 a special case requiring synchronization regardless of the
current TSC on other VCPUs.
Signed-off-by: Denis Plotnikov <dplotnikov@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reuse existing code instead of using inline asm.
Make the code more concise and clear in the TSC
synchronization part.
Signed-off-by: Denis Plotnikov <dplotnikov@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Although the current check is not wrong, this check explicitly includes
the pic.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
We already have the exact same checks a couple of lines below.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Not used outside of i8259.c, so let's make it static.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
We can easily compact this code and get rid of one local variable.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
No need for the goto label + local variable "r".
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's rename it into a proper arch specific callback.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
We know there is an ioapic, so let's call it directly.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kvm_ioapic_init() is guaranteed to be called without any created VCPUs,
so doing an all-vcpu request results in a NOP.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Currently, one could set pin 8-15, implicitly referring to
KVM_IRQCHIP_PIC_SLAVE.
Get rid of the two local variables max_pin and delta on the way.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's just move it to the place where it is actually needed.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
I don't see any reason any more for this lock, seemed to be used to protect
removal of kvm->arch.vpic / kvm->arch.vioapic when already partially
inititalized, now access is properly protected using kvm->arch.irqchip_mode
and this shouldn't be necessary anymore.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When handling KVM_GET_IRQCHIP, we already check irqchip_kernel(), which
implies a fully inititalized ioapic.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
It seemed like a nice idea to encapsulate access to kvm->arch.vpic. But
as the usage is already mixed, internal locks are taken outside of i8259.c
and grepping for "vpic" only is much easier, let's just get rid of
pic_irqchip().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
KVM_IRQCHIP_KERNEL implies a fully inititalized ioapic, while
kvm->arch.vioapic might temporarily be set but invalidated again if e.g.
setting of default routing fails when setting KVM_CREATE_IRQCHIP.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's avoid checking against kvm->arch.vpic. We have kvm->arch.irqchip_mode
for that now.
KVM_IRQCHIP_KERNEL implies a fully inititalized pic, while kvm->arch.vpic
might temporarily be set but invalidated again if e.g. kvm_ioapic_init()
fails when setting KVM_CREATE_IRQCHIP. Although current users seem to be
fine, this avoids future bugs.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's replace the checks for pic_in_kernel() and ioapic_in_kernel() by
checks against irqchip_mode.
Also make sure that creation of any route is only possible if we have
an lapic in kernel (irqchip_in_kernel()) or if we are currently
inititalizing the irqchip.
This is necessary to switch pic_in_kernel() and ioapic_in_kernel() to
irqchip_mode, too.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's add a new mode and set it while we create the irqchip via
KVM_CREATE_IRQCHIP and KVM_CAP_SPLIT_IRQCHIP.
This mode will be used later to test if adding routes
(in kvm_set_routing_entry()) is already allowed.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The userspace exception injection API and code path are entirely
unprepared for exceptions that might cause a VM-exit from L2 to L1, so
the best course of action may be to simply disallow this for now.
1. The API provides no mechanism for userspace to specify the new DR6
bits for a #DB exception or the new CR2 value for a #PF
exception. Presumably, userspace is expected to modify these registers
directly with KVM_SET_SREGS before the next KVM_RUN ioctl. However, in
the event that L1 intercepts the exception, these registers should not
be changed. Instead, the new values should be provided in the
exit_qualification field of vmcs12 (Intel SDM vol 3, section 27.1).
2. In the case of a userspace-injected #DB, inject_pending_event()
clears DR7.GD before calling vmx_queue_exception(). However, in the
event that L1 intercepts the exception, this is too early, because
DR7.GD should not be modified by a #DB that causes a VM-exit directly
(Intel SDM vol 3, section 27.1).
3. If the injected exception is a #PF, nested_vmx_check_exception()
doesn't properly check whether or not L1 is interested in the
associated error code (using the #PF error code mask and match fields
from vmcs12). It may either return 0 when it should call
nested_vmx_vmexit() or vice versa.
4. nested_vmx_check_exception() assumes that it is dealing with a
hardware-generated exception intercept from L2, with some of the
relevant details (the VM-exit interruption-information and the exit
qualification) live in vmcs02. For userspace-injected exceptions, this
is not the case.
5. prepare_vmcs12() assumes that when its exit_intr_info argument
specifies valid information with a valid error code that it can VMREAD
the VM-exit interruption error code from vmcs02. For
userspace-injected exceptions, this is not the case.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
If we already entered/are about to enter SMM, don't allow switching to
INIT/SIPI_RECEIVED, otherwise the next call to kvm_apic_accept_events()
will report a warning.
Same applies if we are already in MP state INIT_RECEIVED and SMM is
requested to be turned on. Refuse to set the VCPU events in this case.
Fixes: cd7764fe9f ("KVM: x86: latch INITs while in system management mode")
Cc: stable@vger.kernel.org # 4.2+
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Remove code from architecture files that can be moved to virt/kvm, since there
is already common code for coalesced MMIO.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Removed a pointless 'break' after 'return'.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Now use bit 6 of EPTP to optionally enable A/D bits for EPTP. Another
thing to change is that, when EPT accessed and dirty bits are not in use,
VMX treats accesses to guest paging structures as data reads. When they
are in use (bit 6 of EPTP is set), they are treated as writes and the
corresponding EPT dirty bit is set. The MMU didn't know this detail,
so this patch adds it.
We also have to fix up the exit qualification. It may be wrong because
KVM sets bit 6 but the guest might not.
L1 emulates EPT A/D bits using write permissions, so in principle it may
be possible for EPT A/D bits to be used by L1 even though not available
in hardware. The problem is that guest page-table walks will be treated
as reads rather than writes, so they would not cause an EPT violation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Fixed typo in walk_addr_generic() comment and changed bit clear +
conditional-set pattern in handle_ept_violation() to conditional-clear]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This prepares the MMU paging code for EPT accessed and dirty bits,
which can be enabled optionally at runtime. Code that updates the
accessed and dirty bits will need a pointer to the struct kvm_mmu.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
handle_ept_violation is checking for "guest-linear-address invalid" +
"not a paging-structure walk". However, _all_ EPT violations without
a valid guest linear address are paging structure walks, because those
EPT violations happen when loading the guest PDPTEs.
Therefore, the check can never be true, and even if it were, KVM doesn't
care about the guest linear address; it only uses the guest *physical*
address VMCS field. So, remove the check altogether.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Large pages at the PDPE level can be emulated by the MMU, so the bit
can be set unconditionally in the EPT capabilities MSR. The same is
true of 2MB EPT pages, though all Intel processors with EPT in practice
support those.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Legacy device assignment has been deprecated since 4.2 (released
1.5 years ago). VFIO is better and everyone should have switched to it.
If they haven't, this should convince them. :)
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Virtual NMIs are only missing in Prescott and Yonah chips. Both are obsolete
for virtualization usage---Yonah is 32-bit only even---so drop vNMI emulation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MCG_CAP[63:9] bits are reserved on AMD. However, on an AMD guest, this
MSR returns 0x100010a. More specifically, bit 24 is set, which is simply
wrong. That bit is MCG_SER_P and is present only on Intel. Thus, clean
up the reserved bits in order not to confuse guests.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let's combine it in a single function vmx_switch_vmcs().
