commit 55fb1027c1cf9797dbdeab48180da530e81b1c39 doesn't update tlbcfg correctly.
Fix it.
And since guest OS likes 'fixed' hardware,
initialize tlbcfg everytime when guest access is useless.
So move this part to init code.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
commit 513579e3a3 change the way
we emulate PVR/PIR,
which left PVR/PIR uninitialized on E500, and make guest puzzled.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Latest kernel start to access l1csr0 to contron L1.
We just tell guest no operation is on going.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
If we fail to alloc page for vcpu->arch.mmu.pae_root, call to
free_mmu_pages() is unnecessary, which just do free the page
malloc for vcpu->arch.mmu.pae_root.
Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
'mask' is always a constant, so we can check whether it includes a bit that
might be owned by the guest very cheaply, and avoid the decache call. Saves
a few hundred bytes of module text.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Assume that if the guest executes clts, it knows what it's doing, and load the
guest fpu to prevent an #NM exception.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This allows accessing the guest fpu from the instruction emulator, as well as
being symmetric with kvm_put_guest_fpu().
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Move to/from Control Registers chapter of Intel SDM says. "Reserved bits
in CR0 remain clear after any load of those registers; attempts to set
them have no impact". Control Register chapter says "Bits 63:32 of CR0 are
reserved and must be written with zeros. Writing a nonzero value to any
of the upper 32 bits results in a general-protection exception, #GP(0)."
This patch tries to implement this twisted logic.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Reported-by: Lorenzo Martignoni <martignlo@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The commit 0953ca73 "KVM: Simplify coalesced mmio initialization"
allocate kvm_coalesced_mmio_ring in the kvm_coalesced_mmio_init(), but
didn't discard the original allocation...
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
To enable proper debug register emulation under all conditions, trap
access to all DR0..7. This may be optimized later on.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Enhance mov dr instruction emulation used by SVM so that it properly
handles dr4/5: alias to dr6/7 if cr4.de is cleared. Otherwise return
EMULATE_FAIL which will let our only possible caller in that scenario,
ud_interception, re-inject UD.
We do not need to inject faults, SVM does this for us (exceptions take
precedence over instruction interceptions). For the same reason, the
value overflow checks can be removed.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
As we trap all debug register accesses, we do not need to switch real
DR6 at all. Clean up update_exception_bitmap at this chance, too.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Make sure DR4 and DR5 are aliased to DR6 and DR7, respectively, if
CR4.DE is not set.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Injecting GP without an error code is a bad idea (causes unhandled guest
exits). Moreover, we must not skip the instruction if we injected an
exception.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The return values from x86_emulate_ops are defined
in kvm_emulate.h as macros X86EMUL_*.
But in emulate.c, we are comparing the return values
from these ops with 0 to check if they're X86EMUL_CONTINUE
or not: X86EMUL_CONTINUE is defined as 0 now.
To avoid possible mistakes in the future, this patch
substitutes "X86EMUL_CONTINUE" for "0" that are being
compared with the return values from x86_emulate_ops.
We think that there are more places we should use these
macros, but the meanings of rc values in x86_emulate_insn()
were not so clear at a glance. If we use proper macros in
this function, we would be able to follow the flow of each
emulation more easily and, maybe, more securely.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
As Avi noted:
>There are two problems with the kernel failure report. First, it
>doesn't report enough data - registers, surrounding instructions, etc.
>that are needed to explain what is going on. Second, it can flood
>dmesg, which is a pretty bad thing to do.
So we remove the emulation failure report in handle_invalid_guest_state(),
and would inspected the guest using userspace tool in the future.
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
There are two spellings of "writable" in
arch/x86/kvm/mmu.c and paging_tmpl.h .
This patch renames is_writeble_pte() to is_writable_pte()
and makes grepping easy.
New name is consistent with the definition of itself:
return pte & PT_WRITABLE_MASK;
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Avi Kivity <avi@redhat.com>
Windows issues this hypercall after guest was spinning on a spinlock
for too many iterations.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Vadim Rozenfeld <vrozenfe@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Provide HYPER-V related defines that will be used by following patches.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Vadim Rozenfeld <vrozenfe@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We keep a copy of the MSR around that we use when we go into the guest context.
That copy is basically the normal process MSR flags OR some allowed guest
specified MSR flags. We also AND the external providers into this, so we get
traps on FPU usage when we haven't activated it on the host yet.
Currently this calculation is part of the set_msr function that we use whenever
we set the guest MSR value. With the external providers, we also have the case
that we don't modify the guest's MSR, but only want to update the shadow MSR.
