Recent commit 08999b2489 ("x86/sgx: Free backing memory
after faulting the enclave page") expanded __sgx_encl_eldu()
to clear an enclave page's PCMD (Paging Crypto MetaData)
from the PCMD page in the backing store after the enclave
page is restored to the enclave.
Since the PCMD page in the backing store is modified the page
should be marked as dirty to ensure the modified data is retained.
Cc: stable@vger.kernel.org
Fixes: 08999b2489 ("x86/sgx: Free backing memory after faulting the enclave page")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Link: https://lkml.kernel.org/r/00cd2ac480db01058d112e347b32599c1a806bc4.1652389823.git.reinette.chatre@intel.com
SGX uses shmem backing storage to store encrypted enclave pages
and their crypto metadata when enclave pages are moved out of
enclave memory. Two shmem backing storage pages are associated with
each enclave page - one backing page to contain the encrypted
enclave page data and one backing page (shared by a few
enclave pages) to contain the crypto metadata used by the
processor to verify the enclave page when it is loaded back into
the enclave.
sgx_encl_put_backing() is used to release references to the
backing storage and, optionally, mark both backing store pages
as dirty.
Managing references and dirty status together in this way results
in both backing store pages marked as dirty, even if only one of
the backing store pages are changed.
Additionally, waiting until the page reference is dropped to set
the page dirty risks a race with the page fault handler that
may load outdated data into the enclave when a page is faulted
right after it is reclaimed.
Consider what happens if the reclaimer writes a page to the backing
store and the page is immediately faulted back, before the reclaimer
is able to set the dirty bit of the page:
sgx_reclaim_pages() { sgx_vma_fault() {
...
sgx_encl_get_backing();
... ...
sgx_reclaimer_write() {
mutex_lock(&encl->lock);
/* Write data to backing store */
mutex_unlock(&encl->lock);
}
mutex_lock(&encl->lock);
__sgx_encl_eldu() {
...
/*
* Enclave backing store
* page not released
* nor marked dirty -
* contents may not be
* up to date.
*/
sgx_encl_get_backing();
...
/*
* Enclave data restored
* from backing store
* and PCMD pages that
* are not up to date.
* ENCLS[ELDU] faults
* because of MAC or PCMD
* checking failure.
*/
sgx_encl_put_backing();
}
...
/* set page dirty */
sgx_encl_put_backing();
...
mutex_unlock(&encl->lock);
} }
Remove the option to sgx_encl_put_backing() to set the backing
pages as dirty and set the needed pages as dirty right after
receiving important data while enclave mutex is held. This ensures that
the page fault handler can get up to date data from a page and prepares
the code for a following change where only one of the backing pages
need to be marked as dirty.
Cc: stable@vger.kernel.org
Fixes: 1728ab54b4 ("x86/sgx: Add a page reclaimer")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Link: https://lore.kernel.org/linux-sgx/8922e48f-6646-c7cc-6393-7c78dcf23d23@intel.com/
Link: https://lkml.kernel.org/r/fa9f98986923f43e72ef4c6702a50b2a0b3c42e3.1652389823.git.reinette.chatre@intel.com
The set_memory_uc() approach doesn't work well in all cases.
As Dan pointed out when "The VMM unmapped the bad page from
guest physical space and passed the machine check to the guest."
"The guest gets virtual #MC on an access to that page. When
the guest tries to do set_memory_uc() and instructs cpa_flush()
to do clean caches that results in taking another fault / exception
perhaps because the VMM unmapped the page from the guest."
Since the driver has special knowledge to handle NP or UC,
mark the poisoned page with NP and let driver handle it when
it comes down to repair.
Please refer to discussions here for more details.
https://lore.kernel.org/all/CAPcyv4hrXPb1tASBZUg-GgdVs0OOFKXMXLiHmktg_kFi7YBMyQ@mail.gmail.com/
Now since poisoned page is marked as not-present, in order to
avoid writing to a not-present page and trigger kernel Oops,
also fix pmem_do_write().
Fixes: 284ce4011b ("x86/memory_failure: Introduce {set, clear}_mce_nospec()")
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/165272615484.103830.2563950688772226611.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Relocate the twin mce functions to arch/x86/mm/pat/set_memory.c
file where they belong.
While at it, fixup a function name in a comment.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
[sfr: gate {set,clear}_mce_nospec() by CONFIG_X86_64]
Link: https://lore.kernel.org/r/165272527328.90175.8336008202048685278.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is suboptimal. Instead, fallback
to calling random_get_entropy_fallback(), which isn't extremely high
precision or guaranteed to be entropic, but is certainly better than
returning zero all the time.
If CONFIG_X86_TSC=n, then it's possible for the kernel to run on systems
without RDTSC, such as 486 and certain 586, so the fallback code is only
required for that case.
As well, fix up both the new function and the get_cycles() function from
which it was derived to use cpu_feature_enabled() rather than
boot_cpu_has(), and use !IS_ENABLED() instead of #ifndef.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
p4d_clear_huge may be optimized for void return type and function usage.
vunmap_p4d_range function saves a few steps here.
Link: https://lkml.kernel.org/r/20220507150630.90399-1-kunyu@nfschina.com
Signed-off-by: Li kunyu <kunyu@nfschina.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move ptep_clear() to the include/linux/pgtable.h and add page table check
relate hooks to some helpers, it's prepare for support page table check
feature on new architecture.
Optimize the implementation of ptep_clear(), page table hooks added page
table check stubs, the interface control should be at stubs, there is no
rationale for doing a IS_ENABLED() check here.
For architectures that do not enable CONFIG_PAGE_TABLE_CHECK, they will
call a fallback page table check stubs[1] when getting their page table
helpers[2] in include/linux/pgtable.h.
[1] page table check stubs defined in include/linux/page_table_check.h
[2] ptep_clear() ptep_get_and_clear() pmdp_huge_get_and_clear()
pudp_huge_get_and_clear()
Link: https://lkml.kernel.org/r/20220507110114.4128854-4-tongtiangen@huawei.com
Signed-off-by: Tong Tiangen <tongtiangen@huawei.com>
Acked-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The pxx_user_accessible_page() checks the PTE bit, it's
architecture-specific code, move them into x86's pgtable.h.
These helpers are being moved out to make the page table check framework
platform independent.
Link: https://lkml.kernel.org/r/20220507110114.4128854-3-tongtiangen@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Tong Tiangen <tongtiangen@huawei.com>
Acked-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Calls to change_protection_range() on THP can trigger, at least on x86,
two TLB flushes for one page: one immediately, when pmdp_invalidate() is
called by change_huge_pmd(), and then another one later (that can be
batched) when change_protection_range() finishes.
The first TLB flush is only necessary to prevent the dirty bit (and with a
lesser importance the access bit) from changing while the PTE is modified.
However, this is not necessary as the x86 CPUs set the dirty-bit
atomically with an additional check that the PTE is (still) present. One
caveat is Intel's Knights Landing that has a bug and does not do so.
Leverage this behavior to eliminate the unnecessary TLB flush in
change_huge_pmd(). Introduce a new arch specific pmdp_invalidate_ad()
that only invalidates the access and dirty bit from further changes.
Link: https://lkml.kernel.org/r/20220401180821.1986781-4-namit@vmware.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, using mprotect() to unprotect a memory region or uffd to
unprotect a memory region causes a TLB flush. However, in such cases the
PTE is often not modified (i.e., remain RO) and therefore not TLB flush is
needed.
Add an arch-specific pte_needs_flush() which tells whether a TLB flush is
needed based on the old PTE and the new one. Implement an x86
pte_needs_flush().
Always flush the TLB when it is architecturally needed even when skipping
a TLB flush might only result in a spurious page-faults by skipping the
flush.
Even with such conservative manner, we can in the future further refine
the checks to test whether a PTE is present by only considering the
architectural _PAGE_PRESENT flag instead of {pte|pmd}_preesnt(). For not
be careful and use the latter.
Link: https://lkml.kernel.org/r/20220401180821.1986781-3-namit@vmware.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The functions invoked via do_arch_prctl_common() can only operate on
the current task and none of these function uses the task argument.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/87lev7vtxj.ffs@tglx
The unused part precedes the new range spanned by the start, end parameters
of vmemmap_use_new_sub_pmd(). This means it actually goes from
ALIGN_DOWN(start, PMD_SIZE) up to start.
Use the correct address when applying the mark using memset.
Fixes: 8d400913c2 ("x86/vmemmap: handle unpopulated sub-pmd ranges")
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220509090637.24152-2-ken@codelabs.ch
When zapping obsolete pages, update the running count of zapped pages
regardless of whether or not the list has become unstable due to zapping
a shadow page with its own child shadow pages. If the VM is backed by
mostly 4kb pages, KVM can zap an absurd number of SPTEs without bumping
the batch count and thus without yielding. In the worst case scenario,
this can cause a soft lokcup.
watchdog: BUG: soft lockup - CPU#12 stuck for 22s! [dirty_log_perf_:13020]
RIP: 0010:workingset_activation+0x19/0x130
mark_page_accessed+0x266/0x2e0
kvm_set_pfn_accessed+0x31/0x40
mmu_spte_clear_track_bits+0x136/0x1c0
drop_spte+0x1a/0xc0
mmu_page_zap_pte+0xef/0x120
__kvm_mmu_prepare_zap_page+0x205/0x5e0
kvm_mmu_zap_all_fast+0xd7/0x190
kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
kvm_page_track_flush_slot+0x5c/0x80
kvm_arch_flush_shadow_memslot+0xe/0x10
kvm_set_memslot+0x1a8/0x5d0
__kvm_set_memory_region+0x337/0x590
kvm_vm_ioctl+0xb08/0x1040
Fixes: fbb158cb88 ("KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch""")
Reported-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220511145122.3133334-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid calling handlers on empty rmap entries and skip to the next non
empty rmap entry.
Empty rmap entries are noop in handlers.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220502220347.174664-1-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel MKTME KeyID bits (including Intel TDX private KeyID bits) should
never be set to SPTE. Set shadow_me_value to 0 and shadow_me_mask to
include all MKTME KeyID bits to include them to shadow_zero_check.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <27bc10e97a3c0b58a4105ff9107448c190328239.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel Multi-Key Total Memory Encryption (MKTME) repurposes couple of
high bits of physical address bits as 'KeyID' bits. Intel Trust Domain
Extentions (TDX) further steals part of MKTME KeyID bits as TDX private
KeyID bits. TDX private KeyID bits cannot be set in any mapping in the
host kernel since they can only be accessed by software running inside a
new CPU isolated mode. And unlike to AMD's SME, host kernel doesn't set
any legacy MKTME KeyID bits to any mapping either. Therefore, it's not
legitimate for KVM to set any KeyID bits in SPTE which maps guest
memory.
KVM maintains shadow_zero_check bits to represent which bits must be
zero for SPTE which maps guest memory. MKTME KeyID bits should be set
to shadow_zero_check. Currently, shadow_me_mask is used by AMD to set
the sme_me_mask to SPTE, and shadow_me_shadow is excluded from
shadow_zero_check. So initializing shadow_me_mask to represent all
MKTME keyID bits doesn't work for VMX (as oppositely, they must be set
to shadow_zero_check).
Introduce a new 'shadow_me_value' to replace existing shadow_me_mask,
and repurpose shadow_me_mask as 'all possible memory encryption bits'.
The new schematic of them will be:
- shadow_me_value: the memory encryption bit(s) that will be set to the
SPTE (the original shadow_me_mask).
- shadow_me_mask: all possible memory encryption bits (which is a super
set of shadow_me_value).
- For now, shadow_me_value is supposed to be set by SVM and VMX
respectively, and it is a constant during KVM's life time. This
perhaps doesn't fit MKTME but for now host kernel doesn't support it
(and perhaps will never do).
- Bits in shadow_me_mask are set to shadow_zero_check, except the bits
in shadow_me_value.
Introduce a new helper kvm_mmu_set_me_spte_mask() to initialize them.
Replace shadow_me_mask with shadow_me_value in almost all code paths,
except the one in PT64_PERM_MASK, which is used by need_remote_flush()
to determine whether remote TLB flush is needed. This should still use
shadow_me_mask as any encryption bit change should need a TLB flush.
And for AMD, move initializing shadow_me_value/shadow_me_mask from
kvm_mmu_reset_all_pte_masks() to svm_hardware_setup().
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <f90964b93a3398b1cf1c56f510f3281e0709e2ab.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename reset_rsvds_bits_mask() to reset_guest_rsvds_bits_mask() to make
it clearer that it resets the reserved bits check for guest's page table
entries.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <efdc174b85d55598880064b8bf09245d3791031d.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand and clean up the page fault stats. The current stats are at best
incomplete, and at worst misleading. Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.
Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use IS_ENABLED() instead of an #ifdef to activate the anti-RETPOLINE fast
path for TDP page faults. The generated code is identical, and the #ifdef
makes it dangerously difficult to extend the logic (guess who forgot to
add an "else" inside the #ifdef and ran through the page fault handler
twice).
No functional or binary change intented.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_arch_async_page_ready() to mmu.c where it belongs, and move all
of the page fault handling collateral that was in mmu.h purely for the
async #PF handler into mmu_internal.h, where it belongs. This will allow
kvm_mmu_do_page_fault() to act on the RET_PF_* return without having to
expose those enums outside of the MMU.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add RET_PF_CONTINUE and use it in handle_abnormal_pfn() and
kvm_faultin_pfn() to signal that the page fault handler should continue
doing its thing. Aside from being gross and inefficient, using a boolean
return to signal continue vs. stop makes it extremely difficult to add
more helpers and/or move existing code to a helper.
E.g. hypothetically, if nested MMUs were to gain a separate page fault
handler in the future, everything up to the "is self-modifying PTE" check
can be shared by all shadow MMUs, but communicating up the stack whether
to continue on or stop becomes a nightmare.
More concretely, proposed support for private guest memory ran into a
similar issue, where it'll be forced to forego a helper in order to yield
sane code: https://lore.kernel.org/all/YkJbxiL%2FAz7olWlq@google.com.
No functional change intended.
Cc: David Matlack <dmatlack@google.com>
Cc: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tweak the "page fault can be fast" logic to explicitly check for !PRESENT
faults in the access tracking case, and drop the exec/NX check that
becomes redundant as a result. No sane hardware will generate an access
that is both an instruct fetch and a write, i.e. it's a waste of cycles.
If hardware goes off the rails, or KVM runs under a misguided hypervisor,
spuriously running throught fast path is benign (KVM has been uknowingly
being doing exactly that for years).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for A/D bits being disabled instead of the access tracking mask
being non-zero when deciding whether or not to attempt to fix a page
fault vian the fast path. Originally, the access tracking mask was
non-zero if and only if A/D bits were disabled by _KVM_ (including not
being supported by hardware), but that hasn't been true since nVMX was
fixed to honor EPTP12's A/D enabling, i.e. since KVM allowed L1 to cause
KVM to not use A/D bits while running L2 despite KVM using them while
running L1.