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
According to the Intel SDM, volume 3, section 28.3.2: Creating and
Using Cached Translation Information, "No linear mappings are used
while EPT is in use." INVEPT will invalidate both the guest-physical
mappings and the combined mappings in the TLBs and paging-structure
caches, so an INVVPID is superfluous.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
L2 was running with uninitialized PML fields which led to incomplete
dirty bitmap logging. This manifested as all kinds of subtle erratic
behavior of the nested guest.
Fixes: 843e433057 ("KVM: VMX: Add PML support in VMX")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The PML feature is not exposed to guests so we should not be forwarding
the vmexit either.
This commit fixes BSOD 0x20001 (HYPERVISOR_ERROR) when running Hyper-V
enabled Windows Server 2016 in L1 on hardware that supports PML.
Fixes: 843e433057 ("KVM: VMX: Add PML support in VMX")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
SRCU uses a delayed work item. Skip cleaning it up, and
the result is use-after-free in the work item callbacks.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Cc: stable@vger.kernel.org
Fixes: 0eb05bf290
Reviewed-by: Xiao Guangrong <xiaoguangrong.eric@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The nested_ept_enabled flag introduced in commit 7ca29de213 was not
computed correctly. We are interested only in L1's EPT state, not the
the combined L0+L1 value.
In particular, if L0 uses EPT but L1 does not, nested_ept_enabled must
be false to make sure that PDPSTRs are loaded based on CR3 as usual,
because the special case described in 26.3.2.4 Loading Page-Directory-
Pointer-Table Entries does not apply.
Fixes: 7ca29de213 ("KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT")
Cc: qemu-stable@nongnu.org
Reported-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can be reproduced by running L2 on L1, and disable VPID on L0
if w/o commit "KVM: nVMX: Fix nested VPID vmx exec control", the L2
crash as below:
KVM: entry failed, hardware error 0x7
EAX=00000000 EBX=00000000 ECX=00000000 EDX=000306c3
ESI=00000000 EDI=00000000 EBP=00000000 ESP=00000000
EIP=0000fff0 EFL=00000002 [-------] CPL=0 II=0 A20=1 SMM=0 HLT=0
ES =0000 00000000 0000ffff 00009300
CS =f000 ffff0000 0000ffff 00009b00
SS =0000 00000000 0000ffff 00009300
DS =0000 00000000 0000ffff 00009300
FS =0000 00000000 0000ffff 00009300
GS =0000 00000000 0000ffff 00009300
LDT=0000 00000000 0000ffff 00008200
TR =0000 00000000 0000ffff 00008b00
GDT= 00000000 0000ffff
IDT= 00000000 0000ffff
CR0=60000010 CR2=00000000 CR3=00000000 CR4=00000000
DR0=0000000000000000 DR1=0000000000000000 DR2=0000000000000000 DR3=0000000000000000
DR6=00000000ffff0ff0 DR7=0000000000000400
EFER=0000000000000000
Reference SDM 30.3 INVVPID:
Protected Mode Exceptions
- #UD
- If not in VMX operation.
- If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
- If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does
not support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
So we should check both VPID enable bit in vmx exec control and INVVPID support bit
in vmx capability MSRs to enable VPID. This patch adds the guarantee to not enable
VPID if either INVVPID or single-context/all-context invalidation is not exposed in
vmx capability MSRs.
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can be reproduced by running kvm-unit-tests/vmx.flat on L0 w/ vpid disabled.
Test suite: VPID
Unhandled exception 6 #UD at ip 00000000004051a6
error_code=0000 rflags=00010047 cs=00000008
rax=0000000000000000 rcx=0000000000000001 rdx=0000000000000047 rbx=0000000000402f79
rbp=0000000000456240 rsi=0000000000000001 rdi=0000000000000000
r8=000000000000000a r9=00000000000003f8 r10=0000000080010011 r11=0000000000000000
r12=0000000000000003 r13=0000000000000708 r14=0000000000000000 r15=0000000000000000
cr0=0000000080010031 cr2=0000000000000000 cr3=0000000007fff000 cr4=0000000000002020
cr8=0000000000000000
STACK: @4051a6 40523e 400f7f 402059 40028f
We should hide and forbid VPID in L1 if it is disabled on L0. However, nested VPID
enable bit is set unconditionally during setup nested vmx exec controls though VPID
is not exposed through nested VMX capablity. This patch fixes it by don't set nested
VPID enable bit if it is disabled on L0.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 5c614b3583 (KVM: nVMX: nested VPID emulation)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After async pf setup successfully, there is a broadcast wakeup w/ special
token 0xffffffff which tells vCPU that it should wake up all processes
waiting for APFs though there is no real process waiting at the moment.
The async page present tracepoint print prematurely and fails to catch the
special token setup. This patch fixes it by moving the async page present
tracepoint after the special token setup.
Before patch:
qemu-system-x86-8499 [006] ...1 5973.473292: kvm_async_pf_ready: token 0x0 gva 0x0
After patch:
qemu-system-x86-8499 [006] ...1 5973.473292: kvm_async_pf_ready: token 0xffffffff gva 0x0
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Quoting from the Intel SDM, volume 3, section 28.3.3.4: Guidelines for
Use of the INVEPT Instruction:
If EPT was in use on a logical processor at one time with EPTP X, it
is recommended that software use the INVEPT instruction with the
"single-context" INVEPT type and with EPTP X in the INVEPT descriptor
before a VM entry on the same logical processor that enables EPT with
EPTP X and either (a) the "virtualize APIC accesses" VM-execution
control was changed from 0 to 1; or (b) the value of the APIC-access
address was changed.
In the nested case, the burden falls on L1, unless L0 enables EPT in
vmcs02 when L1 doesn't enable EPT in vmcs12.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
We have specific destructors for pic/ioapic, we'd better use them when
destroying the VM as well.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Mostly used for split irqchip mode. In that case, these two things are
not inited at all, so no need to release.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
There's a single caller that is only there because it's passing a
pointer into a function (vmcs_writel()) that takes an unsigned long.
Let's just cast it in place rather than having a bunch of trivial
helpers.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/46108fb35e1699252b1b6a85039303ff562c9836.1490218061.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kvm mmu is reset once successfully loading CR3 as part of emulating vmentry
in nested_vmx_load_cr3(). We should not reset kvm mmu twice.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
If avic is not enabled, avic_vm_init() does nothing and returns early.
However, avic_vm_destroy() still tries to destroy what hasn't been created.
The only bad consequence of this now is that avic_vm_destroy() uses
svm_vm_data_hash_lock that hasn't been initialized (and is not meant
to be used at all if avic is not enabled).
Return early from avic_vm_destroy() if avic is not enabled.
It has nothing to destroy.
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: kvm@vger.kernel.org
Cc: syzkaller@googlegroups.com
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This patch makes the GDT remapped pages read-only, to prevent accidental
(or intentional) corruption of this key data structure.
This change is done only on 64-bit, because 32-bit needs it to be writable
for TSS switches.
