Zero vmcs.HOST_IA32_SYSENTER_ESP when initializing *constant* host state
if and only if SYSENTER cannot be used, i.e. the kernel is a 64-bit
kernel and is not emulating 32-bit syscalls. As the name suggests,
vmx_set_constant_host_state() is intended for state that is *constant*.
When SYSENTER is used, SYSENTER_ESP isn't constant because stacks are
per-CPU, and the VMCS must be updated whenever the vCPU is migrated to a
new CPU. The logic in vmx_vcpu_load_vmcs() doesn't differentiate between
"never loaded" and "loaded on a different CPU", i.e. setting SYSENTER_ESP
on VMCS load also handles setting correct host state when the VMCS is
first loaded.
Because a VMCS must be loaded before it is initialized during vCPU RESET,
zeroing the field in vmx_set_constant_host_state() obliterates the value
that was written when the VMCS was loaded. If the vCPU is run before it
is migrated, the subsequent VM-Exit will zero out MSR_IA32_SYSENTER_ESP,
leading to a #DF on the next 32-bit syscall.
double fault: 0000 [#1] SMP
CPU: 0 PID: 990 Comm: stable Not tainted 5.16.0+ #97
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
EIP: entry_SYSENTER_32+0x0/0xe7
Code: <9c> 50 eb 17 0f 20 d8 a9 00 10 00 00 74 0d 25 ff ef ff ff 0f 22 d8
EAX: 000000a2 EBX: a8d1300c ECX: a8d13014 EDX: 00000000
ESI: a8f87000 EDI: a8d13014 EBP: a8d12fc0 ESP: 00000000
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00210093
CR0: 80050033 CR2: fffffffc CR3: 02c3b000 CR4: 00152e90
Fixes: 6ab8a4053f ("KVM: VMX: Avoid to rdmsrl(MSR_IA32_SYSENTER_ESP)")
Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220122015211.1468758-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the api number 134 for KVM_GET_XSAVE2, instead of 42, which has been
used by KVM_GET_XSAVE.
Also, fix the WARNINGs of the underlines being too short.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Message-Id: <20220120045003.315177-1-wei.w.wang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following warning appears when executing
make -C tools/testing/selftests/kvm
include/x86_64/processor.h:290:2: warning: 'ecx' may be used uninitialized in this
function [-Wmaybe-uninitialized]
asm volatile("cpuid"
^~~
lib/x86_64/processor.c:1523:21: note: 'ecx' was declared here
uint32_t eax, ebx, ecx, edx, max_ext_leaf;
Just initialize ecx to remove this warning.
Fixes: c8cc43c1ea ("selftests: KVM: avoid failures due to reserved HyperTransport region")
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220119140325.59369-1-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following warning appears when executing
make -C tools/testing/selftests/kvm
x86_64/pmu_event_filter_test.c: In function 'vcpu_supports_intel_br_retired':
x86_64/pmu_event_filter_test.c:241:28: warning: variable 'cpuid' set but not used [-Wunused-but-set-variable]
241 | struct kvm_cpuid2 *cpuid;
| ^~~~~
x86_64/pmu_event_filter_test.c: In function 'vcpu_supports_amd_zen_br_retired':
x86_64/pmu_event_filter_test.c:258:28: warning: variable 'cpuid' set but not used [-Wunused-but-set-variable]
258 | struct kvm_cpuid2 *cpuid;
| ^~~~~
Just delete the unused variables to stay away from warnings.
Fixes: dc7e75b3b3ee ("selftests: kvm/x86: Add test for KVM_SET_PMU_EVENT_FILTER")
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220119133910.56285-1-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_XSAVE2 is out of sync due to a conflict. Copy the whole
file while at it.
Reported-by: Yang Zhong <yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
amx_test's binary should be present in the .gitignore file for the git
to ignore it.
Fixes: bf70636d94 ("selftest: kvm: Add amx selftest")
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Message-Id: <20220118122053.1941915-1-usama.anjum@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nullify svm_x86_ops.vcpu_(un)blocking if AVIC/APICv is disabled as the
hooks are necessary only to clear the vCPU's IsRunning entry in the
Physical APIC and to update IRTE entries if the VM has a pass-through
device attached.