In other words, don't attempt the fast path just because EPT is enabled.
Note, attempting the fast path for all !PRESENT faults can "fix" a very,
_VERY_ tiny percentage of faults out of mmu_lock by detecting that the
fault is spurious, i.e. has been fixed by a different vCPU, but again the
odds of that happening are vanishingly small. E.g. booting an 8-vCPU VM
gets less than 10 successes out of 30k+ faults, and that's likely one of
the more favorable scenarios. Disabling dirty logging can likely lead to
a rash of collisions between vCPUs for some workloads that operate on a
common set of pages, but penalizing _all_ !PRESENT faults for that one
case is unlikely to be a net positive, not to mention that that problem
is best solved by not zapping in the first place.
The number of spurious faults does scale with the number of vCPUs, e.g. a
255-vCPU VM using TDP "jumps" to ~60 spurious faults detected in the fast
path (again out of 30k), but that's all of 0.2% of faults. Using legacy
shadow paging does get more spurious faults, and a few more detected out
of mmu_lock, but the percentage goes _down_ to 0.08% (and that's ignoring
faults that are reflected into the guest), i.e. the extra detections are
purely due to the sheer number of faults observed.
On the other hand, getting a "negative" in the fast path takes in the
neighborhood of 150-250 cycles. So while it is tempting to keep/extend
the current behavior, such a change needs to come with hard numbers
showing that it's actually a win in the grand scheme, or any scheme for
that matter.
Fixes: 995f00a619 ("x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passing per_cpu() to list_for_each_entry() causes the macro to be
evaluated N+1 times for N sleeping vCPUs. This is a very small
inefficiency, and the code is cleaner if the address of the per-CPU
variable is loaded earlier. Do this for both the list and the spinlock.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Message-Id: <1649244302-6777-1-git-send-email-lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This shows up as a TDP MMU leak when running nested. Non-working cmpxchg on L0
relies makes L1 install two different shadow pages under same spte, and one of
them is leaked.
Fixes: 1c2361f667 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220512101420.306759-1-mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The INTEGRITY_CAPABILITIES MSR is enumerated by bit 2 of the
CORE_CAPABILITIES MSR.
Add defines for the CORE_CAPS enumeration as well as for the integrity
MSR.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220506225410.1652287-3-tony.luck@intel.com
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
IFS is a CPU feature that allows a binary blob, similar to microcode,
to be loaded and consumed to perform low level validation of CPU
circuitry. In fact, it carries the same Processor Signature
(family/model/stepping) details that are contained in Intel microcode
blobs.
In support of an IFS driver to trigger loading, validation, and running
of these tests blobs, make the functionality of cpu_signatures_match()
and collect_cpu_info_early() available outside of the microcode driver.
Add an "intel_" prefix and drop the "_early" suffix from
collect_cpu_info_early() and EXPORT_SYMBOL_GPL() it. Add
declaration to x86 <asm/cpu.h>
Make cpu_signatures_match() an inline function in x86 <asm/cpu.h>,
and also give it an "intel_" prefix.
No functional change intended.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Co-developed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20220506225410.1652287-2-tony.luck@intel.com
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
The current implementation of PTRACE_KILL is buggy and has been for
many years as it assumes it's target has stopped in ptrace_stop. At a
quick skim it looks like this assumption has existed since ptrace
support was added in linux v1.0.
While PTRACE_KILL has been deprecated we can not remove it as
a quick search with google code search reveals many existing
programs calling it.
When the ptracee is not stopped at ptrace_stop some fields would be
set that are ignored except in ptrace_stop. Making the userspace
visible behavior of PTRACE_KILL a noop in those case.
As the usual rules are not obeyed it is not clear what the
consequences are of calling PTRACE_KILL on a running process.
Presumably userspace does not do this as it achieves nothing.
Replace the implementation of PTRACE_KILL with a simple
send_sig_info(SIGKILL) followed by a return 0. This changes the
observable user space behavior only in that PTRACE_KILL on a process
not stopped in ptrace_stop will also kill it. As that has always
been the intent of the code this seems like a reasonable change.
Cc: stable@vger.kernel.org
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-7-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
CONFIG_LEGACY_VSYSCALL_EMULATE is, as far as I know, only needed for the
combined use of exotic and outdated debugging mechanisms with outdated
binaries. At this point, no one should be using it. Eventually, dynamic
switching of vsyscalls will be implemented, but this is much more
complicated to support in EMULATE mode than XONLY mode.
So let's force all the distros off of EMULATE mode. If anyone actually
needs it, they can set vsyscall=emulate, and the kernel can then get
away with refusing to support newer security models if that option is
set.
[ bp: Remove "we"s. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Florian Weimer <fweimer@redhat.com>
Link: https://lore.kernel.org/r/898932fe61db6a9d61bc2458fa2f6049f1ca9f5c.1652290558.git.luto@kernel.org
swiotlb-xen uses very different ways to allocate coherent memory on x86
vs arm. On the former it allocates memory from the page allocator, while
on the later it reuses the dma-direct allocator the handles the
complexities of non-coherent DMA on arm platforms.
Unfortunately the complexities of trying to deal with the two cases in
the swiotlb-xen.c code lead to a bug in the handling of
DMA_ATTR_NO_KERNEL_MAPPING on arm. With the DMA_ATTR_NO_KERNEL_MAPPING
flag the coherent memory allocator does not actually allocate coherent
memory, but just a DMA handle for some memory that is DMA addressable
by the device, but which does not have to have a kernel mapping. Thus
dereferencing the return value will lead to kernel crashed and memory
corruption.
Fix this by using the dma-direct allocator directly for arm, which works
perfectly fine because on arm swiotlb-xen is only used when the domain is
1:1 mapped, and then simplifying the remaining code to only cater for the
x86 case with DMA coherent device.
Reported-by: Rahul Singh <Rahul.Singh@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Rahul Singh <rahul.singh@arm.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Tested-by: Rahul Singh <rahul.singh@arm.com>
Because the return value of mp_config_acpi_gsi() is not use, change it
into a void function.
Signed-off-by: Li kunyu <kunyu@nfschina.com>
[ rjw: Subject and changelog rewrite ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In newer versions of Hyper-V, the x86/x64 PMU can be virtualized
into guest VMs by explicitly enabling it. Linux kernels are typically
built to automatically enable the hardlockup detector if the PMU is
found. To prevent the possibility of false positives due to the
vagaries of VM scheduling, disable the PMU-based hardlockup detector
by default in a VM on Hyper-V. The hardlockup detector can still be
enabled by overriding the default with the nmi_watchdog=1 option on
the kernel boot line or via sysctl at runtime.
This change mimics the approach taken with KVM guests in
commit 692297d8f9 ("watchdog: introduce the hardlockup_detector_disable()
function").
Linux on ARM64 does not provide a PMU-based hardlockup detector, so
there's no corresponding disable in the Hyper-V init code on ARM64.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1652111063-6535-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
PMU driver can advertise certain feature via capability attribute('caps'
sysfs directory) which can be consumed by userspace tools like perf. Add
zen4_ibs_extensions capability attribute for IBS pmus. This attribute
will be enabled when CPUID_Fn8000001B_EAX[11] is set.
With patch on Zen4:
$ ls /sys/bus/event_source/devices/ibs_op/caps
zen4_ibs_extensions
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220509044914.1473-5-ravi.bangoria@amd.com
IBS L3 miss filtering works by tagging an instruction on IBS counter
overflow and generating an NMI if the tagged instruction causes an L3
miss. Samples without an L3 miss are discarded and counter is reset
with random value (between 1-15 for fetch pmu and 1-127 for op pmu).
This helps in reducing sampling overhead when user is interested only
in such samples. One of the use case of such filtered samples is to
feed data to page-migration daemon in tiered memory systems.
Add support for L3 miss filtering in IBS driver via new pmu attribute
"l3missonly". Example usage:
# perf record -a -e ibs_op/l3missonly=1/ --raw-samples sleep 5
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220509044914.1473-4-ravi.bangoria@amd.com
Currently, some attributes are added at build time whereas others
at boot time depending on IBS pmu capabilities. Instead, we can
just add all attribute groups at build time but hide individual
group at boot time using more appropriate ->is_visible() callback.
Also, struct perf_ibs has bunch of fields for pmu attributes which
just pass on the pointer, does not do anything else. Remove them.
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220509044914.1473-3-ravi.bangoria@amd.com
IBS pmu initialization code ignores return value provided by
callee functions. Fix it.
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220509044914.1473-2-ravi.bangoria@amd.com
From the perspective of the uncore PMU, there is nothing changed for the
new Alder Lake N and Raptor Lake P.
Add new PCIIDs of IMC.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220504194413.1003071-5-kan.liang@linux.intel.com
The initialization code to assign PCI IDs for different platforms is
similar. Add the new macros to reduce the redundant code.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220504194413.1003071-4-kan.liang@linux.intel.com
From the perspective of Intel cstate residency counters, there is nothing
changed for the new Alder Lake N and Raptor Lake P.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220504194413.1003071-3-kan.liang@linux.intel.com
Many architectures have similar install.sh scripts.
The first half is really generic; it verifies that the kernel image
and System.map exist, then executes ~/bin/${INSTALLKERNEL} or
/sbin/${INSTALLKERNEL} if available.
The second half is kind of arch-specific; it copies the kernel image
and System.map to the destination, but the code is slightly different.
Factor out the generic part into scripts/install.sh.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <n.schier@avm.de>
Pass a cookie along with BPF_LINK_CREATE requests.
Add a bpf_cookie field to struct bpf_tracing_link to attach a cookie.
The cookie of a bpf_tracing_link is available by calling
bpf_get_attach_cookie when running the BPF program of the attached
link.
The value of a cookie will be set at bpf_tramp_run_ctx by the
trampoline of the link.
Signed-off-by: Kui-Feng Lee <kuifeng@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220510205923.3206889-4-kuifeng@fb.com
drm/i915 feature pull #2 for v5.19:
Features and functionality:
- Add first set of DG2 PCI IDs for "motherboard down" designs (Matt Roper)
- Add initial RPL-P PCI IDs as ADL-P subplatform (Matt Atwood)
Refactoring and cleanups:
- Power well refactoring and cleanup (Imre)
- GVT-g refactor and mdev API cleanup (Christoph, Jason, Zhi)
- DPLL refactoring and cleanup (Ville)
- VBT panel specific data parsing cleanup (Ville)
- Use drm_mode_init() for on-stack modes (Ville)
Fixes:
- Fix PSR state pipe A/B confusion by clearing more state on disable (José)
- Fix FIFO underruns caused by not taking DRAM channel into account (Vinod)
- Fix FBC flicker on display 11+ by enabling a workaround (José)
- Fix VBT seamless DRRS min refresh rate check (Ville)
- Fix panel type assumption on bogus VBT data (Ville)
- Fix panel data parsing for VBT that misses panel data pointers block (Ville)
- Fix spurious AUX timeout/hotplug handling on LTTPR links (Imre)
Merges:
- Backmerge drm-next (Jani)
- GVT changes (Jani)
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/87bkwbkkdo.fsf@intel.com
BPF trampolines will create a bpf_tramp_run_ctx, a bpf_run_ctx, on
stacks and set/reset the current bpf_run_ctx before/after calling a
bpf_prog.
Signed-off-by: Kui-Feng Lee <kuifeng@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220510205923.3206889-3-kuifeng@fb.com
Replace struct bpf_tramp_progs with struct bpf_tramp_links to collect
struct bpf_tramp_link(s) for a trampoline. struct bpf_tramp_link
extends bpf_link to act as a linked list node.
arch_prepare_bpf_trampoline() accepts a struct bpf_tramp_links to
collects all bpf_tramp_link(s) that a trampoline should call.
Change BPF trampoline and bpf_struct_ops to pass bpf_tramp_links
instead of bpf_tramp_progs.
Signed-off-by: Kui-Feng Lee <kuifeng@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220510205923.3206889-2-kuifeng@fb.com
IbsOpRip is recorded when IBS interrupt is triggered. But there is
a skid from the time IBS interrupt gets triggered to the time the
interrupt is presented to the core. Meanwhile processor would have
moved ahead and thus IbsOpRip will be inconsistent with rsp and rbp
recorded as part of the interrupt regs. This causes issues while
unwinding stack using the ORC unwinder as it needs consistent rip,
rsp and rbp. Fix this by using rip from interrupt regs instead of
IbsOpRip for stack unwinding.
Fixes: ee9f8fce99 ("x86/unwind: Add the ORC unwinder")
Reported-by: Dmitry Monakhov <dmtrmonakhov@yandex-team.ru>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220429051441.14251-1-ravi.bangoria@amd.com
arch_check_user_regs() is used at the moment to verify that struct pt_regs
contains valid values when entering the kernel from userspace. s390 needs
a place in the generic entry code to modify a cpu data structure when
switching from userspace to kernel mode. As arch_check_user_regs() is
exactly this, rename it to arch_enter_from_user_mode().
When entering the kernel from userspace, arch_check_user_regs() is
used to verify that struct pt_regs contains valid values. Note that
the NMI codepath doesn't call this function. s390 needs a place in the
generic entry code to modify a cpu data structure when switching from
userspace to kernel mode. As arch_check_user_regs() is exactly this,
rename it to arch_enter_from_user_mode().
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220504062351.2954280-2-tmricht@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
- Prevent FPU state corruption. The condition in irq_fpu_usable() grants
FPU usage when the FPU is not used in the kernel. That's just wrong as
it does not take the fpregs_lock()'ed regions into account. If FPU usage
happens within such a region from interrupt context, then the FPU state
gets corrupted. That's a long standing bug, which got unearthed by the
recent changes to the random code.
- Josh wants to use his kernel.org email address
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmJ3sb0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoRR9EACOcJAkO4ZjHvQf8RDw4ZaC/d0PgEC1
rEcxL7Tq9qAjdY+VmoRdzAia1FbKWrSNzENiBaTwdM2dxsZN0cl5fEQAy5ffHKXr
IadRIHICu6INKQ0iuf4VdOt8HuMC+Ams9sFoVDId1avRoejsjIHeCpgBen+0/LQf
D4i+nvUL9hMcZDsWiQW9mTe8J4fqr7rrg+p7tD0300DbZ6/PFx+zWP58TE8K7vQ8
dsmfMXxDrJW3d9FOHHvPQXa/Okdm2fHxXuxs3Quc+7HG6cMcwefCYugf8HK3E14F
q0O6IAOfiYzCL+8aNo4J3H5jPEGLMJ7JlY5Yoygc1mcx0uGyVraMbFOsK8WuRFvP
eAmx31Wh6EIYOwaboSG+74k/b3hPa6Hx3R7aQDS+SnQQI6I9fdi3ZZtQ+DGnZBZG
Ipq/f+EjaROh1atUwhE4zM80UKSU6RWEWAlMO4K07uO8a3RnR8qV7N8tl44i+Q7k
KZUbN5/aV4ccZNwMbazcpZ32fe3SB9cD4e/aLqpMp0uOl9TVxcOA3hIkQ0wflh94
6XO+gPdvr5VxWayc9tljMXUGPxwjTN4zDKUIlZP2EzYHt6SyZpdwi2+8moEfvU+a
qcIWPLeXb+972LaY+rTicT4cQxCKe0CZEXCOq1ns+Ni5f5TdKkvyxpeMIOrGtjYG
/4RqWncPKIyuEw==
=PpOB
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-05-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Thomas Gleixner:
"A fix and an email address update:
- Prevent FPU state corruption.