The native_load_tr_desc function was adapted to correctly handle a
read-only GDT. The LTR instruction always writes to the GDT TSS entry.
This generates a page fault if the GDT is read-only. This change checks
if the current GDT is a remap and swap GDTs as needed. This function was
tested by booting multiple machines and checking hibernation works
properly.
KVM SVM and VMX were adapted to use the writeable GDT. On VMX, the
per-cpu variable was removed for functions to fetch the original GDT.
Instead of reloading the previous GDT, VMX will reload the fixmap GDT as
expected. For testing, VMs were started and restored on multiple
configurations.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-3-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Before trying to do nested_get_page() in nested_vmx_merge_msr_bitmap(),
we have already checked that the MSR bitmap address is valid (4k aligned
and within physical limits). SDM doesn't specify what happens if the
there is no memory mapped at the valid address, but Intel CPUs treat the
situation as if the bitmap was configured to trap all MSRs.
KVM already does that by returning false and a correct handling doesn't
need the guest-trigerrable warning that was reported by syzkaller:
(The warning was originally there to catch some possible bugs in nVMX.)
------------[ cut here ]------------
WARNING: CPU: 0 PID: 7832 at arch/x86/kvm/vmx.c:9709
nested_vmx_merge_msr_bitmap arch/x86/kvm/vmx.c:9709 [inline]
WARNING: CPU: 0 PID: 7832 at arch/x86/kvm/vmx.c:9709
nested_get_vmcs12_pages+0xfb6/0x15c0 arch/x86/kvm/vmx.c:9640
Kernel panic - not syncing: panic_on_warn set ...
CPU: 0 PID: 7832 Comm: syz-executor1 Not tainted 4.10.0+ #229
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:15 [inline]
dump_stack+0x2ee/0x3ef lib/dump_stack.c:51
panic+0x1fb/0x412 kernel/panic.c:179
__warn+0x1c4/0x1e0 kernel/panic.c:540
warn_slowpath_null+0x2c/0x40 kernel/panic.c:583
nested_vmx_merge_msr_bitmap arch/x86/kvm/vmx.c:9709 [inline]
nested_get_vmcs12_pages+0xfb6/0x15c0 arch/x86/kvm/vmx.c:9640
enter_vmx_non_root_mode arch/x86/kvm/vmx.c:10471 [inline]
nested_vmx_run+0x6186/0xaab0 arch/x86/kvm/vmx.c:10561
handle_vmlaunch+0x1a/0x20 arch/x86/kvm/vmx.c:7312
vmx_handle_exit+0xfc0/0x3f00 arch/x86/kvm/vmx.c:8526
vcpu_enter_guest arch/x86/kvm/x86.c:6982 [inline]
vcpu_run arch/x86/kvm/x86.c:7044 [inline]
kvm_arch_vcpu_ioctl_run+0x1418/0x4840 arch/x86/kvm/x86.c:7205
kvm_vcpu_ioctl+0x673/0x1120 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2570
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
[Jim Mattson explained the bare metal behavior: "I believe this behavior
would be documented in the chipset data sheet rather than the SDM,
since the chipset returns all 1s for an unclaimed read."]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
VMCLEAR should silently ignore a failure to clear the launch state of
the VMCS referenced by the operand.
Signed-off-by: Jim Mattson <jmattson@google.com>
[Changed "kvm_write_guest(vcpu->kvm" to "kvm_vcpu_write_guest(vcpu".]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
PPC:
* correct assumption about ASDR on POWER9
* fix MMIO emulation on POWER9
x86:
* add a simple test for ioperm
* cleanup TSS
(going through KVM tree as the whole undertaking was caused by VMX's
use of TSS)
* fix nVMX interrupt delivery
* fix some performance counters in the guest
And two cleanup patches.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJYuu5qAAoJEED/6hsPKofoRAUH/jkx/KFDcw3FggixysWVgRai
iLSbbAZemnSLFSOkOU/t7Bz0fXCUgB0tAcMJd9ow01Dg1zObiTpuUIo6qEPaYHdX
gqtUzlHuyECZEcgK0RXS9kDYLrvw7EFocxnDWQfV91qCZSS6nBSSLF3ST1rNV69W
mUvcZG+MciDcZUe1lTexoswVTh1m7avvozEnQ5OHnZR9yicoXiadBQjzL6yqWoqf
Ml/29zRk5+MvloTudxjkAKm3mh7psW88jNMh37TXbAA7i+Xwl9cU6GLR9mFWstoP
7Ot7ecq9mNAUO3lTIQh7lqvB60LMFznS4IlYK7MbplC3kvJLkfzhTWaN1aGvh90=
=cqHo
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Radim Krčmář:
"Second batch of KVM changes for the 4.11 merge window:
PPC:
- correct assumption about ASDR on POWER9
- fix MMIO emulation on POWER9
x86:
- add a simple test for ioperm
- cleanup TSS (going through KVM tree as the whole undertaking was
caused by VMX's use of TSS)
- fix nVMX interrupt delivery
- fix some performance counters in the guest
... and two cleanup patches"
* tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: nVMX: Fix pending events injection
x86/kvm/vmx: remove unused variable in segment_base()
selftests/x86: Add a basic selftest for ioperm
x86/asm: Tidy up TSS limit code
kvm: convert kvm.users_count from atomic_t to refcount_t
KVM: x86: never specify a sample period for virtualized in_tx_cp counters
KVM: PPC: Book3S HV: Don't use ASDR for real-mode HPT faults on POWER9
KVM: PPC: Book3S HV: Fix software walk of guest process page tables
But first update usage sites with the new header dependency.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a trivial, mostly empty <linux/sched/cputime.h> header
to prepare for the moving of cputime functionality out of sched.h.
Update all code that relies on these facilities.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We don't actually need the full rculist.h header in sched.h anymore,
we will be able to include the smaller rcupdate.h header instead.
