The LRU list changes interacted badly with our nr_dentry_unused
accounting, and even worse with the new DCACHE_LRU_LIST bit logic.
This introduces helper functions to make sure everything follows the
proper dcache d_lru list rules: the dentry cache is complicated by the
fact that some of the hotpaths don't even want to look at the LRU list
at all, and the fact that we use the same list entry in the dentry for
both the LRU list and for our temporary shrinking lists when removing
things from the LRU.
The helper functions temporarily have some extra sanity checking for the
flag bits that have to match the current LRU state of the dentry. We'll
remove that before the final 3.12 release, but considering how easy it
is to get wrong, this first cleanup version has some very particular
sanity checking.
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When reading a single page with cifs_readpage(), we make a call to
fscache_read_or_alloc_page() which once done, asynchronously calls
the completion function cifs_readpage_from_fscache_complete(). This
completion function unlocks the page once it has been populated from
cache. The module then attempts to unlock the page a second time in
cifs_readpage() which leads to warning messages.
In case of a successful call to fscache_read_or_alloc_page() we should skip
the second unlock_page() since this will be called by the
cifs_readpage_from_fscache_complete() once the page has been populated by
fscache.
With the modifications to cifs_readpage_worker(), we will need to re-grab the
page lock in cifs_write_begin().
The problem was first noticed when testing new fscache patches for cifs.
https://bugzilla.redhat.com/show_bug.cgi?id=1005737
Signed-off-by: Sachin Prabhu <sprabhu@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
We do not need to take a reference to the pagecache in
cifs_readpage_worker() since the calling function will have already
taken one before passing the pointer to the page as an argument to the
function.
Signed-off-by: Sachin Prabhu <sprabhu@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Pull aio changes from Ben LaHaise:
"First off, sorry for this pull request being late in the merge window.
Al had raised a couple of concerns about 2 items in the series below.
I addressed the first issue (the race introduced by Gu's use of
mm_populate()), but he has not provided any further details on how he
wants to rework the anon_inode.c changes (which were sent out months
ago but have yet to be commented on).
The bulk of the changes have been sitting in the -next tree for a few
months, with all the issues raised being addressed"
* git://git.kvack.org/~bcrl/aio-next: (22 commits)
aio: rcu_read_lock protection for new rcu_dereference calls
aio: fix race in ring buffer page lookup introduced by page migration support
aio: fix rcu sparse warnings introduced by ioctx table lookup patch
aio: remove unnecessary debugging from aio_free_ring()
aio: table lookup: verify ctx pointer
staging/lustre: kiocb->ki_left is removed
aio: fix error handling and rcu usage in "convert the ioctx list to table lookup v3"
aio: be defensive to ensure request batching is non-zero instead of BUG_ON()
aio: convert the ioctx list to table lookup v3
aio: double aio_max_nr in calculations
aio: Kill ki_dtor
aio: Kill ki_users
aio: Kill unneeded kiocb members
aio: Kill aio_rw_vect_retry()
aio: Don't use ctx->tail unnecessarily
aio: io_cancel() no longer returns the io_event
aio: percpu ioctx refcount
aio: percpu reqs_available
aio: reqs_active -> reqs_available
aio: fix build when migration is disabled
...
Pull generic hardirq option removal from Martin Schwidefsky:
"All architectures now use generic hardirqs, s390 has been last to
switch.
With that the code under !CONFIG_GENERIC_HARDIRQS and the related
HAVE_GENERIC_HARDIRQS and GENERIC_HARDIRQS config options can be
removed. Yay!"
* 'genirq' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
Remove GENERIC_HARDIRQ config option
Pull kconfig fix from Michal Marek:
"This is a fix for a regression caused by my previous pull request.
A sed command in scripts/config that used colons as separator was
accidentally changed to use slashes, which fails when you use slashes
in a value. Changing it back to colons is of course not a proper fix,
but at least it will be broken in the same way it had been for four
years. A proper fix is pending"
* 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild:
scripts/config: fix variable substitution command
Pull crypto fixes from Herbert Xu:
"This fixes a 7+ year race condition in the crypto API that causes
sporadic crashes when multiple threads load the same algorithm.