The condition in irq_fpu_usable() grants FPU usage when the FPU is
not used in the kernel. That's just wrong as it does not take the
fpregs_lock()'ed regions into account. If FPU usage happens within
such a region from interrupt context, then the FPU state gets
corrupted.
That's a long standing bug, which got unearthed by the recent
changes to the random code.
- Josh wants to use his kernel.org email address"
* tag 'x86-urgent-2022-05-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Prevent FPU state corruption
MAINTAINERS: Update Josh Poimboeuf's email address
In preparation for Clang supporting randstruct, reorganize the Kconfigs,
move the attribute macros, and generalize the feature to be named
CONFIG_RANDSTRUCT for on/off, CONFIG_RANDSTRUCT_FULL for the full
randomization mode, and CONFIG_RANDSTRUCT_PERFORMANCE for the cache-line
sized mode.
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220503205503.3054173-4-keescook@chromium.org
Add fn and fn_arg members into struct kernel_clone_args and test for
them in copy_thread (instead of testing for PF_KTHREAD | PF_IO_WORKER).
This allows any task that wants to be a user space task that only runs
in kernel mode to use this functionality.
The code on x86 is an exception and still retains a PF_KTHREAD test
because x86 unlikely everything else handles kthreads slightly
differently than user space tasks that start with a function.
The functions that created tasks that start with a function
have been updated to set ".fn" and ".fn_arg" instead of
".stack" and ".stack_size". These functions are fork_idle(),
create_io_thread(), kernel_thread(), and user_mode_thread().
Link: https://lkml.kernel.org/r/20220506141512.516114-4-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
With io_uring we have started supporting tasks that are for most
purposes user space tasks that exclusively run code in kernel mode.
The kernel task that exec's init and tasks that exec user mode
helpers are also user mode tasks that just run kernel code
until they call kernel execve.
Pass kernel_clone_args into copy_thread so these oddball
tasks can be supported more cleanly and easily.
v2: Fix spelling of kenrel_clone_args on h8300
Link: https://lkml.kernel.org/r/20220506141512.516114-2-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* Account for family 17h event renumberings in AMD PMU emulation
* Remove CPUID leaf 0xA on AMD processors
* Fix lockdep issue with locking all vCPUs
* Fix loss of A/D bits in SPTEs
* Fix syzkaller issue with invalid guest state
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJ1Vf4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNaUQgAgygZ2KsejlJCYGtEkAsjcpdzmPVL
8j42nWB673/PLZ6GrDXcFnRwQaBIT+0YrES5VHTkTI996d2T/yHII2L4G3DQtUGm
6L3qYqrjJlX2WjbYGvYzkJ6m4EzcstUfPYNO2Qzfvbl2y/wz64HlAhNdymwMX2UU
GPUVoo3EHeobJdZVKFMe7eI6r/uY1/uPdsKqNjnlWI73op+tc7mMRN5+SlQDgQvR
kmzw+Nk0J+PERQO+D+fm1vUdXDQ8hiI7LtTBIUX7rf47IqVlHNHC8frC94PX3W3E
l2sVS+LzRQRqCgFgQ2ay2gYkl078VL8z4A6vWpcWSmaToEYE7VcAnHqb0Q==
=6gt2
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"x86:
- Account for family 17h event renumberings in AMD PMU emulation
- Remove CPUID leaf 0xA on AMD processors
- Fix lockdep issue with locking all vCPUs
- Fix loss of A/D bits in SPTEs
- Fix syzkaller issue with invalid guest state"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: VMX: Exit to userspace if vCPU has injected exception and invalid state
KVM: SEV: Mark nested locking of vcpu->lock
kvm: x86/cpuid: Only provide CPUID leaf 0xA if host has architectural PMU
KVM: x86/svm: Account for family 17h event renumberings in amd_pmc_perf_hw_id
KVM: x86/mmu: Use atomic XCHG to write TDP MMU SPTEs with volatile bits
KVM: x86/mmu: Move shadow-present check out of spte_has_volatile_bits()
KVM: x86/mmu: Don't treat fully writable SPTEs as volatile (modulo A/D)
Exit to userspace with an emulation error if KVM encounters an injected
exception with invalid guest state, in addition to the existing check of
bailing if there's a pending exception (KVM doesn't support emulating
exceptions except when emulating real mode via vm86).
In theory, KVM should never get to such a situation as KVM is supposed to
exit to userspace before injecting an exception with invalid guest state.
But in practice, userspace can intervene and manually inject an exception
and/or stuff registers to force invalid guest state while a previously
injected exception is awaiting reinjection.
Fixes: fc4fad79fc ("KVM: VMX: Reject KVM_RUN if emulation is required with pending exception")
Reported-by: syzbot+cfafed3bb76d3e37581b@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220502221850.131873-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
svm_vm_migrate_from() uses sev_lock_vcpus_for_migration() to lock all
source and target vcpu->locks. Unfortunately there is an 8 subclass
limit, so a new subclass cannot be used for each vCPU. Instead maintain
ownership of the first vcpu's mutex.dep_map using a role specific
subclass: source vs target. Release the other vcpu's mutex.dep_maps.
Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Reported-by: John Sperbeck<jsperbeck@google.com>
Suggested-by: David Rientjes <rientjes@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Gonda <pgonda@google.com>
Message-Id: <20220502165807.529624-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Yes, r11 and rcx have been restored previously, but since they're being
popped anyway (into rsi) might as well pop them into their own regs --
setting them to the value they already are.
Less magical code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220506121631.365070674@infradead.org
Since the upper regs don't exist for ia32 code, preserving them
doesn't hurt and it simplifies the code.
This doesn't add any attack surface that would not already be
available through INT80.
Notably:
- 32bit SYSENTER: didn't clear si, dx, cx.
- 32bit SYSCALL, INT80: *do* clear si since the C functions don't
take a second argument.
- 64bit: didn't clear si since the C functions take a second
argument; except the error_entry path might have only one argument,
so clearing si was missing here.
32b SYSENTER should be clearing all those 3 registers, nothing uses them
and selftests pass.
Unconditionally clear rsi since it simplifies code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220506121631.293889636@infradead.org
Instead of playing silly games with rdi, use rax for simpler and more
consistent code.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220506121631.221072885@infradead.org
RESERVE_BRK() reserves data in the .brk_reservation section. The data
is initialized to zero, like BSS, so the macro specifies 'nobits' to
prevent the data from taking up space in the vmlinux binary. The only
way to get the compiler to do that (without putting the variable in .bss
proper) is to use inline asm.
The macro also has a hack which encloses the inline asm in a discarded
function, which allows the size to be passed (global inline asm doesn't
allow inputs).
Remove the need for the discarded function hack by just stringifying the
size rather than supplying it as an input to the inline asm.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220506121631.133110232@infradead.org
The FPU usage related to task FPU management is either protected by
disabling interrupts (switch_to, return to user) or via fpregs_lock() which
is a wrapper around local_bh_disable(). When kernel code wants to use the
FPU then it has to check whether it is possible by calling irq_fpu_usable().
But the condition in irq_fpu_usable() is wrong. It allows FPU to be used
when:
!in_interrupt() || interrupted_user_mode() || interrupted_kernel_fpu_idle()
The latter is checking whether some other context already uses FPU in the
kernel, but if that's not the case then it allows FPU to be used
unconditionally even if the calling context interrupted a fpregs_lock()
critical region. If that happens then the FPU state of the interrupted
context becomes corrupted.
Allow in kernel FPU usage only when no other context has in kernel FPU
usage and either the calling context is not hard interrupt context or the
hard interrupt did not interrupt a local bottomhalf disabled region.
It's hard to find a proper Fixes tag as the condition was broken in one way
or the other for a very long time and the eager/lazy FPU changes caused a
lot of churn. Picked something remotely connected from the history.
This survived undetected for quite some time as FPU usage in interrupt
context is rare, but the recent changes to the random code unearthed it at
least on a kernel which had FPU debugging enabled. There is probably a
higher rate of silent corruption as not all issues can be detected by the
FPU debugging code. This will be addressed in a subsequent change.
Fixes: 5d2bd7009f ("x86, fpu: decouple non-lazy/eager fpu restore from xsave")
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220501193102.588689270@linutronix.de
Clean up control_va_addr_alignment():
a. Make '=' required instead of optional (as documented).
b. Print a warning if an invalid option value is used.
c. Return 1 from the __setup handler when an invalid option value is
used. This prevents the kernel from polluting init's (limited)
environment space with the entire string.
Fixes: dfb09f9b7a ("x86, amd: Avoid cache aliasing penalties on AMD family 15h")
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lore.kernel.org/r/20220315001045.7680-1-rdunlap@infradead.org
__setup() handlers should return 1 to obsolete_checksetup() in
init/main.c to indicate that the boot option has been handled. A return
of 0 causes the boot option/value to be listed as an Unknown kernel
parameter and added to init's (limited) argument (no '=') or environment
(with '=') strings. So return 1 from these x86 __setup handlers.
Examples:
Unknown kernel command line parameters "apicpmtimer
BOOT_IMAGE=/boot/bzImage-517rc8 vdso=1 ring3mwait=disable", will be
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
apicpmtimer
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc8
vdso=1
ring3mwait=disable
Fixes: 2aae950b21 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Fixes: 77b52b4c5c ("x86: add "debugpat" boot option")
Fixes: e16fd002af ("x86/cpufeature: Enable RING3MWAIT for Knights Landing")
Fixes: b8ce335906 ("x86_64: convert to clock events")
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lore.kernel.org/r/20220314012725.26661-1-rdunlap@infradead.org
Raptor Lake supports the split lock detection feature. Add it to
the split_lock_cpu_ids[] array.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220427231059.293086-1-tony.luck@intel.com
If AMD Performance Monitoring Version 2 (PerfMonV2) is
supported, use a new scheme to process Core PMC overflows
in the NMI handler using the new global control and status
registers. This will be bypassed on unsupported hardware
(x86_pmu.version < 2).
In x86_pmu_handle_irq(), overflows are detected by testing
the contents of the PERF_CTR register for each active PMC in
a loop. The new scheme instead inspects the overflow bits of
the global status register.
The Performance Counter Global Status (PerfCntrGlobalStatus)
register has overflow (PerfCntrOvfl) bits for each PMC. This
is, however, a read-only MSR. To acknowledge that overflows
have been processed, the NMI handler must clear the bits by
writing to the PerfCntrGlobalStatusClr register.
In x86_pmu_handle_irq(), PMCs counting the same event that
are started and stopped at the same time record slightly
different counts due to delays in between reads from the
PERF_CTR registers. This is fixed by stopping and starting
the PMCs at the same before and with a single write to the
Performance Counter Global Control (PerfCntrGlobalCtl) upon
entering and before exiting the NMI handler.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/f20b7e4da0b0a83bdbe05857f354146623bc63ab.1650515382.git.sandipan.das@amd.com
If AMD Performance Monitoring Version 2 (PerfMonV2) is
supported, use a new scheme to manage the Core PMCs using
the new global control and status registers. This will be
bypassed on unsupported hardware (x86_pmu.version < 2).
Currently, all PMCs have dedicated control (PERF_CTL) and
counter (PERF_CTR) registers. For a given PMC, the enable
(En) bit of its PERF_CTL register is used to start or stop
counting.
The Performance Counter Global Control (PerfCntrGlobalCtl)
register has enable (PerfCntrEn) bits for each PMC. For a
PMC to start counting, both PERF_CTL and PerfCntrGlobalCtl
enable bits must be set. If either of those are cleared,
the PMC stops counting.
In x86_pmu_{en,dis}able_all(), the PERF_CTL registers of
all active PMCs are written to in a loop. Ideally, PMCs
counting the same event that were started and stopped at
the same time should record the same counts. Due to delays
in between writes to the PERF_CTL registers across loop
iterations, the PMCs cannot be enabled or disabled at the
same instant and hence, record slightly different counts.
This is fixed by enabling or disabling all active PMCs at
the same time with a single write to the PerfCntrGlobalCtl
register.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/dfe8e934074aaabc6ba748dfaccd0a77c974bb82.1650515382.git.sandipan.das@amd.com
If AMD Performance Monitoring Version 2 (PerfMonV2) is
supported, use CPUID leaf 0x80000022 EBX to detect the
number of Core PMCs. This offers more flexibility if the
counts change in later processor families.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/68a6d9688df189267db26530378870edd34f7b06.1650515382.git.sandipan.das@amd.com
AMD Performance Monitoring Version 2 (PerfMonV2) introduces
some new Core PMU features such as detection of the number
of available PMCs and managing PMCs using global registers
namely, PerfCntrGlobalCtl and PerfCntrGlobalStatus.
Clearing PerfCntrGlobalCtl and PerfCntrGlobalStatus ensures
that all PMCs are inactive and have no pending overflows
when CPUs are onlined or offlined.
The PMU version (x86_pmu.version) now indicates PerfMonV2
support and will be used to bypass the new features on
unsupported processors.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/dc8672ecbddff394e088ca8abf94b089b8ecc2e7.1650515382.git.sandipan.das@amd.com
Add MSR definitions that will be used to enable the new AMD
Performance Monitoring Version 2 (PerfMonV2) features. These
include:
* Performance Counter Global Control (PerfCntrGlobalCtl)
* Performance Counter Global Status (PerfCntrGlobalStatus)
* Performance Counter Global Status Clear (PerfCntrGlobalStatusClr)
The new Performance Counter Global Control and Status MSRs
provide an interface for enabling or disabling multiple
counters at the same time and for testing overflow without
probing the individual registers for each PMC.
The availability of these registers is indicated through the
PerfMonV2 feature bit of CPUID leaf 0x80000022 EAX.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/cdc0d8f75bd519848731b5c64d924f5a0619a573.1650515382.git.sandipan.das@amd.com
CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some
new performance monitoring features for AMD processors.