So let's move the shadow MSR parts to a separate function that we then use
whenever we only need to update it. That way we don't accidently kvm_vcpu_block
within a preempt notifier context.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
SRR1 stores more information that just the MSR value. It also stores
valuable information about the type of interrupt we received, for
example whether the storage interrupt we just got was because of a
missing htab entry or not.
We use that information to speed up the exit path.
Now if we get preempted before we can interpret the shadow_msr values,
we get into vcpu_put which then calls the MSR handler, which then sets
all the SRR1 information bits in shadow_msr to 0. Great.
So let's preserve the SRR1 specific bits in shadow_msr whenever we set
the MSR. They don't hurt.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Commit 7d01b4c3ed2bb33ceaf2d270cb4831a67a76b51b introduced PACA backed vcpu
values. With this patch, when a userspace app was setting GPRs before it was
actually first loaded, the set values get discarded.
This is because vcpu_load loads them from the vcpu backing store that we use
whenever we're not owning the PACA.
That behavior is not really a major problem, because we don't need it for
qemu. Other users (like kvmctl) do have problems with it though, so let's
better do it right.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When our guest starts using either the FPU, Altivec or VSX we need to make
sure Linux knows about it and sneak into its process switching code
accordingly.
This patch makes accesses to the above parts of the system work inside the
VM.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Linux contains quite some bits of code to load FPU, Altivec and VSX lazily for
a task. It calls those bits in real mode, coming from an interrupt handler.
For KVM we better reuse those, so let's wrap a bit of trampoline magic around
them and then we can call them from normal module code.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need to explicitly only giveup VSX in KVM, so let's export that
specific function to module space.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Now that we can allow the guest to play with cr0 when the fpu is loaded,
we can enable lazy fpu when npt is in use.
Acked-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If two conditions apply:
- no bits outside TS and EM differ between the host and guest cr0
- the fpu is active
then we can activate the selective cr0 write intercept and drop the
unconditional cr0 read and write intercept, and allow the guest to run
with the host fpu state. This reduces cr0 exits due to guest fpu management
while the guest fpu is loaded.
Acked-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently we don't intercept cr0 at all when npt is enabled. This improves
performance but requires us to activate the fpu at all times.
Remove this behaviour in preparation for adding selective cr0 intercepts.
Acked-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
init_vmcb() sets up the intercepts as if the fpu is active, so initialize it
there. This avoids an INIT from setting up intercepts inconsistent with
fpu_active.
Acked-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Instead of selecting TS and MP as the comments say, the macro included TS and
PE. Luckily the macro is unused now, but fix in order to save a few hours of
debugging from anyone who attempts to use it.
Acked-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If the guest fpu is loaded, there is nothing interesing about cr0.ts; let
the guest play with it as it will. This makes context switches between fpu
intensive guest processes faster, as we won't trap the clts and cr0 write
instructions.
[marcelo: fix cr0 read shadow update on fpu deactivation; kills F8 install]
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Defer fpu deactivation as much as possible - if the guest fpu is loaded, keep
it loaded until the next heavyweight exit (where we are forced to unload it).
This reduces unnecessary exits.
We also defer fpu activation on clts; while clts signals the intent to use the
fpu, we can't be sure the guest will actually use it.
Signed-off-by: Avi Kivity <avi@redhat.com>
Since we'd like to allow the guest to own a few bits of cr0 at times, we need
to know when we access those bits.
Signed-off-by: Avi Kivity <avi@redhat.com>
An SLB entry contains two pieces of information related to size:
1) PTE size
2) SLB size
The L bit defines the PTE be "large" (usually means 16MB),
SLB_VSID_B_1T defines that the SLB should span 1 GB instead of the
default 256MB.
Apparently I messed things up and just put those two in one box,
shaked it heavily and came up with the current code which handles
large pages incorrectly, because it also treats large page SLB entries
as "1TB" segment entries.
This patch splits those two features apart, making Linux guests boot
even when they have > 256MB.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we get a program interrupt in guest kernel mode, we try to emulate the
instruction.
If that doesn't fail, we report to the user and try again - at the exact same
instruction pointer. So if the guest kernel really does trigger an invalid
instruction, we loop forever.
So let's better go and forward program exceptions to the guest when we don't
know the instruction we're supposed to emulate.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we need to reinject a program interrupt into the guest, we also need to
reinject the corresponding flags into the guest.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Avi Kivity <avi@redhat.com>