But first update code that relied on the implicit header inclusion.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
L2 fails to boot on a non-APICv box dues to 'commit 0ad3bed6c5
("kvm: nVMX: move nested events check to kvm_vcpu_running")'
KVM internal error. Suberror: 3
extra data[0]: 800000ef
extra data[1]: 1
RAX=0000000000000000 RBX=ffffffff81f36140 RCX=0000000000000000 RDX=0000000000000000
RSI=0000000000000000 RDI=0000000000000000 RBP=ffff88007c92fe90 RSP=ffff88007c92fe90
R8 =ffff88007fccdca0 R9 =0000000000000000 R10=00000000fffedb3d R11=0000000000000000
R12=0000000000000003 R13=0000000000000000 R14=0000000000000000 R15=ffff88007c92c000
RIP=ffffffff810645e6 RFL=00000246 [---Z-P-] CPL=0 II=0 A20=1 SMM=0 HLT=0
ES =0000 0000000000000000 ffffffff 00c00000
CS =0010 0000000000000000 ffffffff 00a09b00 DPL=0 CS64 [-RA]
SS =0000 0000000000000000 ffffffff 00c00000
DS =0000 0000000000000000 ffffffff 00c00000
FS =0000 0000000000000000 ffffffff 00c00000
GS =0000 ffff88007fcc0000 ffffffff 00c00000
LDT=0000 0000000000000000 ffffffff 00c00000
TR =0040 ffff88007fcd4200 00002087 00008b00 DPL=0 TSS64-busy
GDT= ffff88007fcc9000 0000007f
IDT= ffffffffff578000 00000fff
CR0=80050033 CR2=00000000ffffffff CR3=0000000001e0a000 CR4=003406e0
DR0=0000000000000000 DR1=0000000000000000 DR2=0000000000000000 DR3=0000000000000000
DR6=00000000fffe0ff0 DR7=0000000000000400
EFER=0000000000000d01
We should try to reinject previous events if any before trying to inject
new event if pending. If vmexit is triggered by L2 guest and L0 interested
in, we should reinject IDT-vectoring info to L2 through vmcs02 if any,
otherwise, we can consider new IRQs/NMIs which can be injected and call
nested events callback to switch from L2 to L1 if needed and inject the
proper vmexit events. However, 'commit 0ad3bed6c5 ("kvm: nVMX: move
nested events check to kvm_vcpu_running")' results in the handle events
order reversely on non-APICv box. This patch fixes it by bailing out for
pending events and not consider new events in this scenario.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Fixes: 0ad3bed6c5 ("kvm: nVMX: move nested events check to kvm_vcpu_running")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The pointer 'struct desc_struct *d' is unused since commit 8c2e41f7ae
("x86/kvm/vmx: Simplify segment_base()") so let's remove it.
Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
pmc_reprogram_counter() always sets a sample period based on the value of
pmc->counter. However, hsw_hw_config() rejects sample periods less than
2^31 - 1. So for example, if a KVM guest does
struct perf_event_attr attr;
memset(&attr, 0, sizeof(attr));
attr.type = PERF_TYPE_RAW;
attr.size = sizeof(attr);
attr.config = 0x2005101c4; // conditional branches retired IN_TXCP
attr.sample_period = 0;
int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0);
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
the guest kernel counts some conditional branch events, then updates the
virtual PMU register with a nonzero count. The host reaches
pmc_reprogram_counter() with nonzero pmc->counter, triggers EOPNOTSUPP
in hsw_hw_config(), prints "kvm_pmu: event creation failed" in
pmc_reprogram_counter(), and silently (from the guest's point of view) stops
counting events.
We fix event counting by forcing attr.sample_period to always be zero for
in_tx_cp counters. Sampling doesn't work, but it already didn't work and
can't be fixed without major changes to the approach in hsw_hw_config().
Signed-off-by: Robert O'Callahan <robert@ocallahan.org>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fix typos and add the following to the scripts/spelling.txt:
an user||a user
an userspace||a userspace
I also added "userspace" to the list since it is a common word in Linux.
I found some instances for "an userfaultfd", but I did not add it to the
list. I felt it is endless to find words that start with "user" such as
"userland" etc., so must draw a line somewhere.
Link: http://lkml.kernel.org/r/1481573103-11329-4-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
200 commits and noteworthy changes for most architectures.
* ARM:
- GICv3 save/restore
- cache flushing fixes
- working MSI injection for GICv3 ITS
- physical timer emulation
* MIPS:
- various improvements under the hood
- support for SMP guests
- a large rewrite of MMU emulation. KVM MIPS can now use MMU notifiers
to support copy-on-write, KSM, idle page tracking, swapping, ballooning
and everything else. KVM_CAP_READONLY_MEM is also supported, so that
writes to some memory regions can be treated as MMIO. The new MMU also
paves the way for hardware virtualization support.
* PPC:
- support for POWER9 using the radix-tree MMU for host and guest
- resizable hashed page table
- bugfixes.
* s390: expose more features to the guest
- more SIMD extensions
- instruction execution protection
- ESOP2
* x86:
- improved hashing in the MMU
- faster PageLRU tracking for Intel CPUs without EPT A/D bits
- some refactoring of nested VMX entry/exit code, preparing for live
migration support of nested hypervisors
- expose yet another AVX512 CPUID bit
- host-to-guest PTP support
- refactoring of interrupt injection, with some optimizations thrown in
and some duct tape removed.
- remove lazy FPU handling
- optimizations of user-mode exits
- optimizations of vcpu_is_preempted() for KVM guests
* generic:
- alternative signaling mechanism that doesn't pound on tsk->sighand->siglock
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJYral1AAoJEL/70l94x66DbNgH/Rx8YXuidFq2fe3RWOvld3RK
85OM/D5g38cTLpBE0/sJpcvX34iYN8U/l5foCZwpxB+83GHEk2Cr57JyfTogdaAJ
x8dBhHKQCA/HxSQUQLN6nFqRV+yT8WUR92Fhqx82+80BSen5Yzcfee/TDoW6T1IW
g8CYgX9FrRaGOX066ImAuUfdAdUVjyssfs9VttDTX+HiusPeuBPx/wsRe1ZEEPlH
vnltIJQb1ETV2GOZLUojKjzH6aZkjIl29XxjkYii9JTUornClG0DfW+5QT3uLrB5
gJ+G+Zmpsq8ZBx9jNDtAi7sFsoPY1Mzf+JPNCGXBra2sP2GrBAuXcxmgznRYltQ=
=8IIp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"4.11 is going to be a relatively large release for KVM, with a little
over 200 commits and noteworthy changes for most architectures.
ARM:
- GICv3 save/restore
- cache flushing fixes
- working MSI injection for GICv3 ITS
- physical timer emulation
MIPS:
- various improvements under the hood
- support for SMP guests
- a large rewrite of MMU emulation. KVM MIPS can now use MMU
notifiers to support copy-on-write, KSM, idle page tracking,
swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is
also supported, so that writes to some memory regions can be
treated as MMIO. The new MMU also paves the way for hardware
virtualization support.
PPC:
- support for POWER9 using the radix-tree MMU for host and guest
- resizable hashed page table
- bugfixes.
s390:
- expose more features to the guest
- more SIMD extensions
- instruction execution protection
- ESOP2
x86:
- improved hashing in the MMU
- faster PageLRU tracking for Intel CPUs without EPT A/D bits
- some refactoring of nested VMX entry/exit code, preparing for live
migration support of nested hypervisors
- expose yet another AVX512 CPUID bit
- host-to-guest PTP support
- refactoring of interrupt injection, with some optimizations thrown
in and some duct tape removed.
- remove lazy FPU handling
- optimizations of user-mode exits
- optimizations of vcpu_is_preempted() for KVM guests
generic:
- alternative signaling mechanism that doesn't pound on
tsk->sighand->siglock"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits)
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64
x86/paravirt: Change vcp_is_preempted() arg type to long
KVM: VMX: use correct vmcs_read/write for guest segment selector/base
x86/kvm/vmx: Defer TR reload after VM exit
x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss
x86/kvm/vmx: Simplify segment_base()
x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
x86/kvm/vmx: Don't fetch the TSS base from the GDT
x86/asm: Define the kernel TSS limit in a macro
kvm: fix page struct leak in handle_vmon
KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
KVM: Return an error code only as a constant in kvm_get_dirty_log()
KVM: Return an error code only as a constant in kvm_get_dirty_log_protect()
KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl()
KVM: x86: remove code for lazy FPU handling
KVM: race-free exit from KVM_RUN without POSIX signals
KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
KVM: PPC: Book3S PR: Ratelimit copy data failure error messages
KVM: Support vCPU-based gfn->hva cache
KVM: use separate generations for each address space
...