Bit 0 of EAX indicates support for Performance Monitoring
Version 2 (PerfMonV2) features. If found to be set during
PMU initialization, the EBX bits of the same CPUID function
can be used to determine the number of available PMCs for
different PMU types. Additionally, Core PMCs can be managed
using new global control and status registers.
For better utilization of feature words, PerfMonV2 is added
as a scattered feature bit.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/c70e497e22f18e7f05b025bb64ca21cc12b17792.1650515382.git.sandipan.das@amd.com
Following Baskov Evgeniy's "Handle UEFI NX-restricted page tables"
patches, it's safe to set this compatibility flag to let loaders know
they don't need to make special accommodations for kernel to load if
pre-boot NX is enabled.
Signed-off-by: Peter Jones <pjones@redhat.com>
Link: https://lore.kernel.org/all/20220329184743.798513-1-pjones@redhat.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
UEFI DXE services are not yet used in kernel code
but are required to manipulate page table memory
protection flags.
Add required declarations to use DXE services functions.
Signed-off-by: Baskov Evgeniy <baskov@ispras.ru>
Link: https://lore.kernel.org/r/20220303142120.1975-2-baskov@ispras.ru
[ardb: ignore absent DXE table but warn if the signature check fails]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
On some x86 processors, CPUID leaf 0xA provides information
on Architectural Performance Monitoring features. It
advertises a PMU version which Qemu uses to determine the
availability of additional MSRs to manage the PMCs.
Upon receiving a KVM_GET_SUPPORTED_CPUID ioctl request for
the same, the kernel constructs return values based on the
x86_pmu_capability irrespective of the vendor.
This leaf and the additional MSRs are not supported on AMD
and Hygon processors. If AMD PerfMonV2 is detected, the PMU
version is set to 2 and guest startup breaks because of an
attempt to access a non-existent MSR. Return zeros to avoid
this.
Fixes: a6c06ed1a6 ("KVM: Expose the architectural performance monitoring CPUID leaf")
Reported-by: Vasant Hegde <vasant.hegde@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Message-Id: <3fef83d9c2b2f7516e8ff50d60851f29a4bcb716.1651058600.git.sandipan.das@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zen renumbered some of the performance counters that correspond to the
well known events in perf_hw_id. This code in KVM was never updated for
that, so guest that attempt to use counters on Zen that correspond to the
pre-Zen perf_hw_id values will silently receive the wrong values.
This has been observed in the wild with rr[0] when running in Zen 3
guests. rr uses the retired conditional branch counter 00d1 which is
incorrectly recognized by KVM as PERF_COUNT_HW_STALLED_CYCLES_BACKEND.
[0] https://rr-project.org/
Signed-off-by: Kyle Huey <me@kylehuey.com>
Message-Id: <20220503050136.86298-1-khuey@kylehuey.com>
Cc: stable@vger.kernel.org
[Check guest family, not host. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We are dropping A/D bits (and W bits) in the TDP MMU. Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.
Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.
The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
We are dropping A/D bits (and W bits) in the TDP MMU. Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.
Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.
The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
Use an atomic XCHG to write TDP MMU SPTEs that have volatile bits, even
if mmu_lock is held for write, as volatile SPTEs can be written by other
tasks/vCPUs outside of mmu_lock. If a vCPU uses the to-be-modified SPTE
to write a page, the CPU can cache the translation as WRITABLE in the TLB
despite it being seen by KVM as !WRITABLE, and/or KVM can clobber the
Accessed/Dirty bits and not properly tag the backing page.
Exempt non-leaf SPTEs from atomic updates as KVM itself doesn't modify
non-leaf SPTEs without holding mmu_lock, they do not have Dirty bits, and
KVM doesn't consume the Accessed bit of non-leaf SPTEs.
Dropping the Dirty and/or Writable bits is most problematic for dirty
logging, as doing so can result in a missed TLB flush and eventually a
missed dirty page. In the unlikely event that the only dirty page(s) is
a clobbered SPTE, clear_dirty_gfn_range() will see the SPTE as not dirty
(based on the Dirty or Writable bit depending on the method) and so not
update the SPTE and ultimately not flush. If the SPTE is cached in the
TLB as writable before it is clobbered, the guest can continue writing
the associated page without ever taking a write-protect fault.
For most (all?) file back memory, dropping the Dirty bit is a non-issue.
The primary MMU write-protects its PTEs on writeback, i.e. KVM's dirty
bit is effectively ignored because the primary MMU will mark that page
dirty when the write-protection is lifted, e.g. when KVM faults the page
back in for write.
The Accessed bit is a complete non-issue. Aside from being unused for
non-leaf SPTEs, KVM doesn't do a TLB flush when aging SPTEs, i.e. the
Accessed bit may be dropped anyways.
Lastly, the Writable bit is also problematic as an extension of the Dirty
bit, as KVM (correctly) treats the Dirty bit as volatile iff the SPTE is
!DIRTY && WRITABLE. If KVM fixes an MMU-writable, but !WRITABLE, SPTE
out of mmu_lock, then it can allow the CPU to set the Dirty bit despite
the SPTE being !WRITABLE when it is checked by KVM. But that all depends
on the Dirty bit being problematic in the first place.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Venkatesh Srinivas <venkateshs@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't treat SPTEs that are truly writable, i.e. writable in hardware, as
being volatile (unless they're volatile for other reasons, e.g. A/D bits).
KVM _sets_ the WRITABLE bit out of mmu_lock, but never _clears_ the bit
out of mmu_lock, so if the WRITABLE bit is set, it cannot magically get
cleared just because the SPTE is MMU-writable.
Rename the wrapper of MMU-writable to be more literal, the previous name
of spte_can_locklessly_be_made_writable() is wrong and misleading.
Fixes: c7ba5b48cc ("KVM: MMU: fast path of handling guest page fault")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
XENPV doesn't use swapgs_restore_regs_and_return_to_usermode(),
error_entry() and the code between entry_SYSENTER_compat() and
entry_SYSENTER_compat_after_hwframe.
Change the PV-compatible SWAPGS to the ASM instruction swapgs in these
places.
Also remove the definition of SWAPGS since no more users.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20220503032107.680190-7-jiangshanlai@gmail.com
XENPV guests enter already on the task stack and they can't fault for
native_iret() nor native_load_gs_index() since they use their own pvop
for IRET and load_gs_index(). A CR3 switch is not needed either.
So there is no reason to call error_entry() in XENPV.
[ bp: Massage commit message. ]
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20220503032107.680190-6-jiangshanlai@gmail.com
The macro idtentry() (through idtentry_body()) calls error_entry()
unconditionally even on XENPV. But XENPV needs to only push and clear
regs.
PUSH_AND_CLEAR_REGS in error_entry() makes the stack not return to its
original place when the function returns, which means it is not possible
to convert it to a C function.
Carve out PUSH_AND_CLEAR_REGS out of error_entry() and into a separate
function and call it before error_entry() in order to avoid calling
error_entry() on XENPV.
It will also allow for error_entry() to be converted to C code that can
use inlined sync_regs() and save a function call.
[ bp: Massage commit message. ]
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20220503032107.680190-4-jiangshanlai@gmail.com
error_entry() calls fixup_bad_iret() before sync_regs() if it is a fault
from a bad IRET, to copy pt_regs to the kernel stack. It switches to the
kernel stack directly after sync_regs().
But error_entry() itself is also a function call, so it has to stash
the address it is going to return to, in %r12 which is unnecessarily
complicated.
Move the stack switching after error_entry() and get rid of the need to
handle the return address.
[ bp: Massage commit message. ]
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220503032107.680190-3-jiangshanlai@gmail.com
Always stash the address error_entry() is going to return to, in %r12
and get rid of the void *error_entry_ret; slot in struct bad_iret_stack
which was supposed to account for it and pt_regs pushed on the stack.
After this, both fixup_bad_iret() and sync_regs() can work on a struct
pt_regs pointer directly.
[ bp: Rewrite commit message, touch ups. ]
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220503032107.680190-2-jiangshanlai@gmail.com
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG
o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS
KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q
4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k
chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3
odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB
J3+wdek=
=39Ca
-----END PGP SIGNATURE-----
Backmerge tag 'v5.18-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux into drm-next
Linux 5.18-rc5
There was a build fix for arm I wanted in drm-next, so backmerge rather then cherry-pick.
Signed-off-by: Dave Airlie <airlied@redhat.com>
The helper function, vcpu_to_pi_desc(), is defined to get the posted
interrupt descriptor from vcpu. There is one place that doesn't use
it, and instead references vmx_vcpu->pi_desc directly. Remove the
inconsistency.
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <ee7be7832bc424546fd4f05015a844a0205b5ba2.1646422845.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can cause various unexpected issues, since VM is partially
destroyed at that point.
For example when AVIC is enabled, this causes avic_vcpu_load to
access physical id page entry which is already freed by .vm_destroy.
Fixes: 8221c13700 ("svm: Manage vcpu load/unload when enable AVIC")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322172449.235575-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some places kvm/hyperv.c code calls bitmap_weight() to check if any bit
of a given bitmap is set. It's better to use bitmap_empty() in that case
because bitmap_empty() stops traversing the bitmap as soon as it finds
first set bit, while bitmap_weight() counts all bits unconditionally.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Addresses: warning: Local variable 'mask' shadows outer variable
Remove extra variable declaration and switch the bit mask assignment to use
BIT_ULL() while at it.
Fixes: 522e92743b ("x86/fpu: Deduplicate copy_uabi_from_user/kernel_to_xstate()")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/202204262032.jFYKit5j-lkp@intel.com
The utilization of arch_scale_freq_tick() for CPU frequency readouts is
incomplete as it failed to move the function prototype and the define
out of the CONFIG_SMP && CONFIG_X86_64 #ifdef.
Make them unconditionally available.
Fixes: bb6e89df90 ("x86/aperfmperf: Make parts of the frequency invariance code unconditional")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/202205010106.06xRBR2C-lkp@intel.com
For the "nosmp" use case, the APIC initialization code selects
"APIC_SYMMETRIC_IO_NO_ROUTING" as the default interrupt mode and avoids
probing APIC drivers.
This works well for the default APIC modes, but for the x2APIC case the
probe function is required to allocate the cluster_hotplug mask. So in the
APIC_SYMMETRIC_IO_NO_ROUTING case when the x2APIC is initialized it
dereferences a NULL pointer and the kernel crashes.
This was observed on a TDX platform where x2APIC is enabled and "nosmp"
command line option is allowed.
To fix this issue, probe APIC drivers via default_setup_apic_routing() for
the APIC_SYMMETRIC_IO_NO_ROUTING interrupt mode too.
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/a64f864e1114bcd63593286aaf61142cfce384ea.1650076869.git.sathyanarayanan.kuppuswamy@intel.com
* Take care of faults occuring between the PARange and
IPA range by injecting an exception
* Fix S2 faults taken from a host EL0 in protected mode
* Work around Oops caused by a PMU access from a 32bit
guest when PMU has been created. This is a temporary
bodge until we fix it for good.
x86:
* Fix potential races when walking host page table
* Fix shadow page table leak when KVM runs nested
* Work around bug in userspace when KVM synthesizes leaf
0x80000021 on older (pre-EPYC) or Intel processors
Generic (but affects only RISC-V):
* Fix bad user ABI for KVM_EXIT_SYSTEM_EVENT
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJuxI4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNjfQf/X4Rn6+sTkXRS0UHWEu+q9FjJ+mIx
ZUWdbncf0brUB1RPAFfKaiQHo0t2Req+iTlpqZL0nVQ4myNUelHYube/sZdK/aBR
WOjKZE0hugGyMH3js2bsTdgzbcphThyYAX97qGZNb7tsPGhBiw7c98KhjxlieJab
D8LMNtM3uzPDxg422GfOm8ge2VbpySS5oRoGHfbD+4FiLYlXoCYfZuzlFwFFIGxw
uHm5zzfX5jshayFpFYVSJHtARXlpwJWKz9yl63QjHrhVitW4m5j4re3aNfboL6Pd
F5Z9K+DKhJLAH5cqmgiPPe2CGMvmRwKrN3F9MqV91xDPBT8J4rrowEeboQ==
=SwSU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Take care of faults occuring between the PARange and IPA range by
injecting an exception
- Fix S2 faults taken from a host EL0 in protected mode
- Work around Oops caused by a PMU access from a 32bit guest when PMU
has been created. This is a temporary bodge until we fix it for
good.