It also fixes the crct10dif algorithm again to prevent boot failures
on systems where the initramfs tool ignores module softdeps"
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: crct10dif - Add fallback for broken initrds
crypto: api - Fix race condition in larval lookup
Commit 567b21e973
"mips: convert vpe_class to use dev_groups"
broke the build on MIPS since vpe_attrs should be an array
of 'struct device_attribute' pointers.
Fixes the following build problem:
arch/mips/kernel/vpe.c:1372:2: error: missing braces around initializer
[-Werror=missing-braces]
arch/mips/kernel/vpe.c:1372:2: error: (near initialization for 'vpe_attrs[0]')
[-Werror=missing-braces]
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: John Crispin <blogic@openwrt.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5819/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
After the last architecture switched to generic hard irqs the config
options HAVE_GENERIC_HARDIRQS & GENERIC_HARDIRQS and the related code
for !CONFIG_GENERIC_HARDIRQS can be removed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Commit 229455bc02b87f7128f190c4491b4ceffff38648 accidentally changed the
separator between sed `s' command and its parameters from ':' to '/'.
Revert this change.
Reported-and-tested-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Clement Chauplannaz <chauplac@gmail.com>
Signed-off-by: Michal Marek <mmarek@suse.cz>
The TCBIND register is only available if the core has MT support. It
should not be read otherwise. Secondly, the number of TCs (siblings)
are calculated differently depending on if the kernel is configured
as SMVP or SMTC.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5822/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This change complements commit d0da7c002f7b2a93582187a9e3f73891a01d8ee4
and brings clear_ioasic_irq back, renaming it to clear_ioasic_dma_irq at
the same time, to make I/O ASIC DMA interrupts functional.
Unlike ordinary I/O ASIC interrupts DMA interrupts need to be deasserted
by software by writing 0 to the respective bit in I/O ASIC's System
Interrupt Register (SIR), similarly to how CP0.Cause.IP0 and CP0.Cause.IP1
bits are handled in the CPU (the difference is SIR DMA interrupt bits are
R/W0C so there's no need for an RMW cycle). Otherwise the handler is
reentered over and over again.
The only current user is the DEC LANCE Ethernet driver and its extremely
uncommon DMA memory error handler that does not care when exactly the
interrupt is cleared. Anticipating the use of DMA interrupts by the Zilog
SCC driver this change however exports clear_ioasic_dma_irq for device
drivers to choose the right application-specific sequence to clear the
request explicitly rather than calling it implicitly in the .irq_eoi
handler of `struct irq_chip'. Previously these interrupts were cleared in
the .end handler of the said structure, before it was removed.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5826/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Not all I/O ASIC versions have the free-running counter implemented, an
early revision used in the 5000/1xx models aka 3MIN and 4MIN did not have
it. Therefore we cannot unconditionally use it as a clock source.
Fortunately if not implemented its register slot has a fixed value so it
is enough if we check for the value at the end of the calibration period
being the same as at the beginning.
This also means we need to look for another high-precision clock source on
the systems affected. The 5000/1xx can have an R4000SC processor
installed where the CP0 Count register can be used as a clock source.
Unfortunately all the R4k DECstations suffer from the missed timer
interrupt on CP0 Count reads erratum, so we cannot use the CP0 timer as a
clock source and a clock event both at a time. However we never need an
R4k clock event device because all DECstations have a DS1287A RTC chip
whose periodic interrupt can be used as a clock source.
This gives us the following four configuration possibilities for I/O ASIC
DECstations:
1. No I/O ASIC counter and no CP0 timer, e.g. R3k 5000/1xx (3MIN).
2. No I/O ASIC counter but the CP0 timer, i.e. R4k 5000/150 (4MIN).
3. The I/O ASIC counter but no CP0 timer, e.g. R3k 5000/240 (3MAX+).
4. The I/O ASIC counter and the CP0 timer, e.g. R4k 5000/260 (4MAX+).
For #1 and #2 this change stops the I/O ASIC free-running counter from
being installed as a clock source of a 0Hz frequency. For #2 it also
arranges for the CP0 timer to be used as a clock source rather than a
clock event device, because having an accurate wall clock is more
important than a high-precision interval timer. For #3 there is no
change. For #4 the change makes the I/O ASIC free-running counter
installed as a clock source so that the CP0 timer can be used as a clock
event device.