Opportunistically rename the helpers to clarify their AVIC relationship.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move svm_hardware_setup() below svm_x86_ops so that KVM can modify ops
during setup, e.g. the vcpu_(un)blocking hooks can be nullified if AVIC
is disabled or unsupported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop avic_set_running() in favor of calling avic_vcpu_{load,put}()
directly, and modify the block+put path to use preempt_disable/enable()
instead of get/put_cpu(), as it doesn't actually care about the current
pCPU associated with the vCPU. Opportunistically add lockdep assertions
as being preempted in avic_vcpu_put() would lead to consuming stale data,
even though doing so _in the current code base_ would not be fatal.
Add a much needed comment explaining why svm_vcpu_blocking() needs to
unload the AVIC and update the IRTE _before_ the vCPU starts blocking.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When waking vCPUs in the posted interrupt wakeup handling, do exactly
that and no more. There is no need to kick the vCPU as the wakeup
handler just needs to get the vCPU task running, and if it's in the guest
then it's definitely running.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the fallback "wake_up" path into the helper to trigger posted
interrupt helper now that the nested and non-nested paths are identical.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor the posted interrupt helper to take the desired notification
vector instead of a bool so that the callers are self-documenting.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the full "kick" with just the "wake" in the fallback path when
triggering a virtual interrupt via a posted interrupt fails because the
guest is not IN_GUEST_MODE. If the guest transitions into guest mode
between the check and the kick, then it's guaranteed to see the pending
interrupt as KVM syncs the PIR to IRR (and onto GUEST_RVI) after setting
IN_GUEST_MODE. Kicking the guest in this case is nothing more than an
unnecessary VM-Exit (and host IRQ).
Opportunistically update comments to explain the various ordering rules
and barriers at play.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't bother updating the Physical APIC table or IRTE when loading a vCPU
that is blocking, i.e. won't be marked IsRun{ning}=1, as the pCPU is
queried if and only if IsRunning is '1'. If the vCPU was migrated, the
new pCPU will be picked up when avic_vcpu_load() is called by
svm_vcpu_unblocking().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_is_blocking() to determine whether or not the vCPU should be
marked running during avic_vcpu_load(). Drop avic_is_running, which
really should have been named "vcpu_is_not_blocking", as it tracked if
the vCPU was blocking, not if it was actually running, e.g. it was set
during svm_create_vcpu() when the vCPU was obviously not running.
This is technically a teeny tiny functional change, as the vCPU will be
marked IsRunning=1 on being reloaded if the vCPU is preempted between
svm_vcpu_blocking() and prepare_to_rcuwait(). But that's a benign change
as the vCPU will be marked IsRunning=0 when KVM voluntarily schedules out
the vCPU.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove handling of KVM_REQ_APICV_UPDATE from svm_vcpu_unblocking(), it's
no longer needed as it was made obsolete by commit df7e4827c5 ("KVM:
SVM: call avic_vcpu_load/avic_vcpu_put when enabling/disabling AVIC").
Prior to that commit, the manual check was necessary to ensure the AVIC
stuff was updated by avic_set_running() when a request to enable APICv
became pending while the vCPU was blocking, as the request handling
itself would not do the update. But, as evidenced by the commit, that
logic was flawed and subject to various races.
Now that svm_refresh_apicv_exec_ctrl() does avic_vcpu_load/put() in
response to an APICv status change, drop the manual check in the
unblocking path.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the avic_vcpu_is_running() check when waking vCPUs in response to a
VM-Exit due to incomplete IPI delivery. The check isn't wrong per se, but
it's not 100% accurate in the sense that it doesn't guarantee that the vCPU
was one of the vCPUs that didn't receive the IPI.
The check isn't required for correctness as blocking == !running in this
context.
From a performance perspective, waking a live task is not expensive as the
only moderately costly operation is a locked operation to temporarily
disable preemption. And if that is indeed a performance issue,
kvm_vcpu_is_blocking() would be a better check than poking into the AVIC.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signal the AVIC doorbell iff the vCPU is running in the guest. If the vCPU
is not IN_GUEST_MODE, it's guaranteed to pick up any pending IRQs on the
next VMRUN, which unconditionally processes the vIRR.
Add comments to document the logic.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_x86_ops' pre/post_block() now that all implementations are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unexport switch_to_{hv,sw}_timer() now that common x86 handles the
transitions.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle the switch to/from the hypervisor/software timer when a vCPU is
blocking in common x86 instead of in VMX. Even though VMX is the only
user of a hypervisor timer, the logic and all functions involved are
generic x86 (unless future CPUs do something completely different and
implement a hypervisor timer that runs regardless of mode).