x86:
- Fix potential races when walking host page table
- Fix shadow page table leak when KVM runs nested
- Work around bug in userspace when KVM synthesizes leaf 0x80000021
on older (pre-EPYC) or Intel processors
Generic (but affects only RISC-V):
- Fix bad user ABI for KVM_EXIT_SYSTEM_EVENT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: work around QEMU issue with synthetic CPUID leaves
Revert "x86/mm: Introduce lookup_address_in_mm()"
KVM: x86/mmu: fix potential races when walking host page table
KVM: fix bad user ABI for KVM_EXIT_SYSTEM_EVENT
KVM: x86/mmu: Do not create SPTEs for GFNs that exceed host.MAXPHYADDR
KVM: arm64: Inject exception on out-of-IPA-range translation fault
KVM/arm64: Don't emulate a PMU for 32-bit guests if feature not set
KVM: arm64: Handle host stage-2 faults from 32-bit EL0
solely controlled by the hypervisor
- A build fix to make the function prototype (__warn()) as visible as
the definition itself
- A bunch of objtool annotation fixes which have accumulated over time
- An ORC unwinder fix to handle bad input gracefully
- Well, we thought the microcode gets loaded in time in order to restore
the microcode-emulated MSRs but we thought wrong. So there's a fix for
that to have the ordering done properly
- Add new Intel model numbers
- A spelling fix
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmJucwMACgkQEsHwGGHe
VUpgiw/8CuOXJhHSuYscEfAmPGoiG9+oLTYVc1NEfJEIyNuZULcr+aYlddTF79hm
V+Flq6FyA3NU220F8t5s3jOaDkWjWJ8nZGPUUxo5+yNHugIGYh/kLy6w8LC8SgLq
GqqYX4fd28tqFSgIBCrr+9GgpTE7bvzBGYLByKj9AO6ecLvWJmc+bENQCTaTRFgl
og6xenzyECWxgbWIql0UeB1xw2AJ8UfYVeLKzOHpc95ZF209+mg7JLL5yIxwwgNV
/CGoh28+twjX5SA1rr3cUx9gmFzrYubYZMglhgugBsShkdfuMLhis4woU7lF7cV9
HnxH6mkvN4R0Im7DZXgQPJ63ZFLJ8tN3RyLQDYBRd71w0Epr/K2aacYeQkWTflcx
4Ia+AiJ7rpKx0cUbUHX7pf3lzna/c8u/xPnlAIbR6rfwXO5mACupaofN5atAdx9T
9rPCPIdroM5XzBTiN4aNJHEsADL1h/oQdzrziTwryyezbTtnNC5KW53hnqyf5Bqo
gBlbfVsnwM0AfLHSPE1D0liOR2spwuB+/bWrsOCzEYENC44nDxHE/MUUjg7/l+Vr
6N5syrQ7QsIPqUaEM+bQdKHGaXSU6amF8OWpFMjzkleQw5m7/X8LzyZsBlB4yeqv
63hUEpdmFyR/6bLdEvjUXeAPcbA41WHwOMdNPaKDqn3zhwYZaa4=
=poyP
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.18_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- A fix to disable PCI/MSI[-X] masking for XEN_HVM guests as that is
solely controlled by the hypervisor
- A build fix to make the function prototype (__warn()) as visible as
the definition itself
- A bunch of objtool annotation fixes which have accumulated over time
- An ORC unwinder fix to handle bad input gracefully
- Well, we thought the microcode gets loaded in time in order to
restore the microcode-emulated MSRs but we thought wrong. So there's
a fix for that to have the ordering done properly
- Add new Intel model numbers
- A spelling fix
* tag 'x86_urgent_for_v5.18_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pci/xen: Disable PCI/MSI[-X] masking for XEN_HVM guests
bug: Have __warn() prototype defined unconditionally
x86/Kconfig: fix the spelling of 'becoming' in X86_KERNEL_IBT config
objtool: Use offstr() to print address of missing ENDBR
objtool: Print data address for "!ENDBR" data warnings
x86/xen: Add ANNOTATE_NOENDBR to startup_xen()
x86/uaccess: Add ENDBR to __put_user_nocheck*()
x86/retpoline: Add ANNOTATE_NOENDBR for retpolines
x86/static_call: Add ANNOTATE_NOENDBR to static call trampoline
objtool: Enable unreachable warnings for CLANG LTO
x86,objtool: Explicitly mark idtentry_body()s tail REACHABLE
x86,objtool: Mark cpu_startup_entry() __noreturn
x86,xen,objtool: Add UNWIND hint
lib/strn*,objtool: Enforce user_access_begin() rules
MAINTAINERS: Add x86 unwinding entry
x86/unwind/orc: Recheck address range after stack info was updated
x86/cpu: Load microcode during restore_processor_state()
x86/cpu: Add new Alderlake and Raptorlake CPU model numbers
fallthrough detection and relocation handling of weak symbols when the
toolchain strips section symbols
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmJuckgACgkQEsHwGGHe
VUrnTw//TQ1gcAYX4vNibZvOYLRS090uvrnfrosCLBTlOLuPTnB71hTTCxaV6wPV
lXbW5n795G9XmQAkKyqRjNA2PHGKP+D187ooFwJjHW661+dQgdo4EhbRtR4s/IMW
Vd3ZRL0bmCImPKz4MrSVPEL0UotMHI2XYwr6Wf/kOmJ6nlTgmnVE3dI4sOkXQCtJ
ZMCtSm6XN4LTnYLgkP99AuPQe4tC2Fw/zXkFZWkm3Ku6xvEtyfSLLByli8Tqf4p9
mcVoLfBnvYc6ift/tBg9tGFTdw8BzQdmhvnwgMnouiA7bjuhEZ+ef7+LwEpg/5J6
tMNIeO9m8DzR1jZm2vuu+VHB+GwYonXhElJY8JbpGfvI/zjYhxHNdyx3Nn9Cpd7B
whxu7dRodUmI78/Ab3ywA+rDbMQw9ljT4254JhA/VeHxWuKodWU5PKRcS9nYSR+p
NNSSxWmzy4+3h4d9Twd35CWa7ALroepr4JjyEs54Xar7kmoZhiFg8/P0cD2u5ZtL
aBuDDOw8sQOzFHY8sQpYr4k4sI7VdA8fOBXJ0bllu962Gg1aujfuHlCP/ToRpJGc
2YXXUI0tWmOsn5pGI5ludAQ5B+M0j1JxrowEb+gPfuqk7hoN53c4fery4JjtrsJ5
0DPsSKq9SVY+SSLNTuTchQUBZcWAY3GXZYBHr8KuV+iY1zL/rCg=
=7nEx
-----END PGP SIGNATURE-----
Merge tag 'objtool_urgent_for_v5.18_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fixes from Borislav Petkov:
"A bunch of objtool fixes to improve unwinding, sibling call detection,
fallthrough detection and relocation handling of weak symbols when the
toolchain strips section symbols"
* tag 'objtool_urgent_for_v5.18_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Fix code relocs vs weak symbols
objtool: Fix type of reloc::addend
objtool: Fix function fallthrough detection for vmlinux
objtool: Fix sibling call detection in alternatives
objtool: Don't set 'jump_dest' for sibling calls
x86/uaccess: Don't jump between functions
csum_and_copy_from_user and csum_and_copy_to_user are exported by a few
architectures, but not actually used in modular code. Drop the exports.
Link: https://lkml.kernel.org/r/20220421070440.1282704-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Remove the read_from_oldmem() wrapper introduced earlier and convert all
the remaining callers to pass an iov_iter.
Link: https://lkml.kernel.org/r/20220408090636.560886-4-bhe@redhat.com
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Convert vmcore to use an iov_iter", v5.
For some reason several people have been sending bad patches to fix
compiler warnings in vmcore recently. Here's how it should be done.
Compile-tested only on x86. As noted in the first patch, s390 should take
this conversion a bit further, but I'm not inclined to do that work
myself.
This patch (of 3):
Instead of passing in a 'buf' and 'userbuf' argument, pass in an iov_iter.
s390 needs more work to pass the iov_iter down further, or refactor, but
I'd be more comfortable if someone who can test on s390 did that work.
It's more convenient to convert the whole of read_from_oldmem() to take an
iov_iter at the same time, so rename it to read_from_oldmem_iter() and add
a temporary read_from_oldmem() wrapper that creates an iov_iter.
Link: https://lkml.kernel.org/r/20220408090636.560886-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20220408090636.560886-2-bhe@redhat.com
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Synthesizing AMD leaves up to 0x80000021 caused problems with QEMU,
which assumes the *host* CPUID[0x80000000].EAX is higher or equal
to what KVM_GET_SUPPORTED_CPUID reports.
This causes QEMU to issue bogus host CPUIDs when preparing the input
to KVM_SET_CPUID2. It can even get into an infinite loop, which is
only terminated by an abort():
cpuid_data is full, no space for cpuid(eax:0x8000001d,ecx:0x3e)
To work around this, only synthesize those leaves if 0x8000001d exists
on the host. The synthetic 0x80000021 leaf is mostly useful on Zen2,
which satisfies the condition.
Fixes: f144c49e8c ("KVM: x86: synthesize CPUID leaf 0x80000021h if useful")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ftrace_[enable,disable]_ftrace_graph_caller() are used to do
special hooks for graph tracer, which are not needed on some ARCHs
that use graph_ops:func function to install return_hooker.
So introduce the weak version in ftrace core code to cleanup
in x86.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220420160006.17880-1-zhouchengming@bytedance.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When shadowing 5-level NPT for 4-level NPT L1 guest, the root_sp is
allocated with role.level = 5 and the guest pagetable's root gfn.
And root_sp->spt[0] is also allocated with the same gfn and the same
role except role.level = 4. Luckily that they are different shadow
pages, but only root_sp->spt[0] is the real translation of the guest
pagetable.
Here comes a problem:
If the guest switches from gCR4_LA57=0 to gCR4_LA57=1 (or vice verse)
and uses the same gfn as the root page for nested NPT before and after
switching gCR4_LA57. The host (hCR4_LA57=1) might use the same root_sp
for the guest even the guest switches gCR4_LA57. The guest will see
unexpected page mapped and L2 may exploit the bug and hurt L1. It is
lucky that the problem can't hurt L0.
And three special cases need to be handled:
The root_sp should be like role.direct=1 sometimes: its contents are
not backed by gptes, root_sp->gfns is meaningless. (For a normal high
level sp in shadow paging, sp->gfns is often unused and kept zero, but
it could be relevant and meaningful if sp->gfns is used because they
are backed by concrete gptes.)
For such root_sp in the case, root_sp is just a portal to contribute
root_sp->spt[0], and root_sp->gfns should not be used and
root_sp->spt[0] should not be dropped if gpte[0] of the guest root
pagetable is changed.
Such root_sp should not be accounted too.
So add role.passthrough to distinguish the shadow pages in the hash
when gCR4_LA57 is toggled and fix above special cases by using it in
kvm_mmu_page_{get|set}_gfn() and sp_has_gptes().
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add sp_has_gptes() which equals to !sp->role.direct currently.
Shadow page having gptes needs to be write-protected, accounted and
responded to kvm_mmu_pte_write().
Use it in these places to replace !sp->role.direct and rename
for_each_gfn_indirect_valid_sp.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can help identify potential performance issues when handles
AVIC incomplete IPI due vCPU not running.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220420154954.19305-3-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, an AVIC-enabled VM suffers from performance bottleneck
when scaling to large number of vCPUs for I/O intensive workloads.
In such case, a vCPU often executes halt instruction to get into idle state
waiting for interrupts, in which KVM would de-schedule the vCPU from
physical CPU.
When AVIC HW tries to deliver interrupt to the halting vCPU, it would
result in AVIC incomplete IPI #vmexit to notify KVM to reschedule
the target vCPU into running state.
Investigation has shown the main hotspot is in the kvm_apic_match_dest()
in the following call stack where it tries to find target vCPUs
corresponding to the information in the ICRH/ICRL registers.
- handle_exit
- svm_invoke_exit_handler
- avic_incomplete_ipi_interception
- kvm_apic_match_dest
However, AVIC provides hints in the #vmexit info, which can be used to
retrieve the destination guest physical APIC ID.
In addition, since QEMU defines guest physical APIC ID to be the same as
vCPU ID, it can be used to quickly identify the target vCPU to deliver IPI,
and avoid the overhead from searching through all vCPUs to match the target
vCPU.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220420154954.19305-2-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
direct_map is always equal to the direct field of the root page's role:
- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct
- for TDP, it is always true and root_role.direct is also always true
- for shadow TDP, it is always false and root_role.direct is also always
false
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove another duplicate field of struct kvm_mmu. This time it's
the root level for page table walking; the separate field is
always initialized as cpu_role.base.level, so its users can look
up the CPU mode directly instead.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
root_role.level is always the same value as shadow_level:
- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu
- it's the level argument when going through kvm_init_shadow_ept_mmu
- it's assigned directly from new_role.base.level when going
through shadow_mmu_init_context
Remove the duplication and get the level directly from the role.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not lead init_kvm_*mmu into the temptation of poking
into struct kvm_mmu_role_regs, by passing to it directly
the CPU mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Shadow MMUs compute their role from cpu_role.base, simply by adjusting
the root level. It's one line of code, so do not place it in a separate
function.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before the separation of the CPU and the MMU role, CR0.PG was not
available in the base MMU role, because two-dimensional paging always
used direct=1 in the MMU role. However, now that the raw role is
snapshotted in mmu->cpu_role, the value of CR0.PG always matches both
!cpu_role.base.direct and cpu_role.base.level > 0. There is no need to
store it again in union kvm_mmu_extended_role; instead, write an is_cr0_pg
accessor by hand that takes care of the conversion. Use cpu_role.base.level
since the future of the direct field is unclear.
Likewise, CR4.PAE is now always present in the CPU role as
!cpu_role.base.has_4_byte_gpte. The inversion makes certain tests on
the MMU role easier, and is easily hidden by the is_cr4_pae accessor
when operating on the CPU role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is quite confusing that the "full" union is called kvm_mmu_role
but is used for the "cpu_role" field of struct kvm_mmu. Rename it
to kvm_cpu_role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu_role represents the role of the root of the page tables.
It does not need any extended bits, as those govern only KVM's
page table walking; the is_* functions used for page table
walking always use the CPU role.
ext.valid is not present anymore in the MMU role, but an
all-zero MMU role is impossible because the level field is
never zero in the MMU role. So just zap the whole mmu_role
in order to force invalidation after CPUID is updated.
While making this change, which requires touching almost every
occurrence of "mmu_role", rename it to "root_role".
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the MMU role is separate from the CPU role, it can be a
truthful description of the format of the shadow pages. This includes
whether the shadow pages use the NX bit; so force the efer_nx field
of the MMU role when TDP is disabled, and remove the hardcoding it in
the callers of reset_shadow_zero_bits_mask.
In fact, the initialization of reserved SPTE bits can now be made common
to shadow paging and shadow NPT; move it to shadow_mmu_init_context.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inline kvm_calc_mmu_role_common into its sole caller, and simplify it
by removing the computation of unnecessary bits.
Extended bits are unnecessary because page walking uses the CPU role,
and EFER.NX/CR0.WP can be set to one unconditionally---matching the
format of shadow pages rather than the format of guest pages.
The MMU role for two dimensional paging does still depend on the CPU role,
even if only barely so, due to SMM and guest mode; for consistency,
pass it down to kvm_calc_tdp_mmu_root_page_role instead of querying
the vcpu with is_smm or is_guest_mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_calc_shadow_root_page_role_common is the same as
kvm_calc_cpu_role except for the level, which is overwritten
afterwards in kvm_calc_shadow_mmu_root_page_role
and kvm_calc_shadow_npt_root_page_role.
role.base.direct is already set correctly for the CPU role,
and CR0.PG=1 is required for VMRUN so it will also be
correct for nested NPT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ept_ad field is used during page walk to determine if the guest PTEs
have accessed and dirty bits. In the MMU role, the ad_disabled
bit represents whether the *shadow* PTEs have the bits, so it
would be incorrect to replace PT_HAVE_ACCESSED_DIRTY with just
!mmu->mmu_role.base.ad_disabled.
However, the similar field in the CPU mode, ad_disabled, is initialized
correctly: to the opposite value of ept_ad for shadow EPT, and zero
for non-EPT guest paging modes (which always have A/D bits). It is
therefore possible to compute PT_HAVE_ACCESSED_DIRTY from the CPU mode,
like other page-format fields; it just has to be inverted to account
for the different polarity.
In fact, now that the CPU mode is distinct from the MMU roles, it would
even be possible to remove PT_HAVE_ACCESSED_DIRTY macro altogether, and
use !mmu->cpu_role.base.ad_disabled instead. I am not doing this because
the macro has a small effect in terms of dead code elimination:
text data bss dec hex
103544 16665 112 120321 1d601 # as of this patch
103746 16665 112 120523 1d6cb # without PT_HAVE_ACCESSED_DIRTY
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_level can be found in the cpu_role (in fact the field
is superfluous and could be removed, but one thing at a time).