Guest segment selector is 16 bit field and guest segment base is natural
width field. Fix two incorrect invocations accordingly.
Without this patch, build fails when aggressive inlining is used with ICC.
Cc: stable@vger.kernel.org
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel's VMX is daft and resets the hidden TSS limit register to 0x67
on VMX reload, and the 0x67 is not configurable. KVM currently
reloads TR using the LTR instruction on every exit, but this is quite
slow because LTR is serializing.
The 0x67 limit is entirely harmless unless ioperm() is in use, so
defer the reload until a task using ioperm() is actually running.
Here's some poorly done benchmarking using kvm-unit-tests:
Before:
cpuid 1313
vmcall 1195
mov_from_cr8 11
mov_to_cr8 17
inl_from_pmtimer 6770
inl_from_qemu 6856
inl_from_kernel 2435
outl_to_kernel 1402
After:
cpuid 1291
vmcall 1181
mov_from_cr8 11
mov_to_cr8 16
inl_from_pmtimer 6457
inl_from_qemu 6209
inl_from_kernel 2339
outl_to_kernel 1391
Signed-off-by: Andy Lutomirski <luto@kernel.org>
[Force-reload TR in invalidate_tss_limit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use actual pointer types for pointers (instead of unsigned long) and
replace hardcoded constants with the appropriate self-documenting
macros.
The function is still a bit messy, but this seems a lot better than
before to me.
This is mostly borrowed from a patch by Thomas Garnier.
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was a bit buggy (it didn't list all segment types that needed
64-bit fixups), but the bug was irrelevant because it wasn't called
in any interesting context on 64-bit kernels and was only used for
data segents on 32-bit kernels.
To avoid confusion, make it explicitly 32-bit only.
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current CPU's TSS base is a foregone conclusion, so there's no need
to parse it out of the segment tables. This should save a couple cycles
(as STR is surely microcoded and poorly optimized) but, more importantly,
it's a cleanup and it means that segment_base() will never be called on
64-bit kernels.
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull scheduler updates from Ingo Molnar:
"The main changes in this (fairly busy) cycle were:
- There was a class of scheduler bugs related to forgetting to update
the rq-clock timestamp which can cause weird and hard to debug
problems, so there's a new debug facility for this: which uncovered
a whole lot of bugs which convinced us that we want to keep the
debug facility.
(Peter Zijlstra, Matt Fleming)
- Various cputime related updates: eliminate cputime and use u64
nanoseconds directly, simplify and improve the arch interfaces,
implement delayed accounting more widely, etc. - (Frederic
Weisbecker)
- Move code around for better structure plus cleanups (Ingo Molnar)
- Move IO schedule accounting deeper into the scheduler plus related
changes to improve the situation (Tejun Heo)
- ... plus a round of sched/rt and sched/deadline fixes, plus other
fixes, updats and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
sched/core: Remove unlikely() annotation from sched_move_task()
sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
sched/topology: Split out scheduler topology code from core.c into topology.c
sched/core: Remove unnecessary #include headers
sched/rq_clock: Consolidate the ordering of the rq_clock methods
delayacct: Include <uapi/linux/taskstats.h>
sched/core: Clean up comments
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
sched/clock: Add dummy clear_sched_clock_stable() stub function
sched/cputime: Remove generic asm headers
sched/cputime: Remove unused nsec_to_cputime()
s390, sched/cputime: Remove unused cputime definitions
powerpc, sched/cputime: Remove unused cputime definitions
s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
ia64, sched/cputime: Remove unused cputime definitions
ia64: Convert vtime to use nsec units directly
ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
sched/cputime: Remove jiffies based cputime
sched/cputime, vtime: Return nsecs instead of cputime_t to account
sched/cputime: Complete nsec conversion of tick based accounting
...
handle_vmon gets a reference on VMXON region page,
but does not release it. Release the reference.
Found by syzkaller; based on a patch by Dmitry.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The FPU is always active now when running KVM.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The purpose of the KVM_SET_SIGNAL_MASK API is to let userspace "kick"
a VCPU out of KVM_RUN through a POSIX signal. A signal is attached
to a dummy signal handler; by blocking the signal outside KVM_RUN and
unblocking it inside, this possible race is closed:
VCPU thread service thread
--------------------------------------------------------------
check flag
set flag
raise signal
(signal handler does nothing)
KVM_RUN
However, one issue with KVM_SET_SIGNAL_MASK is that it has to take
tsk->sighand->siglock on every KVM_RUN. This lock is often on a
remote NUMA node, because it is on the node of a thread's creator.
Taking this lock can be very expensive if there are many userspace
exits (as is the case for SMP Windows VMs without Hyper-V reference
time counter).
As an alternative, we can put the flag directly in kvm_run so that
KVM can see it:
VCPU thread service thread
--------------------------------------------------------------
raise signal
signal handler
set run->immediate_exit
KVM_RUN
check run->immediate_exit
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide versions of struct gfn_to_hva_cache functions that
take vcpu as a parameter instead of struct kvm. The existing functions
are not needed anymore, so delete them. This allows dirty pages to
be logged in the vcpu dirty ring, instead of the global dirty ring,
for ring-based dirty memory tracking.
Signed-off-by: Lei Cao <lei.cao@stratus.com>
Message-Id: <CY1PR08MB19929BD2AC47A291FD680E83F04F0@CY1PR08MB1992.namprd08.prod.outlook.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hashtable and guarding spinlock are global data structures,
we can inititalize them statically.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170124212116.4568-1-david@redhat.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested_vmx_run is split into two parts: the part that handles the
VMLAUNCH/VMRESUME instruction, and the part that modifies the vcpu state
to transition from VMX root mode to VMX non-root mode. The latter will
be used when restoring the checkpointed state of a vCPU that was in VMX
operation when a snapshot was taken.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The checks performed on the contents of the vmcs12 are extracted from
nested_vmx_run so that they can be used to validate a vmcs12 that has
been restored from a checkpoint.
Signed-off-by: Jim Mattson <jmattson@google.com>
[Change prepare_vmcs02 and nested_vmx_load_cr3's last argument to u32,
to match check_vmentry_postreqs. Update comments for singlestep
handling. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Perform the checks on vmcs12 state early, but defer the gpa->hpa lookups
until after prepare_vmcs02. Later, when we restore the checkpointed
state of a vCPU in guest mode, we will not be able to do the gpa->hpa
lookups when the restore is done.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle_vmptrld is split into two parts: the part that handles the
VMPTRLD instruction, and the part that establishes the current VMCS
pointer. The latter will be used when restoring the checkpointed state
of a vCPU that had a valid VMCS pointer when a snapshot was taken.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle_vmon is split into two parts: the part that handles the VMXON
instruction, and the part that modifies the vcpu state to transition
from legacy mode to VMX operation. The latter will be used when
restoring the checkpointed state of a vCPU that was in VMX operation
when a snapshot was taken.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split prepare_vmcs12 into two parts: the part that stores the current L2
guest state and the part that sets up the exit information fields. The
former will be used when checkpointing the vCPU's VMX state.