Handling the switch in common x86 will allow for the elimination of the
pre/post_blocks hooks, and also lets KVM switch back to the hypervisor
timer if and only if it was in use (without additional params). Add a
comment explaining why the switch cannot be deferred to kvm_sched_out()
or kvm_vcpu_block().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the seemingly generic block_vcpu_list from kvm_vcpu to vcpu_vmx, and
rename the list and all associated variables to clarify that it tracks
the set of vCPU that need to be poked on a posted interrupt to the wakeup
vector. The list is not used to track _all_ vCPUs that are blocking, and
the term "blocked" can be misleading as it may refer to a blocking
condition in the host or the guest, where as the PI wakeup case is
specifically for the vCPUs that are actively blocking from within the
guest.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove kvm_vcpu.pre_pcpu as it no longer has any users. No functional
change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the posted interrupt pre/post_block logic into vcpu_put/load
respectively, using the kvm_vcpu_is_blocking() to determining whether or
not the wakeup handler needs to be set (and unset). This avoids updating
the PI descriptor if halt-polling is successful, reduces the number of
touchpoints for updating the descriptor, and eliminates the confusing
behavior of intentionally leaving a "stale" PI.NDST when a blocking vCPU
is scheduled back in after preemption.
The downside is that KVM will do the PID update twice if the vCPU is
preempted after prepare_to_rcuwait() but before schedule(), but that's a
rare case (and non-existent on !PREEMPT kernels).
The notable wart is the need to send a self-IPI on the wakeup vector if
an outstanding notification is pending after configuring the wakeup
vector. Ideally, KVM would just do a kvm_vcpu_wake_up() in this case,
but the scheduler doesn't support waking a task from its preemption
notifier callback, i.e. while the task is right in the middle of
being scheduled out.
Note, setting the wakeup vector before halt-polling is not necessary:
once the pending IRQ will be recorded in the PIR, kvm_vcpu_has_events()
will detect this (via kvm_cpu_get_interrupt(), kvm_apic_get_interrupt(),
apic_has_interrupt_for_ppr() and finally vmx_sync_pir_to_irr()) and
terminate the polling.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid warnings on s390 like
[ 1801.980931] CPU: 12 PID: 117600 Comm: kworker/12:0 Tainted: G E 5.17.0-20220113.rc0.git0.32ce2abb03cf.300.fc35.s390x+next #1
[ 1801.980938] Workqueue: events irqfd_inject [kvm]
[...]
[ 1801.981057] Call Trace:
[ 1801.981060] [<000003ff805f0f5c>] mark_page_dirty_in_slot+0xa4/0xb0 [kvm]
[ 1801.981083] [<000003ff8060e9fe>] adapter_indicators_set+0xde/0x268 [kvm]
[ 1801.981104] [<000003ff80613c24>] set_adapter_int+0x64/0xd8 [kvm]
[ 1801.981124] [<000003ff805fb9aa>] kvm_set_irq+0xc2/0x130 [kvm]
[ 1801.981144] [<000003ff805f8d86>] irqfd_inject+0x76/0xa0 [kvm]
[ 1801.981164] [<0000000175e56906>] process_one_work+0x1fe/0x470
[ 1801.981173] [<0000000175e570a4>] worker_thread+0x64/0x498
[ 1801.981176] [<0000000175e5ef2c>] kthread+0x10c/0x110
[ 1801.981180] [<0000000175de73c8>] __ret_from_fork+0x40/0x58
[ 1801.981185] [<000000017698440a>] ret_from_fork+0xa/0x40
when writing to a guest from an irqfd worker as long as we do not have
the dirty ring.
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reluctantly-acked-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20220113122924.740496-1-borntraeger@linux.ibm.com>
Fixes: 2efd61a608 ("KVM: Warn if mark_page_dirty() is called without an active vCPU")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a VMX specific test to verify that KVM doesn't explode if userspace
attempts KVM_RUN when emulation is required with a pending exception.
KVM VMX's emulation support for !unrestricted_guest punts exceptions to
userspace instead of attempting to synthesize the exception with all the
correct state (and stack switching, etc...).
Punting is acceptable as there's never been a request to support
injecting exceptions when emulating due to invalid state, but KVM has
historically assumed that userspace will do the right thing and either
clear the exception or kill the guest. Deliberately do the opposite and
attempt to re-enter the guest with a pending exception and emulation
required to verify KVM continues to punt the combination to userspace,
e.g. doesn't explode, WARN, etc...