Since there is only one usage left of role_regs_to_root_level,
inline it into kvm_calc_cpu_role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Snapshot the state of the processor registers that govern page walk into
a new field of struct kvm_mmu. This is a more natural representation
than having it *mostly* in mmu_role but not exclusively; the delta
right now is represented in other fields, such as root_level.
The nested MMU now has only the CPU role; and in fact the new function
kvm_calc_cpu_role is analogous to the previous kvm_calc_nested_mmu_role,
except that it has role.base.direct equal to !CR0.PG. For a walk-only
MMU, "direct" has no meaning, but we set it to !CR0.PG so that
role.ext.cr0_pg can go away in a future patch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The argument is always false now that kvm_mmu_calc_root_page_role has
been removed.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the per-vendor hack-a-fix for KVM's #PF => #PF => #DF workaround
with an explicit, common workaround in kvm_inject_emulated_page_fault().
Aside from being a hack, the current approach is brittle and incomplete,
e.g. nSVM's KVM_SET_NESTED_STATE fails to set ->inject_page_fault(),
and nVMX fails to apply the workaround when VMX is intercepting #PF due
to allow_smaller_maxphyaddr=1.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If accessed bits are not supported there simple isn't any distinction
between accessed and non-accessed gPTEs, so the comment does not make
much sense. Rephrase it in terms of what happens if accessed bits
*are* supported.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The init_kvm_*mmu functions, with the exception of shadow NPT,
do not need to know the full values of CR0/CR4/EFER; they only
need to know the bits that make up the "role". This cleanup
however will take quite a few incremental steps. As a start,
pull the common computation of the struct kvm_mmu_role_regs
into their caller: all of them extract the struct from the vcpu
as the very first step.
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
struct kvm_mmu_role_regs is computed just once and then accessed. Use
const to make this clearer, even though the const fields of struct
kvm_mmu_role_regs already prevent (or make it harder...) to modify
the contents of the struct.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The role.base.smm flag is always zero when setting up shadow EPT,
do not bother copying it over from vcpu->arch.root_mmu.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear enable_mmio_caching if hardware can't support MMIO caching and use
the dedicated flag to detect if MMIO caching is enabled instead of
assuming shadow_mmio_value==0 means MMIO caching is disabled. TDX will
use a zero value even when caching is enabled, and is_mmio_spte() isn't
so hot that it needs to avoid an extra memory access, i.e. there's no
reason to be super clever. And the clever approach may not even be more
performant, e.g. gcc-11 lands the extra check on a non-zero value inline,
but puts the enable_mmio_caching out-of-line, i.e. avoids the few extra
uops for non-MMIO SPTEs.
Cc: Isaku Yamahata <isaku.yamahata@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220420002747.3287931-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When determining whether or not a SPTE needs to have SME/SEV's memory
encryption flag set, do the moderately expensive host MMIO pfn check if
and only if the memory encryption mask is non-zero.
Note, KVM could further optimize the host MMIO checks by making a single
call to kvm_is_mmio_pfn(), but the tdp_enabled path (for EPT's memtype
handling) will likely be split out to a separate flow[*]. At that point,
a better approach would be to shove the call to kvm_is_mmio_pfn() into
VMX code so that AMD+NPT without SME doesn't get hit with an unnecessary
lookup.
[*] https://lkml.kernel.org/r/20220321224358.1305530-3-bgardon@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220415004909.2216670-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TSC_AUX virtualization feature allows AMD SEV-ES guests to securely use
TSC_AUX (auxiliary time stamp counter data) in the RDTSCP and RDPID
instructions. The TSC_AUX value is set using the WRMSR instruction to the
TSC_AUX MSR (0xC0000103). It is read by the RDMSR, RDTSCP and RDPID
instructions. If the read/write of the TSC_AUX MSR is intercepted, then
RDTSCP and RDPID must also be intercepted when TSC_AUX virtualization
is present. However, the RDPID instruction can't be intercepted. This means
that when TSC_AUX virtualization is present, RDTSCP and TSC_AUX MSR
read/write must not be intercepted for SEV-ES (or SEV-SNP) guests.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <165040164424.1399644.13833277687385156344.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TSC_AUX Virtualization feature allows AMD SEV-ES guests to securely use
TSC_AUX (auxiliary time stamp counter data) MSR in RDTSCP and RDPID
instructions.
The TSC_AUX MSR is typically initialized to APIC ID or another unique
identifier so that software can quickly associate returned TSC value
with the logical processor.
Add the feature bit and also include it in the kvm for detection.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <165040157111.1399644.6123821125319995316.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes for (relatively) old bugs, to be merged in both the -rc and next
development trees.
The merge reconciles the ABI fixes for KVM_EXIT_SYSTEM_EVENT between
5.18 and commit c24a950ec7 ("KVM, SEV: Add KVM_EXIT_SHUTDOWN metadata
for SEV-ES", 2022-04-13).
Drop lookup_address_in_mm() now that KVM is providing it's own variant
of lookup_address_in_pgd() that is safe for use with user addresses, e.g.
guards against page tables being torn down. A variant that provides a
non-init mm is inherently dangerous and flawed, as the only reason to use
an mm other than init_mm is to walk a userspace mapping, and
lookup_address_in_pgd() does not play nice with userspace mappings, e.g.
doesn't disable IRQs to block TLB shootdowns and doesn't use READ_ONCE()
to ensure an upper level entry isn't converted to a huge page between
checking the PAGE_SIZE bit and grabbing the address of the next level
down.
This reverts commit 13c72c060f.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <YmwIi3bXr/1yhYV/@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes for (relatively) old bugs, to be merged in both the -rc and next
development trees:
* Fix potential races when walking host page table
* Fix bad user ABI for KVM_EXIT_SYSTEM_EVENT
* Fix shadow page table leak when KVM runs nested
KVM uses lookup_address_in_mm() to detect the hugepage size that the host
uses to map a pfn. The function suffers from several issues:
- no usage of READ_ONCE(*). This allows multiple dereference of the same
page table entry. The TOCTOU problem because of that may cause KVM to
incorrectly treat a newly generated leaf entry as a nonleaf one, and
dereference the content by using its pfn value.
- the information returned does not match what KVM needs; for non-present
entries it returns the level at which the walk was terminated, as long
as the entry is not 'none'. KVM needs level information of only 'present'
entries, otherwise it may regard a non-present PXE entry as a present
large page mapping.
- the function is not safe for mappings that can be torn down, because it
does not disable IRQs and because it returns a PTE pointer which is never
safe to dereference after the function returns.
So implement the logic for walking host page tables directly in KVM, and
stop using lookup_address_in_mm().
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220429031757.2042406-1-mizhang@google.com>
[Inline in host_pfn_mapping_level, ensure no semantic change for its
callers. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM_EXIT_SYSTEM_EVENT was introduced, it included a flags
member that at the time was unused. Unfortunately this extensibility
mechanism has several issues:
- x86 is not writing the member, so it would not be possible to use it
on x86 except for new events
- the member is not aligned to 64 bits, so the definition of the
uAPI struct is incorrect for 32- on 64-bit userspace. This is a
problem for RISC-V, which supports CONFIG_KVM_COMPAT, but fortunately
usage of flags was only introduced in 5.18.
Since padding has to be introduced, place a new field in there
that tells if the flags field is valid. To allow further extensibility,
in fact, change flags to an array of 16 values, and store how many
of the values are valid. The availability of the new ndata field
is tied to a system capability; all architectures are changed to
fill in the field.
To avoid breaking compilation of userspace that was using the flags
field, provide a userspace-only union to overlap flags with data[0].
The new field is placed at the same offset for both 32- and 64-bit
userspace.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Message-Id: <20220422103013.34832-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow memslots and MMIO SPTEs whose gpa range would exceed the host's
MAXPHYADDR, i.e. don't create SPTEs for gfns that exceed host.MAXPHYADDR.
The TDP MMU bounds its zapping based on host.MAXPHYADDR, and so if the
guest, possibly with help from userspace, manages to coerce KVM into
creating a SPTE for an "impossible" gfn, KVM will leak the associated
shadow pages (page tables):
WARNING: CPU: 10 PID: 1122 at arch/x86/kvm/mmu/tdp_mmu.c:57
kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
Modules linked in: kvm_intel kvm irqbypass
CPU: 10 PID: 1122 Comm: set_memory_regi Tainted: G W 5.18.0-rc1+ #293
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2d0 [kvm]
kvm_vm_release+0x1d/0x30 [kvm]
__fput+0x82/0x240
task_work_run+0x5b/0x90
exit_to_user_mode_prepare+0xd2/0xe0
syscall_exit_to_user_mode+0x1d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
On bare metal, encountering an impossible gpa in the page fault path is
well and truly impossible, barring CPU bugs, as the CPU will signal #PF
during the gva=>gpa translation (or a similar failure when stuffing a
physical address into e.g. the VMCS/VMCB). But if KVM is running as a VM
itself, the MAXPHYADDR enumerated to KVM may not be the actual MAXPHYADDR
of the underlying hardware, in which case the hardware will not fault on
the illegal-from-KVM's-perspective gpa.
Alternatively, KVM could continue allowing the dodgy behavior and simply
zap the max possible range. But, for hosts with MAXPHYADDR < 52, that's
a (minor) waste of cycles, and more importantly, KVM can't reasonably
support impossible memslots when running on bare metal (or with an
accurate MAXPHYADDR as a VM). Note, limiting the overhead by checking if
KVM is running as a guest is not a safe option as the host isn't required
to announce itself to the guest in any way, e.g. doesn't need to set the
HYPERVISOR CPUID bit.
A second alternative to disallowing the memslot behavior would be to
disallow creating a VM with guest.MAXPHYADDR > host.MAXPHYADDR. That
restriction is undesirable as there are legitimate use cases for doing
so, e.g. using the highest host.MAXPHYADDR out of a pool of heterogeneous
systems so that VMs can be migrated between hosts with different
MAXPHYADDRs without running afoul of the allow_smaller_maxphyaddr mess.
Note that any guest.MAXPHYADDR is valid with shadow paging, and it is
even useful in order to test KVM with MAXPHYADDR=52 (i.e. without
any reserved physical address bits).
The now common kvm_mmu_max_gfn() is inclusive instead of exclusive.
The memslot and TDP MMU code want an exclusive value, but the name
implies the returned value is inclusive, and the MMIO path needs an
inclusive check.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 524a1e4e38 ("KVM: x86/mmu: Don't leak non-leaf SPTEs when zapping all SPTEs")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220428233416.2446833-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a XEN_HVM guest uses the XEN PIRQ/Eventchannel mechanism, then
PCI/MSI[-X] masking is solely controlled by the hypervisor, but contrary to
XEN_PV guests this does not disable PCI/MSI[-X] masking in the PCI/MSI
layer.
This can lead to a situation where the PCI/MSI layer masks an MSI[-X]
interrupt and the hypervisor grants the write despite the fact that it
already requested the interrupt. As a consequence interrupt delivery on the
affected device is not happening ever.
Set pci_msi_ignore_mask to prevent that like it's done for XEN_PV guests
already.
Fixes: 809f9267bb ("xen: map MSIs into pirqs")
Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Reported-by: Dusty Mabe <dustymabe@redhat.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Noah Meyerhans <noahm@debian.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87tuaduxj5.ffs@tglx
The word of "free" is not expressive enough to express the feature of
optimizing vmemmap pages associated with each HugeTLB, rename this keywork
to "optimize". In this patch , cheanup configs to make code more
expressive.
Link: https://lkml.kernel.org/r/20220404074652.68024-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This defines and exports a platform specific custom vm_get_page_prot() via
subscribing ARCH_HAS_VM_GET_PAGE_PROT. This also unsubscribes from config
ARCH_HAS_FILTER_PGPROT, after dropping off arch_filter_pgprot() and
arch_vm_get_page_prot().
Link: https://lkml.kernel.org/r/20220414062125.609297-6-anshuman.khandual@arm.com
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The feature of minimizing overhead of struct page associated with each
HugeTLB page is implemented on x86_64, however, the infrastructure of this
feature is already there, we could easily enable it for other
architectures. Introduce ARCH_WANT_HUGETLB_PAGE_FREE_VMEMMAP for other
architectures to be easily enabled. Just select this config if they want
to enable this feature.
Link: https://lkml.kernel.org/r/20220331065640.5777-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Tested-by: Barry Song <baohua@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
HSMP protocol version 5 is supported on AMD family 19h model 10h
EPYC processors. This version brings new features such as
-- DIMM statistics
-- Bandwidth for IO and xGMI links
-- Monitor socket and core frequency limits
-- Configure power efficiency modes, DF pstate range etc
Signed-off-by: Suma Hegde <suma.hegde@amd.com>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Signed-off-by: Naveen Krishna Chatradhi <nchatrad@amd.com>
Link: https://lore.kernel.org/r/20220427152248.25643-1-nchatrad@amd.com
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Due to the avoidance of IPIs to idle CPUs arch_freq_get_on_cpu() can return
0 when the last sample was too long ago.
show_cpuinfo() has a fallback to cpufreq_quick_get() and if that fails to
return cpu_khz, but the readout code for the per CPU scaling frequency in
sysfs does not.
Move that fallback into arch_freq_get_on_cpu() so the behaviour is the same
when reading /proc/cpuinfo and /sys/..../cur_scaling_freq.
Suggested-by: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Doug Smythies <dsmythies@telus.net>
Link: https://lore.kernel.org/r/87pml5180p.ffs@tglx
Reading the current CPU frequency from /sys/..../scaling_cur_freq involves
in the worst case two IPIs due to the ad hoc sampling.
The frequency invariance infrastructure provides the APERF/MPERF samples
already. Utilize them and consolidate this with the /proc/cpuinfo readout.
The sample is considered valid for 20ms. So for idle or isolated NOHZ full
CPUs the function returns 0, which is matching the previous behaviour.
The resulting text size vs. the original APERF/MPERF plus the separate
frequency invariance code:
text: 2411 -> 723
init.text: 0 -> 767
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.934040006@linutronix.de
The frequency invariance infrastructure provides the APERF/MPERF samples
already. Utilize them for the cpu frequency display in /proc/cpuinfo.
The sample is considered valid for 20ms. So for idle or isolated NOHZ full
CPUs the function returns 0, which is matching the previous behaviour.
This gets rid of the mass IPIs and a delay of 20ms for stabilizing observed
by Eric when reading /proc/cpuinfo.
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.875029458@linutronix.de
Now that the MSR readout is unconditional, store the results in the per CPU
data structure along with a jiffies timestamp for the CPU frequency readout
code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.817702355@linutronix.de
The frequency invariance support is currently limited to x86/64 and SMP,
which is the vast majority of machines.
arch_scale_freq_tick() is called every tick on all CPUs and reads the APERF
and MPERF MSRs. The CPU frequency getters function do the same via dedicated
IPIs.