Unfortunately the use of the CP0 timer as a clock event device relies on a
succesful completion of c0_compare_interrupt. That never happens, because
while waiting for a CP0 Compare interrupt to happen the function spins in
a loop reading the CP0 Count register. This makes the CP0 Count erratum
trigger reliably causing the interrupt waited for to be lost in all cases.
As a result #4 resorts to using the CP0 timer as a clock source as well,
just as #2. However we want to keep this separate arrangement in case
(hope) c0_compare_interrupt is eventually rewritten such that it avoids
the erratum.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5825/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
We have the build infrastructure to generate uImages so we should ignore
the resulting generated files.
Signed-off-by: Mark Brown <broonie@linaro.org>
Acked-by: Mike Frysinger <vapier@gentoo.org>
- Enable GMAC
- Set propler DMA PBL
- Disable DMA store and forward mode
- Select PTP input clock from MII
clock.
Signed-off-by: Sonic Zhang <sonic.zhang@analog.com>
Signed-off-by: Steven Miao <realmz6@gmail.com>
If SCB exists in select blackfin cpu, developer can change the SCB
priority in kernel configuration.
Signed-off-by: Sonic Zhang <sonic.zhang@analog.com>
Signed-off-by: Steven Miao <realmz6@gmail.com>
Pull MIPS updates from Ralf Baechle:
"This has been sitting in -next for a while with no objections and all
MIPS defconfigs except one are building fine; that one platform got
broken by another patch in your tree and I'm going to submit a patch
separately.
- a handful of fixes that didn't make 3.11
- a few bits of Octeon 3 support with more to come for a later
release
- platform enhancements for Octeon, ath79, Lantiq, Netlogic and
Ralink SOCs
- a GPIO driver for the Octeon
- some dusting off of the DECstation code
- the usual dose of cleanups"
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (65 commits)
MIPS: DMA: Fix BUG due to smp_processor_id() in preemptible code
MIPS: kexec: Fix random crashes while loading crashkernel
MIPS: kdump: Skip walking indirection page for crashkernels
MIPS: DECstation HRT calibration bug fixes
MIPS: Export copy_from_user_page() (needed by lustre)
MIPS: Add driver for the built-in PCI controller of the RT3883 SoC
MIPS: DMA: For BMIPS5000 cores flush region just like non-coherent R10000
MIPS: ralink: Add support for reset-controller API
MIPS: ralink: mt7620: Add cpu-feature-override header
MIPS: ralink: mt7620: Add spi clock definition
MIPS: ralink: mt7620: Add wdt clock definition
MIPS: ralink: mt7620: Improve clock frequency detection
MIPS: ralink: mt7620: This SoC has EHCI and OHCI hosts
MIPS: ralink: mt7620: Add verbose ram info
MIPS: ralink: Probe clocksources from OF
MIPS: ralink: Add support for systick timer found on newer ralink SoC
MIPS: ralink: Add support for periodic timer irq
MIPS: Netlogic: Built-in DTB for XLP2xx SoC boards
MIPS: Netlogic: Add support for USB on XLP2xx
MIPS: Netlogic: XLP2xx update for I2C controller
...
Here we have defrag support for v5 superblock, a number of bugfixes and
a cleanup or two.