Modify prepare_vmcs02 so that it can construct a vmcs02 midway through
L2 execution, using the checkpointed L2 guest state saved into the
cached vmcs12 above.
Signed-off-by: Jim Mattson <jmattson@google.com>
[Rebasing: add from_vmentry argument to prepare_vmcs02 instead of using
vmx->nested.nested_run_pending, because it is no longer 1 at the
point prepare_vmcs02 is called. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU
is blocked", 2015-09-18) the posted interrupt descriptor is checked
unconditionally for PIR.ON. Therefore we don't need KVM_REQ_EVENT to
trigger the scan and, if NMIs or SMIs are not involved, we can avoid
the complicated event injection path.
Calling kvm_vcpu_kick if PIR.ON=1 is also useless, though it has been
there since APICv was introduced.
However, without the KVM_REQ_EVENT safety net KVM needs to be much
more careful about races between vmx_deliver_posted_interrupt and
vcpu_enter_guest. First, the IPI for posted interrupts may be issued
between setting vcpu->mode = IN_GUEST_MODE and disabling interrupts.
If that happens, kvm_trigger_posted_interrupt returns true, but
smp_kvm_posted_intr_ipi doesn't do anything about it. The guest is
entered with PIR.ON, but the posted interrupt IPI has not been sent
and the interrupt is only delivered to the guest on the next vmentry
(if any). To fix this, disable interrupts before setting vcpu->mode.
This ensures that the IPI is delayed until the guest enters non-root mode;
it is then trapped by the processor causing the interrupt to be injected.
Second, the IPI may be issued between kvm_x86_ops->sync_pir_to_irr(vcpu)
and vcpu->mode = IN_GUEST_MODE. In this case, kvm_vcpu_kick is called
but it (correctly) doesn't do anything because it sees vcpu->mode ==
OUTSIDE_GUEST_MODE. Again, the guest is entered with PIR.ON but no
posted interrupt IPI is pending; this time, the fix for this is to move
the RVI update after IN_GUEST_MODE.
Both issues were mostly masked by the liberal usage of KVM_REQ_EVENT,
though the second could actually happen with VT-d posted interrupts.
In both race scenarios KVM_REQ_EVENT would cancel guest entry, resulting
in another vmentry which would inject the interrupt.
This saves about 300 cycles on the self_ipi_* tests of vmexit.flat.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calls to apic_find_highest_irr are scanning IRR twice, once
in vmx_sync_pir_from_irr and once in apic_search_irr. Change
sync_pir_from_irr to get the new maximum IRR from kvm_apic_update_irr;
now that it does the computation, it can also do the RVI write.
In order to avoid complications in svm.c, make the callback optional.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vcpu_run calls kvm_vcpu_running, not kvm_arch_vcpu_runnable,
and the former does not call check_nested_events.
Once KVM_REQ_EVENT is removed from the APICv interrupt injection
path, however, this would leave no place to trigger a vmexit
from L2 to L1, causing a missed interrupt delivery while in guest
mode. This is caught by the "ack interrupt on exit" test in
vmx.flat.
[This does not change the calls to check_nested_events in
inject_pending_event. That is material for a separate cleanup.]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pending interrupts might be in the PI descriptor when the
LAPIC is restored from an external state; we do not want
them to be injected.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As in the SVM patch, the guest physical address is passed by
VMX to x86_emulate_instruction already, so mark the GPA as available
in vcpu->arch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The newly added hypercall doesn't work on x86-32:
arch/x86/kvm/x86.c: In function 'kvm_pv_clock_pairing':
arch/x86/kvm/x86.c:6163:6: error: implicit declaration of function 'kvm_get_walltime_and_clockread';did you mean 'kvm_get_time_scale'? [-Werror=implicit-function-declaration]
This adds an #ifdef around it, matching the one around the related
functions that are also only implemented on 64-bit systems.
Fixes: 55dd00a73a ("KVM: x86: add KVM_HC_CLOCK_PAIRING hypercall")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix rebase breakage from commit 55dd00a73a ("KVM: x86: add
KVM_HC_CLOCK_PAIRING hypercall", 2017-01-24), courtesy of the
"I could have sworn I had pushed the right branch" department.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a hypercall to retrieve the host realtime clock and the TSC value
used to calculate that clock read.
Used to implement clock synchronization between host and guest.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_complete_nested_posted_interrupt() can't fail, let's turn it into
a void function.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kmap() can't fail, therefore it will always return a valid pointer. Let's
just get rid of the unnecessary checks.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Saving unsupported state prevents migration when the new host does not
support a XSAVE feature of the original host, even if the feature is not
exposed to the guest.
We've masked host features with guest-visible features before, with
4344ee981e ("KVM: x86: only copy XSAVE state for the supported
features") and dropped it when implementing XSAVES. Do it again.
Fixes: df1daba7d1 ("KVM: x86: support XSAVES usage in the host")
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Now that most cputime readers use the transition API which return the
task cputime in old style cputime_t, we can safely store the cputime in
nsecs. This will eventually make cputime statistics less opaque and more
granular. Back and forth convertions between cputime_t and nsecs in order
to deal with cputime_t random granularity won't be needed anymore.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-8-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Before fast page fault restores an access track PTE back to a regular PTE,
it now also verifies that the restored PTE would grant the necessary
permissions for the faulting access to succeed. If not, it falls back
to the slow page fault path.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Redo the page table walk in fast_page_fault when retrying so that we are
working on the latest PTE even if the hierarchy changes.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reword the comment to hopefully make it more clear.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of the caller including the SPTE_SPECIAL_MASK in the masks being
supplied to kvm_mmu_set_mmio_spte_mask() and kvm_mmu_set_mask_ptes(),
those functions now themselves include the SPTE_SPECIAL_MASK.
Note that bit 63 is now reset in the default MMIO mask.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the EPT_VIOLATION_READ/WRITE/INSTR constants to
EPT_VIOLATION_ACC_READ/WRITE/INSTR to more clearly indicate that these
signify the type of the memory access as opposed to the permissions
granted by the PTE.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bc6134942d.
A CPUID instruction executed in VMX non-root mode always causes a
VM-exit, regardless of the leaf being queried.
Fixes: bc6134942d ("KVM: nested VMX: disable perf cpuid reporting")
Signed-off-by: Jim Mattson <jmattson@google.com>
[The issue solved by bc6134942d has been resolved with ff651cb613
("KVM: nVMX: Add nested msr load/restore algorithm").]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Vector population count instructions for dwords and qwords are to be
used in future Intel Xeon & Xeon Phi processors. The bit 14 of
CPUID[level:0x07, ECX] indicates that the new instructions are
supported by a processor.
The spec can be found in the Intel Software Developer Manual (SDM)
or in the Instruction Set Extensions Programming Reference (ISE).
Signed-off-by: Piotr Luc <piotr.luc@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
emulator_fix_hypercall() replaces hypercall with vmcall instruction,
but it does not handle GP exception properly when writes the new instruction.