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211228232437.1875318-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reject KVM_RUN if emulation is required (because VMX is running without
unrestricted guest) and an exception is pending, as KVM doesn't support
emulating exceptions except when emulating real mode via vm86. The vCPU
is hosed either way, but letting KVM_RUN proceed triggers a WARN due to
the impossible condition. Alternatively, the WARN could be removed, but
then userspace and/or KVM bugs would result in the vCPU silently running
in a bad state, which isn't very friendly to users.
Originally, the bug was hit by syzkaller with a nested guest as that
doesn't require kvm_intel.unrestricted_guest=0. That particular flavor
is likely fixed by commit cd0e615c49 ("KVM: nVMX: Synthesize
TRIPLE_FAULT for L2 if emulation is required"), but it's trivial to
trigger the WARN with a non-nested guest, and userspace can likely force
bad state via ioctls() for a nested guest as well.
Checking for the impossible condition needs to be deferred until KVM_RUN
because KVM can't force specific ordering between ioctls. E.g. clearing
exception.pending in KVM_SET_SREGS doesn't prevent userspace from setting
it in KVM_SET_VCPU_EVENTS, and disallowing KVM_SET_VCPU_EVENTS with
emulation_required would prevent userspace from queuing an exception and
then stuffing sregs. Note, if KVM were to try and detect/prevent the
condition prior to KVM_RUN, handle_invalid_guest_state() and/or
handle_emulation_failure() would need to be modified to clear the pending
exception prior to exiting to userspace.
------------[ cut here ]------------
WARNING: CPU: 6 PID: 137812 at arch/x86/kvm/vmx/vmx.c:1623 vmx_queue_exception+0x14f/0x160 [kvm_intel]
CPU: 6 PID: 137812 Comm: vmx_invalid_nes Not tainted 5.15.2-7cc36c3e14ae-pop #279
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:vmx_queue_exception+0x14f/0x160 [kvm_intel]
Code: <0f> 0b e9 fd fe ff ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00
RSP: 0018:ffffa45c83577d38 EFLAGS: 00010202
RAX: 0000000000000003 RBX: 0000000080000006 RCX: 0000000000000006
RDX: 0000000000000000 RSI: 0000000000010002 RDI: ffff9916af734000
RBP: ffff9916af734000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000006
R13: 0000000000000000 R14: ffff9916af734038 R15: 0000000000000000
FS: 00007f1e1a47c740(0000) GS:ffff99188fb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1e1a6a8008 CR3: 000000026f83b005 CR4: 00000000001726e0
Call Trace:
kvm_arch_vcpu_ioctl_run+0x13a2/0x1f20 [kvm]
kvm_vcpu_ioctl+0x279/0x690 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Reported-by: syzbot+82112403ace4cbd780d8@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211228232437.1875318-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Verify that the PMU event filter works as expected.
Note that the virtual PMU doesn't work as expected on AMD Zen CPUs (an
intercepted rdmsr is counted as a retired branch instruction), but the
PMU event filter does work.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-7-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extract the x86 model number from CPUID.01H:EAX.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-6-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move this static inline function to processor.h, so that it can be
used in individual tests, as needed.
Opportunistically replace the bare 'unsigned' with 'unsigned int.'
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-5-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the one ad hoc "AuthenticAMD" CPUID vendor string comparison
with a new function, is_amd_cpu().
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-4-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor is_intel_cpu() to make it easier to reuse the bulk of the
code for other vendors in the future.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-3-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PMU event filter may contain up to 300 events. Replace the linear
search in reprogram_gp_counter() with a binary search.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vm_xsave_req_perm() is currently defined and used by x86_64 only.
Make it compiled into vm_create_with_vcpus() only when on x86_64
machines. Otherwise, it would cause linkage errors, e.g. on s390x.
Fixes: 415a3c33e8 ("kvm: selftests: Add support for KVM_CAP_XSAVE2")
Reported-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Tested-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Message-Id: <20220118014817.30910-1-wei.w.wang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to Intel extended feature disable (XFD) spec, the sub-function i
(i > 1) of CPUID function 0DH enumerates "details for state component i.
ECX[2] enumerates support for XFD support for this state component."
If KVM does not report F(XFD) feature (e.g. due to CONFIG_X86_64),
then the corresponding XFD support for any state component i
should also be removed. Translate this dependency into KVM terms.
Fixes: 690a757d61 ("kvm: x86: Add CPUID support for Intel AMX")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220117074531.76925-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rewrite the comment in kvm_mmu_slot_remove_write_access() that explains
why it is safe to flush TLBs outside of the MMU lock after
write-protecting SPTEs for dirty logging. The current comment is a long
run-on sentence that was difficult to understand. In addition it was
specific to the shadow MMU (mentioning mmu_spte_update()) when the TDP
MMU has to handle this as well.