- defrag support for CRC filesystems
- fix endian worning in xlog_recover_get_buf_lsn
- fixes for sparse warnings
- fix for assert in xfs_dir3_leaf_hdr_from_disk
- fix for log recovery of remote symlinks
- fix for log recovery of btree root splits
- fixes formemory allocation failures with ACLs
- fix for assert in xfs_buf_item_relse
- fix for assert in xfs_inode_buf_verify
- fix an assignment in an assert that should be a test in
xfs_bmbt_change_owner
- remove dead code in xlog_recover_inode_pass2
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABAgAGBQJSMjQUAAoJENaLyazVq6ZOu2IP/1OHZYy+Bkmj0tO9pdsdEa4s
w4FEBPsQePMJPjwdN693rKpW1exZue5sUmPMErH3ENzc2DPAwpUAlc9XAIohtdFx
rTqrz2q+qTfZTq8oYBIA/RCOifJ2cHWN8tDYZPJpp5wceV7CRGYQeR1foiudE3ZH
QDIPXioy8P9IkfGaXCtr/iWf9kycMO2lgNTNfdL6qtwX99HCqHZanTlsWx1BIYGQ
Fa5TaOsXis6idPMCFMuEC15iEwA+YXc0HmXuHkMFLj+9mwFc4h/Aq65bwUkYZLmy
+T1Wo/uQ/21rl6im/rWqgCh6fFS8NJQp8NIJeCIyihUEHbarfPyJIJRJjoP457YO
cv8OkixCkt4zX6CkTxaL5ZFEBW9FYbRb13Gg96J6hb4WfdAFMtQg7FAjThSU/+Qr
HwjaAso3GXimEaZD1C3c0TtZEQ0x9E6pENVI7/ewB1I0p92p7GJBMq4C7CTAYThV
5zhdcOnViSrJTJvVQxm+gfOYzubkWWiVmbVku3RCO6//kvPBOvJ9juSYsl0mKeRu
v2DZZB3AYJE/qnbYfZBlktX9obE6k+keKF6w8Eiufr2IqwJaqfaM4h9eogzAwTJA
vyXKeLxUEmgHuqivFSZjw3sEK6sY654GCMMTP+2IpD19vlAIioYXdgp0ZbkkdiE3
6twrzdFZAr1zy80xlM8W
=2Uq6
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-v3.12-rc1-2' of git://oss.sgi.com/xfs/xfs
Pull xfs update #2 from Ben Myers:
"Here we have defrag support for v5 superblock, a number of bugfixes
and a cleanup or two.
- defrag support for CRC filesystems
- fix endian worning in xlog_recover_get_buf_lsn
- fixes for sparse warnings
- fix for assert in xfs_dir3_leaf_hdr_from_disk
- fix for log recovery of remote symlinks
- fix for log recovery of btree root splits
- fixes formemory allocation failures with ACLs
- fix for assert in xfs_buf_item_relse
- fix for assert in xfs_inode_buf_verify
- fix an assignment in an assert that should be a test in
xfs_bmbt_change_owner
- remove dead code in xlog_recover_inode_pass2"
* tag 'xfs-for-linus-v3.12-rc1-2' of git://oss.sgi.com/xfs/xfs:
xfs: remove dead code from xlog_recover_inode_pass2
xfs: = vs == typo in ASSERT()
xfs: don't assert fail on bad inode numbers
xfs: aborted buf items can be in the AIL.
xfs: factor all the kmalloc-or-vmalloc fallback allocations
xfs: fix memory allocation failures with ACLs
xfs: ensure we copy buffer type in da btree root splits
xfs: set remote symlink buffer type for recovery
xfs: recovery of swap extents operations for CRC filesystems
xfs: swap extents operations for CRC filesystems
xfs: check magic numbers in dir3 leaf verifier first
xfs: fix some minor sparse warnings
xfs: fix endian warning in xlog_recover_get_buf_lsn()
Pull SCSI target updates from Nicholas Bellinger:
"Lots of activity again this round for I/O performance optimizations
(per-cpu IDA pre-allocation for vhost + iscsi/target), and the
addition of new fabric independent features to target-core
(COMPARE_AND_WRITE + EXTENDED_COPY).
The main highlights include:
- Support for iscsi-target login multiplexing across individual
network portals
- Generic Per-cpu IDA logic (kent + akpm + clameter)
- Conversion of vhost to use per-cpu IDA pre-allocation for
descriptors, SGLs and userspace page pointer list
- Conversion of iscsi-target + iser-target to use per-cpu IDA
pre-allocation for descriptors
- Add support for generic COMPARE_AND_WRITE (AtomicTestandSet)
emulation for virtual backend drivers
- Add support for generic EXTENDED_COPY (CopyOffload) emulation for
virtual backend drivers.
- Add support for fast memory registration mode to iser-target (Vu)
The patches to add COMPARE_AND_WRITE and EXTENDED_COPY support are of
particular significance, which make us the first and only open source
target to support the full set of VAAI primitives.