It can return X86EMUL_PROPAGATE_FAULT without setting exception information.
This leads to incorrect emulation and triggers
WARN_ON(ctxt->exception.vector > 0x1f) in x86_emulate_insn()
as discovered by syzkaller fuzzer:
WARNING: CPU: 2 PID: 18646 at arch/x86/kvm/emulate.c:5558
Call Trace:
warn_slowpath_null+0x2c/0x40 kernel/panic.c:582
x86_emulate_insn+0x16a5/0x4090 arch/x86/kvm/emulate.c:5572
x86_emulate_instruction+0x403/0x1cc0 arch/x86/kvm/x86.c:5618
emulate_instruction arch/x86/include/asm/kvm_host.h:1127 [inline]
handle_exception+0x594/0xfd0 arch/x86/kvm/vmx.c:5762
vmx_handle_exit+0x2b7/0x38b0 arch/x86/kvm/vmx.c:8625
vcpu_enter_guest arch/x86/kvm/x86.c:6888 [inline]
vcpu_run arch/x86/kvm/x86.c:6947 [inline]
Set exception information when write in emulator_fix_hypercall() fails.
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: kvm@vger.kernel.org
Cc: syzkaller@googlegroups.com
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This is CVE-2017-2583. On Intel this causes a failed vmentry because
SS's type is neither 3 nor 7 (even though the manual says this check is
only done for usable SS, and the dmesg splat says that SS is unusable!).
On AMD it's worse: svm.c is confused and sets CPL to 0 in the vmcb.
The fix fabricates a data segment descriptor when SS is set to a null
selector, so that CPL and SS.DPL are set correctly in the VMCS/vmcb.
Furthermore, only allow setting SS to a NULL selector if SS.RPL < 3;
this in turn ensures CPL < 3 because RPL must be equal to CPL.
Thanks to Andy Lutomirski and Willy Tarreau for help in analyzing
the bug and deciphering the manuals.
Reported-by: Xiaohan Zhang <zhangxiaohan1@huawei.com>
Fixes: 79d5b4c3cd
Cc: stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduces segemented_write_std.
Switches from emulated reads/writes to standard read/writes in fxsave,
fxrstor, sgdt, and sidt. This fixes CVE-2017-2584, a longstanding
kernel memory leak.
Since commit 283c95d0e3 ("KVM: x86: emulate FXSAVE and FXRSTOR",
2016-11-09), which is luckily not yet in any final release, this would
also be an exploitable kernel memory *write*!
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: stable@vger.kernel.org
Fixes: 96051572c8
Fixes: 283c95d0e3
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM's lapic emulation uses static_key_deferred (apic_{hw,sw}_disabled).
These are implemented with delayed_work structs which can still be
pending when the KVM module is unloaded. We've seen this cause kernel
panics when the kvm_intel module is quickly reloaded.
Use the new static_key_deferred_flush() API to flush pending updates on
module unload.
Signed-off-by: David Matlack <dmatlack@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Checks on the operand to VMXON are performed after the check for
legacy mode operation and the #GP checks, according to the pseudo-code
in Intel's SDM.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
On interrupt delivery the PPR can only grow (except for auto-EOI),
so it is impossible that non-auto-EOI interrupt delivery results
in KVM_REQ_EVENT. We can therefore use __apic_update_ppr.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On PPR update, we set KVM_REQ_EVENT unconditionally anytime PPR is lowered.
But we can take into account IRR here already.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
PPR needs to be updated whenever on every IRR read because we
may have missed TPR writes that _increased_ PPR. However, these
writes need not generate KVM_REQ_EVENT, because either KVM_REQ_EVENT
has been set already in __apic_accept_irq, or we are going to
process the interrupt right away.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since we're already in VCPU context, all we have to do here is recompute
the PPR value. That will in turn generate a KVM_REQ_EVENT if necessary.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This statistic can be useful to estimate the cost of an IRQ injection
scenario, by comparing it with irq_injections. For example the stat
shows that sti;hlt triggers more KVM_REQ_EVENT than sti;nop.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a guest causes a NPF which requires emulation, KVM sometimes walks
the guest page tables to translate the GVA to a GPA. This is unnecessary
most of the time on AMD hardware since the hardware provides the GPA in
EXITINFO2.
The only exception cases involve string operations involving rep or
operations that use two memory locations. With rep, the GPA will only be
the value of the initial NPF and with dual memory locations we won't know
which memory address was translated into EXITINFO2.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
LAPIC after reset is in xAPIC mode, which poses a problem for hotplug of
VCPUs with high APIC ID, because reset VCPU is waiting for INIT/SIPI,
but there is no way to uniquely address it using xAPIC.
From many possible options, we chose the one that also works on real
hardware: accepting interrupts addressed to LAPIC's x2APIC ID even in
xAPIC mode.
KVM intentionally differs from real hardware, because real hardware
(Knights Landing) does just "x2apic_id & 0xff" to decide whether to
accept the interrupt in xAPIC mode and it can deliver one interrupt to
more than one physical destination, e.g. 0x123 to 0x123 and 0x23.
Fixes: 682f732ecf ("KVM: x86: bump MAX_VCPUS to 288")
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Slow path tried to prevent IPIs from x2APIC VCPUs from being delivered
to xAPIC VCPUs and vice-versa. Make slow path behave like fast path,
which never distinguished that.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There were three calls sites:
- recalculate_apic_map and kvm_apic_match_physical_addr, where it would
only complicate implementation of x2APIC hotplug;
- in apic_debug, where it was still somewhat preserved, but keeping the
old function just for apic_debug was not worth it
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Interrupt to self can be sent without knowing the APIC ID.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This change implements lockless access tracking for Intel CPUs without EPT
A bits. This is achieved by marking the PTEs as not-present (but not
completely clearing them) when clear_flush_young() is called after marking
the pages as accessed. When an EPT Violation is generated as a result of
the VM accessing those pages, the PTEs are restored to their original values.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMIO SPTEs currently set both bits 62 and 63 to distinguish them as special
PTEs. However, bit 63 is used as the SVE bit in Intel EPT PTEs. The SVE bit
is ignored for misconfigured PTEs but not necessarily for not-Present PTEs.
Since MMIO SPTEs use an EPT misconfiguration, so using bit 63 for them is
acceptable. However, the upcoming fast access tracking feature adds another
type of special tracking PTE, which uses not-Present PTEs and hence should
not set bit 63.
In order to use common bits to distinguish both type of special PTEs, we
now use only bit 62 as the special bit.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu_spte_update() tracks changes in the accessed/dirty state of
the SPTE being updated and calls kvm_set_pfn_accessed/dirty
appropriately. However, in some cases (e.g. when aging the SPTE),
this shouldn't be done. mmu_spte_update_no_track() is introduced
for use in such cases.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This simplifies mmu_spte_update() a little bit.
The checks for clearing of accessed and dirty bits are refactored into
separate functions, which are used inside both mmu_spte_update() and
mmu_spte_clear_track_bits(), as well as kvm_test_age_rmapp(). The new
helper functions handle both the case when A/D bits are supported in
hardware and the case when they are not.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This change adds retries into the Fast Page Fault path. Without the
retries, the code still works, but if a retry does end up being needed,
then it will result in a second page fault for the same memory access,
which will cause much more overhead compared to just retrying within the
original fault.