While it could be argued that on systems where frequency invariance support
is disabled (32bit, !SMP) the per tick read of the APERF and MPERF MSRs can
be avoided, it does not make sense to keep the extra code and the resulting
runtime issues of mass IPIs around.
As a first step split out the non frequency invariance specific
initialization code and the read MSR portion of arch_scale_freq_tick(). The
rest of the code is still conditional and guarded with a static key.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.761988704@linutronix.de
Preparation for sharing code with the CPU frequency portion of the
aperf/mperf code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.706185092@linutronix.de
Preparation for sharing code with the CPU frequency portion of the
aperf/mperf code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.648485667@linutronix.de
AMD boot CPU initialization happens late via ACPI/CPPC which prevents the
Intel parts from being marked __init.
Split out the common code and provide a dedicated interface for the AMD
initialization and mark the Intel specific code and data __init.
The remaining text size is almost cut in half:
text: 2614 -> 1350
init.text: 0 -> 786
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.592465719@linutronix.de
This code is convoluted and because it can be invoked post init via the
ACPI/CPPC code, all of the initialization functionality is built in instead
of being part of init text and init data.
As a first step create separate calls for the boot and the application
processors.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.536733494@linutronix.de
as this can share code with the preexisting APERF/MPERF code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.478362457@linutronix.de
aperfmperf_get_khz() already excludes idle CPUs from APERF/MPERF sampling
and that's a reasonable decision. There is no point in sending up to two
IPIs to an idle CPU just because someone reads a sysfs file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.419880163@linutronix.de
Changes to the "warn" mode of split lock handling mean that TIF_SLD is
never set.
Remove the bit, and the functions that use it.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220310204854.31752-3-tony.luck@intel.com
In https://lore.kernel.org/all/87y22uujkm.ffs@tglx/ Thomas
said:
Its's simply wishful thinking that stuff gets fixed because of a
WARN_ONCE(). This has never worked. The only thing which works is to
make stuff fail hard or slow it down in a way which makes it annoying
enough to users to complain.
He was talking about WBINVD. But it made me think about how we use the
split lock detection feature in Linux.
Existing code has three options for applications:
1) Don't enable split lock detection (allow arbitrary split locks)
2) Warn once when a process uses split lock, but let the process
keep running with split lock detection disabled
3) Kill process that use split locks
Option 2 falls into the "wishful thinking" territory that Thomas warns does
nothing. But option 3 might not be viable in a situation with legacy
applications that need to run.
Hence make option 2 much stricter to "slow it down in a way which makes
it annoying".
Primary reason for this change is to provide better quality of service to
the rest of the applications running on the system. Internal testing shows
that even with many processes splitting locks, performance for the rest of
the system is much more responsive.
The new "warn" mode operates like this. When an application tries to
execute a bus lock the #AC handler.
1) Delays (interruptibly) 10 ms before moving to next step.
2) Blocks (interruptibly) until it can get the semaphore
If interrupted, just return. Assume the signal will either
kill the task, or direct execution away from the instruction
that is trying to get the bus lock.
3) Disables split lock detection for the current core
4) Schedules a work queue to re-enable split lock detect in 2 jiffies
5) Returns
The work queue that re-enables split lock detection also releases the
semaphore.
There is a corner case where a CPU may be taken offline while split lock
detection is disabled. A CPU hotplug handler handles this case.
Old behaviour was to only print the split lock warning on the first
occurrence of a split lock from a task. Preserve that by adding a flag to
the task structure that suppresses subsequent split lock messages from that
task.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220310204854.31752-2-tony.luck@intel.com
Since
e2a1256b17 ("x86/speculation: Restore speculation related MSRs during S3 resume")
kmemleak reports this issue:
unreferenced object 0xffff888009cedc00 (size 256):
comm "swapper/0", pid 1, jiffies 4294693823 (age 73.764s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 48 00 00 00 00 00 00 00 ........H.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
msr_build_context (include/linux/slab.h:621)
pm_check_save_msr (arch/x86/power/cpu.c:520)
do_one_initcall (init/main.c:1298)
kernel_init_freeable (init/main.c:1370)
kernel_init (init/main.c:1504)
ret_from_fork (arch/x86/entry/entry_64.S:304)
Reproducer:
- boot the VM with a debug kernel config (see
https://github.com/multipath-tcp/mptcp_net-next/issues/268)
- wait ~1 minute
- start a kmemleak scan
The root cause here is alignment within the packed struct saved_context
(from suspend_64.h). Kmemleak only searches for pointers that are
aligned (see how pointers are scanned in kmemleak.c), but pahole shows
that the saved_msrs struct member and all members after it in the
structure are unaligned:
struct saved_context {
struct pt_regs regs; /* 0 168 */
/* --- cacheline 2 boundary (128 bytes) was 40 bytes ago --- */
u16 ds; /* 168 2 */
...
u64 misc_enable; /* 232 8 */
bool misc_enable_saved; /* 240 1 */
/* Note below odd offset values for the remainder of this struct */
struct saved_msrs saved_msrs; /* 241 16 */
/* --- cacheline 4 boundary (256 bytes) was 1 bytes ago --- */
long unsigned int efer; /* 257 8 */
u16 gdt_pad; /* 265 2 */
struct desc_ptr gdt_desc; /* 267 10 */
u16 idt_pad; /* 277 2 */
struct desc_ptr idt; /* 279 10 */
u16 ldt; /* 289 2 */
u16 tss; /* 291 2 */
long unsigned int tr; /* 293 8 */
long unsigned int safety; /* 301 8 */
long unsigned int return_address; /* 309 8 */
/* size: 317, cachelines: 5, members: 25 */
/* last cacheline: 61 bytes */
} __attribute__((__packed__));
Move misc_enable_saved to the end of the struct declaration so that
saved_msrs fits in before the cacheline 4 boundary.
The comment above the saved_context declaration says to fix wakeup_64.S
file and __save/__restore_processor_state() if the struct is modified:
it looks like all the accesses in wakeup_64.S are done through offsets
which are computed at build-time. Update that comment accordingly.
At the end, the false positive kmemleak report is due to a limitation
from kmemleak but it is always good to avoid unaligned members for
optimisation purposes.
Please note that it looks like this issue is not new, e.g.
https://lore.kernel.org/all/9f1bb619-c4ee-21c4-a251-870bd4db04fa@lwfinger.net/https://lore.kernel.org/all/94e48fcd-1dbd-ebd2-4c91-f39941735909@molgen.mpg.de/
[ bp: Massage + cleanup commit message. ]
Fixes: 7a9c2dd08e ("x86/pm: Introduce quirk framework to save/restore extra MSR registers around suspend/resume")
Suggested-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220426202138.498310-1-matthieu.baerts@tessares.net
The GHCB specification section 2.7 states that when SEV-SNP is enabled,
a guest should not rely on the hypervisor to provide the address of the
AP jump table. Instead, if a guest BIOS wants to provide an AP jump
table, it should record the address in the SNP secrets page so the guest
operating system can obtain it directly from there.
Fix this on the guest kernel side by having SNP guests use the AP jump
table address published in the secrets page rather than issuing a GHCB
request to get it.
[ mroth:
- Improve error handling when ioremap()/memremap() return NULL
- Don't mix function calls with declarations
- Add missing __init
- Tweak commit message ]
Fixes: 0afb6b660a ("x86/sev: Use SEV-SNP AP creation to start secondary CPUs")
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220422135624.114172-3-michael.roth@amd.com
Currently, get_secrets_page() is only reachable from the following call
chain:
__init snp_init_platform_device():
get_secrets_page()
so mark it as __init as well. This is also needed since it calls
early_memremap(), which is also an __init routine.
Similarly, get_jump_table_addr() is only reachable from the following
call chain:
__init setup_real_mode():
sme_sev_setup_real_mode():
sev_es_setup_ap_jump_table():
get_jump_table_addr()
so mark get_jump_table_addr() and everything up that call chain as
__init as well. This is also needed since future patches will add a
call to get_secrets_page(), which needs to be __init due to the reasons
stated above.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220422135624.114172-2-michael.roth@amd.com
Provide a single common definition for the compat_flock and
compat_flock64 structures using the same tricks as for the native
variants. Another extra define is added for the packing required on
x86.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Acked-by: Helge Deller <deller@gmx.de> # parisc
Link: https://lore.kernel.org/r/20220405071314.3225832-4-guoren@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The F_GETLK64/F_SETLK64/F_SETLKW64 fcntl opcodes are only implemented
for the 32-bit syscall APIs, but are also needed for compat handling
on 64-bit kernels.
Consolidate them in unistd.h instead of definining the internal compat
definitions in compat.h, which is rather error prone (e.g. parisc
gets the values wrong currently).
Note that before this change they were never visible to userspace due
to the fact that CONFIG_64BIT is only set for kernel builds.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Link: https://lore.kernel.org/r/20220405071314.3225832-3-guoren@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Need to bring commit d8bb92e70a ("drm/dp: Factor out a function to
probe a DPCD address") back as a dependency to further work in
drm-intel-next.
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
XSAVEC is the user space counterpart of XSAVES which cannot save supervisor
state. In virtualization scenarios the hypervisor does not expose XSAVES
but XSAVEC to the guest, though the kernel does not make use of it.
That's unfortunate because XSAVEC uses the compacted format of saving the
XSTATE. This is more efficient in terms of storage space vs. XSAVE[OPT] as
it does not create holes for XSTATE components which are not supported or
enabled by the kernel but are available in hardware. There is room for
further optimizations when XSAVEC/S and XGETBV1 are supported.
In order to support XSAVEC:
- Define the XSAVEC ASM macro as it's not yet supported by the required
minimal toolchain.
- Create a software defined X86_FEATURE_XCOMPACTED to select the compacted
XSTATE buffer format for both XSAVEC and XSAVES.
- Make XSAVEC an option in the 'XSAVE' ASM alternatives
Requested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220404104820.598704095@linutronix.de
When a machine error is graded as PANIC by the AMD grading logic, the
MCE handler calls mce_panic(). The notification chain does not come
into effect so the AMD EDAC driver does not decode the errors. In these
cases, the messages displayed to the user are more cryptic and miss
information that might be relevant, like the context in which the error
took place.
Add messages to the grading logic for machine errors so that it is clear
what error it was.
[ bp: Massage commit message. ]
Signed-off-by: Carlos Bilbao <carlos.bilbao@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20220405183212.354606-3-carlos.bilbao@amd.com
The MCE handler needs to understand the severity of the machine errors to
act accordingly. Simplify the AMD grading logic following a logic that
closely resembles the descriptions of the public PPR documents. This will
help include more fine-grained grading of errors in the future.
[ bp: Touchups. ]
Signed-off-by: Carlos Bilbao <carlos.bilbao@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20220405183212.354606-2-carlos.bilbao@amd.com
* Remove 's' & 'u' as valid ISA extension
* Do not allow disabling the base extensions 'i'/'m'/'a'/'c'
x86:
* Fix NMI watchdog in guests on AMD
* Fix for SEV cache incoherency issues
* Don't re-acquire SRCU lock in complete_emulated_io()
* Avoid NULL pointer deref if VM creation fails
* Fix race conditions between APICv disabling and vCPU creation
* Bugfixes for disabling of APICv
* Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume
selftests:
* Do not use bitfields larger than 32-bits, they differ between GCC and clang
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJi3KUUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMhvQf/Yncfg3MkOvKsVxnCe7diKDTI/E2n
wBGNIcL8r7L9oIltHL4Mh7JQTacHFQOZ9PQ30NO1p+pznZ03e8LR59IF1JpP7VOU
sWrLZ5a4bIAEjOpA7Jxcee6hUBwewBauDgFLbb+YAI2lAahiH7jVfywDRife/c3k
N2LjeA75K8UvMiDCfjxxxerFJK91zaqjWlUNF2OhtFp/5pnMfS+nli9Q8QS837pZ
oUf+0Beb2RpSHan+wbYVU7X3ZLwtpR0M3w3uXOG+X3as56wDf26znXS02aSwa45x
lfX+pqJfmb4vCJJDXt6avH27EVgTq0Vew+BhQHG3VLRO6uxZ+smX6qmsuw==
=kvbw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"The main and larger change here is a workaround for AMD's lack of
cache coherency for encrypted-memory guests.
I have another patch pending, but it's waiting for review from the
architecture maintainers.
RISC-V:
- Remove 's' & 'u' as valid ISA extension
- Do not allow disabling the base extensions 'i'/'m'/'a'/'c'
x86:
- Fix NMI watchdog in guests on AMD
- Fix for SEV cache incoherency issues
- Don't re-acquire SRCU lock in complete_emulated_io()
- Avoid NULL pointer deref if VM creation fails
- Fix race conditions between APICv disabling and vCPU creation
- Bugfixes for disabling of APICv
- Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume
selftests:
- Do not use bitfields larger than 32-bits, they differ between GCC
and clang"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: selftests: introduce and use more page size-related constants
kvm: selftests: do not use bitfields larger than 32-bits for PTEs
KVM: SEV: add cache flush to solve SEV cache incoherency issues
KVM: SVM: Flush when freeing encrypted pages even on SME_COHERENT CPUs
KVM: SVM: Simplify and harden helper to flush SEV guest page(s)
KVM: selftests: Silence compiler warning in the kvm_page_table_test
KVM: x86/pmu: Update AMD PMC sample period to fix guest NMI-watchdog
x86/kvm: Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume
KVM: SPDX style and spelling fixes
KVM: x86: Skip KVM_GUESTDBG_BLOCKIRQ APICv update if APICv is disabled
KVM: x86: Pend KVM_REQ_APICV_UPDATE during vCPU creation to fix a race
KVM: nVMX: Defer APICv updates while L2 is active until L1 is active
KVM: x86: Tag APICv DISABLE inhibit, not ABSENT, if APICv is disabled
KVM: Initialize debugfs_dentry when a VM is created to avoid NULL deref
KVM: Add helpers to wrap vcpu->srcu_idx and yell if it's abused
KVM: RISC-V: Use kvm_vcpu.srcu_idx, drop RISC-V's unnecessary copy
KVM: x86: Don't re-acquire SRCU lock in complete_emulated_io()
RISC-V: KVM: Restrict the extensions that can be disabled
RISC-V: KVM: Remove 's' & 'u' as valid ISA extension
Objtool has some hacks in place to workaround toolchain limitations
which otherwise would break no-instrumentation rules. Make the hacks
explicit (and optional for other arches) by turning it into a cmdline
option and kernel config option.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/b326eeb9c33231b9dfbb925f194ed7ee40edcd7c.1650300597.git.jpoimboe@redhat.com
Objtool secretly does a jump label hack to overcome the limitations of
the toolchain. Make the hack explicit (and optional for other arches)
by turning it into a cmdline option and kernel config option.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/3bdcbfdd27ecb01ddec13c04bdf756a583b13d24.1650300597.git.jpoimboe@redhat.com
Now that stack validation is an optional feature of objtool, add
CONFIG_OBJTOOL and replace most usages of CONFIG_STACK_VALIDATION with
it.