Currently Linux clients are lacking upstream support to actually
utilize these primitives. However, with server side support now in
place for folks like MKP + ZAB working on the client, this logic once
reserved for the highest end of storage arrays, can now be run in VMs
on their laptops"
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (50 commits)
target/iscsi: Bump versions to v4.1.0
target: Update copyright ownership/year information to 2013
iscsi-target: Bump default TCP listen backlog to 256
target: Fix >= v3.9+ regression in PR APTPL + ALUA metadata write-out
iscsi-target; Bump default CmdSN Depth to 64
iscsi-target: Remove unnecessary wait_for_completion in iscsi_get_thread_set
iscsi-target: Add thread_set->ts_activate_sem + use common deallocate
iscsi-target: Fix race with thread_pre_handler flush_signals + ISCSI_THREAD_SET_DIE
target: remove unused including <linux/version.h>
iser-target: introduce fast memory registration mode (FRWR)
iser-target: generalize rdma memory registration and cleanup
iser-target: move rdma wr processing to a shared function
target: Enable global EXTENDED_COPY setup/release
target: Add Third Party Copy (3PC) bit in INQUIRY response
target: Enable EXTENDED_COPY setup in spc_parse_cdb
target: Add support for EXTENDED_COPY copy offload emulation
target: Avoid non-existent tg_pt_gp_mem in target_alua_state_check
target: Add global device list for EXTENDED_COPY
target: Make helpers non static for EXTENDED_COPY command setup
target: Make spc_parse_naa_6h_vendor_specific non static
...
Merge more patches from Andrew Morton:
"The rest of MM. Plus one misc cleanup"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
mm/Kconfig: add MMU dependency for MIGRATION.
kernel: replace strict_strto*() with kstrto*()
mm, thp: count thp_fault_fallback anytime thp fault fails
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
thp: do_huge_pmd_anonymous_page() cleanup
thp: move maybe_pmd_mkwrite() out of mk_huge_pmd()
mm: cleanup add_to_page_cache_locked()
thp: account anon transparent huge pages into NR_ANON_PAGES
truncate: drop 'oldsize' truncate_pagecache() parameter
mm: make lru_add_drain_all() selective
memcg: document cgroup dirty/writeback memory statistics
memcg: add per cgroup writeback pages accounting
memcg: check for proper lock held in mem_cgroup_update_page_stat
memcg: remove MEMCG_NR_FILE_MAPPED
memcg: reduce function dereference
memcg: avoid overflow caused by PAGE_ALIGN
memcg: rename RESOURCE_MAX to RES_COUNTER_MAX
memcg: correct RESOURCE_MAX to ULLONG_MAX
mm: memcg: do not trap chargers with full callstack on OOM
mm: memcg: rework and document OOM waiting and wakeup
...
MIGRATION must depend on MMU, or allmodconfig for the nommu sh
architecture fails to build:
CC mm/migrate.o
mm/migrate.c: In function 'remove_migration_pte':
mm/migrate.c:134:3: error: implicit declaration of function 'pmd_trans_huge' [-Werror=implicit-function-declaration]
if (pmd_trans_huge(*pmd))
^
mm/migrate.c:149:2: error: implicit declaration of function 'is_swap_pte' [-Werror=implicit-function-declaration]
if (!is_swap_pte(pte))
^
...
Also let CMA depend on MMU, or when NOMMU, if we select CMA, it will
select MIGRATION by force.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The usage of strict_strto*() is not preferred, because strict_strto*() is
obsolete. Thus, kstrto*() should be used.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, thp_fault_fallback in vmstat only gets incremented if a
hugepage allocation fails. If current's memcg hits its limit or the page
fault handler returns an error, it is incorrectly accounted as a
successful thp_fault_alloc.
Count thp_fault_fallback anytime the page fault handler falls back to
using regular pages and only count thp_fault_alloc when a hugepage has
actually been faulted.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minor cleanup: unindent most code of the fucntion by inverting one
condition. It's preparation for the next patch.
No functional changes.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's confusing that mk_huge_pmd() has semantics different from mk_pte() or
mk_pmd(). I spent some time on debugging issue cased by this
inconsistency.
Let's move maybe_pmd_mkwrite() out of mk_huge_pmd() and adjust prototype
to match mk_pte().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use NR_ANON_PAGES as base for reporting AnonPages to user. There's
not much sense in not accounting transparent huge pages there, but add
them on printing to user.
Let's account transparent huge pages in NR_ANON_PAGES in the first place.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Ning Qu <quning@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
truncate_pagecache() doesn't care about old size since commit
cedabed49b ("vfs: Fix vmtruncate() regression"). Let's drop it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
make lru_add_drain_all() only selectively interrupt the cpus that have
per-cpu free pages that can be drained.
This is important in nohz mode where calling mlockall(), for example,
otherwise will interrupt every core unnecessarily.