This would be especially useful with the upcoming fast access tracking
change, as that would make it more likely for retries to be needed
(e.g. due to read and write faults happening on different CPUs at
the same time).
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This change renames spte_is_locklessly_modifiable() to
spte_can_locklessly_be_made_writable() to distinguish it from other
forms of lockless modifications. The full set of lockless modifications
is covered by spte_has_volatile_bits().
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This change adds some symbolic constants for VM Exit Qualifications
related to EPT Violations and updates handle_ept_violation() to use
these constants instead of hard-coded numbers.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using two-dimensional paging, the mmu_page_hash (which provides
lookups for existing kvm_mmu_page structs), becomes imbalanced; with
too many collisions in buckets 0 and 512. This has been seen to cause
mmu_lock to be held for multiple milliseconds in kvm_mmu_get_page on
VMs with a large amount of RAM mapped with 4K pages.
The current hash function uses the lower 10 bits of gfn to index into
mmu_page_hash. When doing shadow paging, gfn is the address of the
guest page table being shadow. These tables are 4K-aligned, which
makes the low bits of gfn a good hash. However, with two-dimensional
paging, no guest page tables are being shadowed, so gfn is the base
address that is mapped by the table. Thus page tables (level=1) have
a 2MB aligned gfn, page directories (level=2) have a 1GB aligned gfn,
etc. This means hashes will only differ in their 10th bit.
hash_64() provides a better hash. For example, on a VM with ~200G
(99458 direct=1 kvm_mmu_page structs):
hash max_mmu_page_hash_collisions
--------------------------------------------
low 10 bits 49847
hash_64 105
perfect 97
While we're changing the hash, increase the table size by 4x to better
support large VMs (further reduces number of collisions in 200G VM to
29).
Note that hash_64() does not provide a good distribution prior to commit
ef703f49a6 ("Eliminate bad hash multipliers from hash_32() and
hash_64()").
Signed-off-by: David Matlack <dmatlack@google.com>
Change-Id: I5aa6b13c834722813c6cca46b8b1ed6f53368ade
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Report the maximum number of mmu_page_hash collisions as a per-VM stat.
This will make it easy to identify problems with the mmu_page_hash in
the future.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The check in kvm_set_pic_irq() and kvm_set_ioapic_irq() was just a
temporary measure until the code improved enough for us to do this.
This changes APIC in a case when KVM_SET_GSI_ROUTING is called to set up pic
and ioapic routes before KVM_CREATE_IRQCHIP. Those rules would get overwritten
by KVM_CREATE_IRQCHIP at best, so it is pointless to allow it. Userspaces
hopefully noticed that things don't work if they do that and don't do that.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We don't treat kvm->arch.vpic specially anymore, so the setup can look
like ioapic. This gets a bit more information out of return values.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
irqchip_in_kernel() tried to save a bit by reusing pic_irqchip(), but it
just complicated the code.
Add a separate state for the irqchip mode.
Reviewed-by: David Hildenbrand <david@redhat.com>
[Used Paolo's version of condition in irqchip_in_kernel().]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Split irqchip cannot be created after creating the kernel irqchip, but
we forgot to restrict the other way. This is an API change.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MIPS: (both for stable)
- fix host kernel crashes when receiving a signal with 64-bit userspace
- flush instruction cache on all vcpus after generating entry code
x86:
- fix NULL dereference in MMU caused by SMM transitions (for stable)
- correct guest instruction pointer after emulating some VMX errors
- minor cleanup
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJYb/N7AAoJEED/6hsPKofoa4QH/0/jwHr64lFeiOzMxqZfTF0y
wufcTqw3zGq5iPaNlEwn+6AkKnTq2IPws92FludfPHPb7BrLUPqrXxRlSRN+XPVw
pHVcV9u0q4yghMi7/6Flu3JASnpD6PrPZ7ezugZwgXFrR7pewd/+sTq6xBUnI9rZ
nNEYsfh8dYiBicxSGXlmZcHLuJJHKshjsv9F6ngyBGXAAf/F+nLiJReUzPO0m2+P
gmXi5zhVu6z05zlaCW1KAmJ1QV1UJla1vZnzrnK3twRK/05l7YX+xCbHIo1wB03R
2YhKDnSrnG3Zt+KpXfRhADXazNgM5ASvORdvI6RvjLNVxlnOveQtAcfRyvZezT4=
=LXLf
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"MIPS:
- fix host kernel crashes when receiving a signal with 64-bit
userspace
- flush instruction cache on all vcpus after generating entry code
(both for stable)
x86:
- fix NULL dereference in MMU caused by SMM transitions (for stable)
- correct guest instruction pointer after emulating some VMX errors
- minor cleanup"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: VMX: remove duplicated declaration
KVM: MIPS: Flush KVM entry code from icache globally
KVM: MIPS: Don't clobber CP0_Status.UX
KVM: x86: reset MMU on KVM_SET_VCPU_EVENTS
KVM: nVMX: fix instruction skipping during emulated vm-entry
Declaration of VMX_VPID_EXTENT_SUPPORTED_MASK occures twice in the code.
Probably, it was happened after unsuccessful merge.
Signed-off-by: Jan Dakinevich <jan.dakinevich@gmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Pull timer type cleanups from Thomas Gleixner:
"This series does a tree wide cleanup of types related to
timers/timekeeping.
- Get rid of cycles_t and use a plain u64. The type is not really
helpful and caused more confusion than clarity
- Get rid of the ktime union. The union has become useless as we use
the scalar nanoseconds storage unconditionally now. The 32bit
timespec alike storage got removed due to the Y2038 limitations
some time ago.
That leaves the odd union access around for no reason. Clean it up.
Both changes have been done with coccinelle and a small amount of
manual mopping up"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ktime: Get rid of ktime_equal()
ktime: Cleanup ktime_set() usage
ktime: Get rid of the union
clocksource: Use a plain u64 instead of cycle_t
ktime_set(S,N) was required for the timespec storage type and is still
useful for situations where a Seconds and Nanoseconds part of a time value
needs to be converted. For anything where the Seconds argument is 0, this
is pointless and can be replaced with a simple assignment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
When the state names got added a script was used to add the extra argument
to the calls. The script basically converted the state constant to a
string, but the cleanup to convert these strings into meaningful ones did
not happen.
Replace all the useless strings with 'subsys/xxx/yyy:state' strings which
are used in all the other places already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20161221192112.085444152@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Otherwise, mismatch between the smm bit in hflags and the MMU role
can cause a NULL pointer dereference.
Cc: stable@vger.kernel.org
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_skip_emulated_instruction() should not be called after emulating
a VM-entry failure during or after loading guest state
(nested_vmx_entry_failure()). Otherwise the L1 hypervisor is resumed
some number of bytes past vmcs->host_rip.
Fixes: eb27756217
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L2 exits to L0 due to "exception or NMI", software exceptions
(#BP and #OF) for which L1 has requested an intercept should be
handled by L1 rather than L0. Previously, only hardware exceptions
were forwarded to L1.
Signed-off-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>