CONFIG_STACK_VALIDATION can now be considered to be frame-pointer
specific. CONFIG_UNWINDER_ORC is already inherently valid for live
patching, so no need to "validate" it.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/939bf3d85604b2a126412bf11af6e3bd3b872bcb.1650300597.git.jpoimboe@redhat.com
With SIGTRAP on perf events, we have encountered termination of
processes due to user space attempting to block delivery of SIGTRAP.
Consider this case:
<set up SIGTRAP on a perf event>
...
sigset_t s;
sigemptyset(&s);
sigaddset(&s, SIGTRAP | <and others>);
sigprocmask(SIG_BLOCK, &s, ...);
...
<perf event triggers>
When the perf event triggers, while SIGTRAP is blocked, force_sig_perf()
will force the signal, but revert back to the default handler, thus
terminating the task.
This makes sense for error conditions, but not so much for explicitly
requested monitoring. However, the expectation is still that signals
generated by perf events are synchronous, which will no longer be the
case if the signal is blocked and delivered later.
To give user space the ability to clearly distinguish synchronous from
asynchronous signals, introduce siginfo_t::si_perf_flags and
TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is
required in future).
The resolution to the problem is then to (a) no longer force the signal
(avoiding the terminations), but (b) tell user space via si_perf_flags
if the signal was synchronous or not, so that such signals can be
handled differently (e.g. let user space decide to ignore or consider
the data imprecise).
The alternative of making the kernel ignore SIGTRAP on perf events if
the signal is blocked may work for some usecases, but likely causes
issues in others that then have to revert back to interception of
sigprocmask() (which we want to avoid). [ A concrete example: when using
breakpoint perf events to track data-flow, in a region of code where
signals are blocked, data-flow can no longer be tracked accurately.
When a relevant asynchronous signal is received after unblocking the
signal, the data-flow tracking logic needs to know its state is
imprecise. ]
Fixes: 97ba62b278 ("perf: Add support for SIGTRAP on perf events")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots). Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.
Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.
KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.
Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.
Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use clflush_cache_range() to flush the confidential memory when
SME_COHERENT is supported in AMD CPU. Cache flush is still needed since
SME_COHERENT only support cache invalidation at CPU side. All confidential
cache lines are still incoherent with DMA devices.
Cc: stable@vger.kerel.org
Fixes: add5e2f045 ("KVM: SVM: Add support for the SEV-ES VMSA")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-3-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework sev_flush_guest_memory() to explicitly handle only a single page,
and harden it to fall back to WBINVD if VM_PAGE_FLUSH fails. Per-page
flushing is currently used only to flush the VMSA, and in its current
form, the helper is completely broken with respect to flushing actual
guest memory, i.e. won't work correctly for an arbitrary memory range.
VM_PAGE_FLUSH takes a host virtual address, and is subject to normal page
walks, i.e. will fault if the address is not present in the host page
tables or does not have the correct permissions. Current AMD CPUs also
do not honor SMAP overrides (undocumented in kernel versions of the APM),
so passing in a userspace address is completely out of the question. In
other words, KVM would need to manually walk the host page tables to get
the pfn, ensure the pfn is stable, and then use the direct map to invoke
VM_PAGE_FLUSH. And the latter might not even work, e.g. if userspace is
particularly evil/clever and backs the guest with Secret Memory (which
unmaps memory from the direct map).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fixes: add5e2f045 ("KVM: SVM: Add support for the SEV-ES VMSA")
Reported-by: Mingwei Zhang <mizhang@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-2-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
NMI-watchdog is one of the favorite features of kernel developers,
but it does not work in AMD guest even with vPMU enabled and worse,
the system misrepresents this capability via /proc.
This is a PMC emulation error. KVM does not pass the latest valid
value to perf_event in time when guest NMI-watchdog is running, thus
the perf_event corresponding to the watchdog counter will enter the
old state at some point after the first guest NMI injection, forcing
the hardware register PMC0 to be constantly written to 0x800000000001.
Meanwhile, the running counter should accurately reflect its new value
based on the latest coordinated pmc->counter (from vPMC's point of view)
rather than the value written directly by the guest.
Fixes: 168d918f26 ("KVM: x86: Adjust counter sample period after a wrmsr")
Reported-by: Dongli Cao <caodongli@kingsoft.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Yanan Wang <wangyanan55@huawei.com>
Tested-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220409015226.38619-1-likexu@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_KVM_POLL_CONTROL is cleared on reset, thus reverting guests to
host-side polling after suspend/resume. Non-bootstrap CPUs are
restored correctly by the haltpoll driver because they are hot-unplugged
during suspend and hot-plugged during resume; however, the BSP
is not hotpluggable and remains in host-sde polling mode after
the guest resume. The makes the guest pay for the cost of vmexits
every time the guest enters idle.
Fix it by recording BSP's haltpoll state and resuming it during guest
resume.
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650267752-46796-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the APICv inhibit update for KVM_GUESTDBG_BLOCKIRQ if APICv is
disabled at the module level to avoid having to acquire the mutex and
potentially process all vCPUs. The DISABLE inhibit will (barring bugs)
never be lifted, so piling on more inhibits is unnecessary.
Fixes: cae72dcc3b ("KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make a KVM_REQ_APICV_UPDATE request when creating a vCPU with an
in-kernel local APIC and APICv enabled at the module level. Consuming
kvm_apicv_activated() and stuffing vcpu->arch.apicv_active directly can
race with __kvm_set_or_clear_apicv_inhibit(), as vCPU creation happens
before the vCPU is fully onlined, i.e. it won't get the request made to
"all" vCPUs. If APICv is globally inhibited between setting apicv_active
and onlining the vCPU, the vCPU will end up running with APICv enabled
and trigger KVM's sanity check.
Mark APICv as active during vCPU creation if APICv is enabled at the
module level, both to be optimistic about it's final state, e.g. to avoid
additional VMWRITEs on VMX, and because there are likely bugs lurking
since KVM checks apicv_active in multiple vCPU creation paths. While
keeping the current behavior of consuming kvm_apicv_activated() is
arguably safer from a regression perspective, force apicv_active so that
vCPU creation runs with deterministic state and so that if there are bugs,
they are found sooner than later, i.e. not when some crazy race condition
is hit.
WARNING: CPU: 0 PID: 484 at arch/x86/kvm/x86.c:9877 vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Modules linked in:
CPU: 0 PID: 484 Comm: syz-executor361 Not tainted 5.16.13 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1~cloud0 04/01/2014
RIP: 0010:vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Call Trace:
<TASK>
vcpu_run arch/x86/kvm/x86.c:10039 [inline]
kvm_arch_vcpu_ioctl_run+0x337/0x15e0 arch/x86/kvm/x86.c:10234
kvm_vcpu_ioctl+0x4d2/0xc80 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3727
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x16d/0x1d0 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The bug was hit by a syzkaller spamming VM creation with 2 vCPUs and a
call to KVM_SET_GUEST_DEBUG.
r0 = openat$kvm(0xffffffffffffff9c, &(0x7f0000000000), 0x0, 0x0)
r1 = ioctl$KVM_CREATE_VM(r0, 0xae01, 0x0)
ioctl$KVM_CAP_SPLIT_IRQCHIP(r1, 0x4068aea3, &(0x7f0000000000)) (async)
r2 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x0) (async)
r3 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x400000000000002)
ioctl$KVM_SET_GUEST_DEBUG(r3, 0x4048ae9b, &(0x7f00000000c0)={0x5dda9c14aa95f5c5})
ioctl$KVM_RUN(r2, 0xae80, 0x0)
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 8df14af42f ("kvm: x86: Add support for dynamic APICv activation")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer APICv updates that occur while L2 is active until nested VM-Exit,
i.e. until L1 regains control. vmx_refresh_apicv_exec_ctrl() assumes L1
is active and (a) stomps all over vmcs02 and (b) neglects to ever updated
vmcs01. E.g. if vmcs12 doesn't enable the TPR shadow for L2 (and thus no
APICv controls), L1 performs nested VM-Enter APICv inhibited, and APICv
becomes unhibited while L2 is active, KVM will set various APICv controls
in vmcs02 and trigger a failed VM-Entry. The kicker is that, unless
running with nested_early_check=1, KVM blames L1 and chaos ensues.
In all cases, ignoring vmcs02 and always deferring the inhibition change
to vmcs01 is correct (or at least acceptable). The ABSENT and DISABLE
inhibitions cannot truly change while L2 is active (see below).
IRQ_BLOCKING can change, but it is firmly a best effort debug feature.
Furthermore, only L2's APIC is accelerated/virtualized to the full extent
possible, e.g. even if L1 passes through its APIC to L2, normal MMIO/MSR
interception will apply to the virtual APIC managed by KVM.
The exception is the SELF_IPI register when x2APIC is enabled, but that's
an acceptable hole.
Lastly, Hyper-V's Auto EOI can technically be toggled if L1 exposes the
MSRs to L2, but for that to work in any sane capacity, L1 would need to
pass through IRQs to L2 as well, and IRQs must be intercepted to enable
virtual interrupt delivery. I.e. exposing Auto EOI to L2 and enabling
VID for L2 are, for all intents and purposes, mutually exclusive.
Lack of dynamic toggling is also why this scenario is all but impossible
to encounter in KVM's current form. But a future patch will pend an
APICv update request _during_ vCPU creation to plug a race where a vCPU
that's being created doesn't get included in the "all vCPUs request"
because it's not yet visible to other vCPUs. If userspaces restores L2
after VM creation (hello, KVM selftests), the first KVM_RUN will occur
while L2 is active and thus service the APICv update request made during
VM creation.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220420013732.3308816-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the DISABLE inhibit, not the ABSENT inhibit, if APICv is disabled via
module param. A recent refactoring to add a wrapper for setting/clearing
inhibits unintentionally changed the flag, probably due to a copy+paste
goof.
Fixes: 4f4c4a3ee5 ("KVM: x86: Trace all APICv inhibit changes and capture overall status")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add wrappers to acquire/release KVM's SRCU lock when stashing the index
in vcpu->src_idx, along with rudimentary detection of illegal usage,
e.g. re-acquiring SRCU and thus overwriting vcpu->src_idx. Because the
SRCU index is (currently) either 0 or 1, illegal nesting bugs can go
unnoticed for quite some time and only cause problems when the nested
lock happens to get a different index.
Wrap the WARNs in PROVE_RCU=y, and make them ONCE, otherwise KVM will
likely yell so loudly that it will bring the kernel to its knees.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20220415004343.2203171-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't re-acquire SRCU in complete_emulated_io() now that KVM acquires the
lock in kvm_arch_vcpu_ioctl_run(). More importantly, don't overwrite
vcpu->srcu_idx. If the index acquired by complete_emulated_io() differs
from the one acquired by kvm_arch_vcpu_ioctl_run(), KVM will effectively
leak a lock and hang if/when synchronize_srcu() is invoked for the
relevant grace period.
Fixes: 8d25b7beca ("KVM: x86: pull kvm->srcu read-side to kvm_arch_vcpu_ioctl_run")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220415004343.2203171-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
objdump complains:
vmlinux.o: warning: objtool: __tdx_hypercall()+0x74: unreachable instruction
because __tdx_hypercall_failed() won't return but panic the guest.
Annotate that that is ok and desired.
Fixes: eb94f1b6a7 ("x86/tdx: Add __tdx_module_call() and __tdx_hypercall() helper functions")
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220420115025.5448-1-bp@alien8.de
During patch review, it was decided the SNP guest driver name should not
be SEV-SNP specific, but should be generic for use with anything SEV.
However, this feedback was missed and the driver name, and many of the
driver functions and structures, are SEV-SNP name specific. Rename the
driver to "sev-guest" (to match the misc device that is created) and
update some of the function and structure names, too.
While in the file, adjust the one pr_err() message to be a dev_err()
message so that the message, if issued, uses the driver name.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/307710bb5515c9088a19fd0b930268c7300479b2.1650464054.git.thomas.lendacky@amd.com
The first "if" condition in __memcpy_flushcache is supposed to align the
"dest" variable to 8 bytes and copy data up to this alignment. However,
this condition may misbehave if "size" is greater than 4GiB.
The statement min_t(unsigned, size, ALIGN(dest, 8) - dest); casts both
arguments to unsigned int and selects the smaller one. However, the
cast truncates high bits in "size" and it results in misbehavior.
For example:
suppose that size == 0x100000001, dest == 0x200000002
min_t(unsigned, size, ALIGN(dest, 8) - dest) == min_t(0x1, 0xe) == 0x1;
...
dest += 0x1;
so we copy just one byte "and" dest remains unaligned.
This patch fixes the bug by replacing unsigned with size_t.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The helpers in arch/x86/boot/compressed/efi.c might be used during
early boot to access the EFI system/config tables, and in some cases
these EFI helpers might attempt to print debug/error messages, before
console_init() has been called.
__putstr() checks some variables to avoid printing anything before
the console has been initialized, but this isn't enough since those
variables live in .bss, which may not have been cleared yet. This can
lead to a triple-fault occurring, primarily when booting in legacy/CSM
mode (where EFI helpers will attempt to print some debug messages).
Fix this by declaring these globals in .data section instead so there
is no dependency on .bss being cleared before accessing them.
Fixes: c01fce9cef ("x86/compressed: Add SEV-SNP feature detection/setup")
Reported-by: Borislav Petkov <bp@suse.de>
Suggested-by: Thomas Lendacky <Thomas.Lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220420152613.145077-1-michael.roth@amd.com
Adding initial PCI ids for RPL-P.
RPL-P behaves identically to ADL-P from i915's point of view.
Changes since V1 :
- SUBPLATFORM ADL_N and RPL_P clash as both are ADLP
based - Matthew R
Bspec: 55376
Signed-off-by: Matt Atwood <matthew.s.atwood@intel.com>
Signed-off-by: Madhumitha Tolakanahalli Pradeep <madhumitha.tolakanahalli.pradeep@intel.com>
Signed-off-by: Tejas Upadhyay <tejaskumarx.surendrakumar.upadhyay@intel.com>
[mattrope: Corrected comment formatting to match coding style]
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20220418062157.2974665-1-tejaskumarx.surendrakumar.upadhyay@intel.com
The startup_xen() kernel entry point is referenced by the ".note.Xen"
section, and is the real entry point of the VM. Control transfer is
through IRET, which *could* set NEED_ENDBR, however Xen currently does
no such thing.
Add ANNOTATE_NOENDBR to silence future objtool warnings.
Fixes: ed53a0d971 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Link: https://lkml.kernel.org/r/a87bd48b06d11ec4b98122a429e71e489b4e48c3.1650300597.git.jpoimboe@redhat.com