This is important on workloads where nohz cores are handling 10 Gb traffic
in userspace. Those CPUs do not enter the kernel and place pages into LRU
pagevecs and they really, really don't want to be interrupted, or they
drop packets on the floor.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memcg routines to count writeback pages, later dirty pages will also
be accounted.
After Kame's commit 89c06bd52f ("memcg: use new logic for page stat
accounting"), we can use 'struct page' flag to test page state instead
of per page_cgroup flag. But memcg has a feature to move a page from a
cgroup to another one and may have race between "move" and "page stat
accounting". So in order to avoid the race we have designed a new lock:
mem_cgroup_begin_update_page_stat()
modify page information -->(a)
mem_cgroup_update_page_stat() -->(b)
mem_cgroup_end_update_page_stat()
It requires both (a) and (b)(writeback pages accounting) to be pretected
in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for
!CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu
read lock in the most cases (no task is moving), and spin_lock_irqsave
on top in the slow path.
There're two writeback interfaces to modify: test_{clear/set}_page_writeback().
And the lock order is:
--> memcg->move_lock
--> mapping->tree_lock
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should call mem_cgroup_begin_update_page_stat() before
mem_cgroup_update_page_stat() to get proper locks, however the latter
doesn't do any checking that we use proper locking, which would be hard.
Suggested by Michal Hock we could at least test for rcu_read_lock_held()
because RCU is held if !mem_cgroup_disabled().
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While accounting memcg page stat, it's not worth to use
MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the
complexity and presumed performance overhead. We can use
MEM_CGROUP_STAT_FILE_MAPPED directly.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function dereferences res far too often, so optimize it.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Jeff Liu <jeff.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since PAGE_ALIGN is aligning up(the next page boundary), so after
PAGE_ALIGN, the value might be overflow, such as write the MAX value to
*.limit_in_bytes.
$ cat /cgroup/memory/memory.limit_in_bytes
18446744073709551615
# echo 18446744073709551615 > /cgroup/memory/memory.limit_in_bytes
bash: echo: write error: Invalid argument
Some user programs might depend on such behaviours(like libcg, we read
the value in snapshot, then use the value to reset cgroup later), and
that will cause confusion. So we need to fix it.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Jeff Liu <jeff.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RESOURCE_MAX is far too general name, change it to RES_COUNTER_MAX.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Jeff Liu <jeff.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current RESOURCE_MAX is ULONG_MAX, but the value we used to set resource
limit is unsigned long long, so we can set bigger value than that which is
strange. The XXX_MAX should be reasonable max value, bigger than that
should be overflow.
Notice that this change will affect user output of default *.limit_in_bytes:
before change:
$ cat /cgroup/memory/memory.limit_in_bytes
9223372036854775807
after change:
$ cat /cgroup/memory/memory.limit_in_bytes
18446744073709551615
But it doesn't alter the API in term of input - we can still use "echo -1
> *.limit_in_bytes" to reset the numbers to "unlimited".
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Jeff Liu <jeff.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg OOM handling is incredibly fragile and can deadlock. When a
task fails to charge memory, it invokes the OOM killer and loops right
there in the charge code until it succeeds. Comparably, any other task
that enters the charge path at this point will go to a waitqueue right
then and there and sleep until the OOM situation is resolved. The problem
is that these tasks may hold filesystem locks and the mmap_sem; locks that
the selected OOM victim may need to exit.
For example, in one reported case, the task invoking the OOM killer was
about to charge a page cache page during a write(), which holds the
i_mutex. The OOM killer selected a task that was just entering truncate()
and trying to acquire the i_mutex:
OOM invoking task:
mem_cgroup_handle_oom+0x241/0x3b0
mem_cgroup_cache_charge+0xbe/0xe0
add_to_page_cache_locked+0x4c/0x140
add_to_page_cache_lru+0x22/0x50
grab_cache_page_write_begin+0x8b/0xe0
ext3_write_begin+0x88/0x270
generic_file_buffered_write+0x116/0x290
__generic_file_aio_write+0x27c/0x480
generic_file_aio_write+0x76/0xf0 # takes ->i_mutex
do_sync_write+0xea/0x130
vfs_write+0xf3/0x1f0
sys_write+0x51/0x90
system_call_fastpath+0x18/0x1d
OOM kill victim:
do_truncate+0x58/0xa0 # takes i_mutex
do_last+0x250/0xa30
path_openat+0xd7/0x440
do_filp_open+0x49/0xa0
do_sys_open+0x106/0x240
sys_open+0x20/0x30
system_call_fastpath+0x18/0x1d
The OOM handling task will retry the charge indefinitely while the OOM
killed task is not releasing any resources.
A similar scenario can happen when the kernel OOM killer for a memcg is
disabled and a userspace task is in charge of resolving OOM situations.
In this case, ALL tasks that enter the OOM path will be made to sleep on
the OOM waitqueue and wait for userspace to free resources or increase
the group's limit. But a userspace OOM handler is prone to deadlock
itself on the locks held by the waiting tasks. For example one of the
sleeping tasks may be stuck in a brk() call with the mmap_sem held for
writing but the userspace handler, in order to pick an optimal victim,
may need to read files from /proc/<pid>, which tries to acquire the same
mmap_sem for reading and deadlocks.
This patch changes the way tasks behave after detecting a memcg OOM and
makes sure nobody loops or sleeps with locks held:
1. When OOMing in a user fault, invoke the OOM killer and restart the
fault instead of looping on the charge attempt. This way, the OOM
victim can not get stuck on locks the looping task may hold.
2. When OOMing in a user fault but somebody else is handling it
(either the kernel OOM killer or a userspace handler), don't go to
sleep in the charge context. Instead, remember the OOMing memcg in
the task struct and then fully unwind the page fault stack with
-ENOMEM. pagefault_out_of_memory() will then call back into the
memcg code to check if the -ENOMEM came from the memcg, and then
either put the task to sleep on the memcg's OOM waitqueue or just
restart the fault. The OOM victim can no longer get stuck on any
lock a sleeping task may hold.
Debugged by Michal Hocko.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: azurIt <azurit@pobox.sk>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg OOM handler open-codes a sleeping lock for OOM serialization
(trylock, wait, repeat) because the required locking is so specific to
memcg hierarchies. However, it would be nice if this construct would be
clearly recognizable and not be as obfuscated as it is right now. Clean
up as follows:
1. Remove the return value of mem_cgroup_oom_unlock()
2. Rename mem_cgroup_oom_lock() to mem_cgroup_oom_trylock().
3. Pull the prepare_to_wait() out of the memcg_oom_lock scope. This
makes it more obvious that the task has to be on the waitqueue
before attempting to OOM-trylock the hierarchy, to not miss any
wakeups before going to sleep. It just didn't matter until now
because it was all lumped together into the global memcg_oom_lock
spinlock section.
4. Pull the mem_cgroup_oom_notify() out of the memcg_oom_lock scope.
It is proctected by the hierarchical OOM-lock.
5. The memcg_oom_lock spinlock is only required to propagate the OOM
lock in any given hierarchy atomically. Restrict its scope to
mem_cgroup_oom_(trylock|unlock).
6. Do not wake up the waitqueue unconditionally at the end of the
function. Only the lockholder has to wake up the next in line
after releasing the lock.
Note that the lockholder kicks off the OOM-killer, which in turn
leads to wakeups from the uncharges of the exiting task. But a
contender is not guaranteed to see them if it enters the OOM path
after the OOM kills but before the lockholder releases the lock.
Thus there has to be an explicit wakeup after releasing the lock.
7. Put the OOM task on the waitqueue before marking the hierarchy as
under OOM as that is the point where we start to receive wakeups.
No point in listening before being on the waitqueue.
8. Likewise, unmark the hierarchy before finishing the sleep, for
symmetry.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
System calls and kernel faults (uaccess, gup) can handle an out of memory
situation gracefully and just return -ENOMEM.
Enable the memcg OOM killer only for user faults, where it's really the
only option available.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The x86 fault handler bails in the middle of error handling when the
task has a fatal signal pending. For a subsequent patch this is a
problem in OOM situations because it relies on pagefault_out_of_memory()
being called even when the task has been killed, to perform proper
per-task OOM state unwinding.
Shortcutting the fault like this is a rather minor optimization that
saves a few instructions in rare cases. Just remove it for
user-triggered faults.
Use the opportunity to split the fault retry handling from actual fault
errors and add locking documentation that reads suprisingly similar to
ARM's.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>