The new comment explains:
- Why the TLB flush is necessary at all.
- Why it is desirable to do the TLB flush outside of the MMU lock.
- Why it is safe to do the TLB flush outside of the MMU lock.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-5-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SPTEs are tagged with software-only bits to indicate if it is
"MMU-writable" and "Host-writable". These bits are used to determine why
KVM has marked an SPTE as read-only.
Document these bits and their invariants, and enforce the invariants
with new WARNs in spte_can_locklessly_be_made_writable() to ensure they
are not accidentally violated in the future.
Opportunistically move DEFAULT_SPTE_{MMU,HOST}_WRITABLE next to
EPT_SPTE_{MMU,HOST}_WRITABLE since the new documentation applies to
both.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When handling the changed_pte notifier and the new PTE is read-only,
clear both the Host-writable and MMU-writable bits in the SPTE. This
preserves the invariant that MMU-writable is set if-and-only-if
Host-writable is set.
No functional change intended. Nothing currently relies on the
aforementioned invariant and technically the changed_pte notifier is
dead code.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-3-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the TDP MMU is write-protection GFNs for page table protection (as
opposed to for dirty logging, or due to the HVA not being writable), it
checks if the SPTE is already write-protected and if so skips modifying
the SPTE and the TLB flush.
This behavior is incorrect because it fails to check if the SPTE
is write-protected for page table protection, i.e. fails to check
that MMU-writable is '0'. If the SPTE was write-protected for dirty
logging but not page table protection, the SPTE could locklessly be made
writable, and vCPUs could still be running with writable mappings cached
in their TLB.
Fix this by only skipping setting the SPTE if the SPTE is already
write-protected *and* MMU-writable is already clear. Technically,
checking only MMU-writable would suffice; a SPTE cannot be writable
without MMU-writable being set. But check both to be paranoid and
because it arguably yields more readable code.
Fixes: 46044f72c3 ("kvm: x86/mmu: Support write protection for nesting in tdp MMU")
Cc: stable@vger.kernel.org
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-2-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new module parameter to control PMU virtualization should apply
to Intel as well as AMD, for situations where userspace is not trusted.
If the module parameter allows PMU virtualization, there could be a
new KVM_CAP or guest CPUID bits whereby userspace can enable/disable
PMU virtualization on a per-VM basis.
If the module parameter does not allow PMU virtualization, there
should be no userspace override, since we have no precedent for
authorizing that kind of override. If it's false, other counter-based
profiling features (such as LBR including the associated CPUID bits
if any) will not be exposed.
Change its name from "pmu" to "enable_pmu" as we have temporary
variables with the same name in our code like "struct kvm_pmu *pmu".
Fixes: b1d66dad65 ("KVM: x86/svm: Add module param to control PMU virtualization")
Suggested-by : Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220111073823.21885-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM forbids KVM_SET_CPUID2 after KVM_RUN was performed on a vCPU unless
the supplied CPUID data is equal to what was previously set. Test this.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220117150542.2176196-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to reusing the existing 'get_cpuid_test' for testing
"KVM_SET_CPUID{,2} after KVM_RUN" rename it to 'cpuid_test' to avoid
the confusion.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220117150542.2176196-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit feb627e8d6 ("KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN")
forbade changing CPUID altogether but unfortunately this is not fully
compatible with existing VMMs. In particular, QEMU reuses vCPU fds for
CPU hotplug after unplug and it calls KVM_SET_CPUID2. Instead of full ban,
check whether the supplied CPUID data is equal to what was previously set.
Reported-by: Igor Mammedov <imammedo@redhat.com>
Fixes: feb627e8d6 ("KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220117150542.2176196-3-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
[Do not call kvm_find_cpuid_entry repeatedly. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_update_cpuid_runtime() mangles CPUID data coming from userspace
VMM after updating 'vcpu->arch.cpuid_entries', this makes it
impossible to compare an update with what was previously
supplied. Introduce __kvm_update_cpuid_runtime() version which can be
used to tweak the input before it goes to 'vcpu->arch.cpuid_entries'
so the upcoming update check can compare tweaked data.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220117150542.2176196-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to CPUID 0x0A.EBX bit vector, the event [7] should be the
unrealized event "Topdown Slots" instead of the *kernel* generalized
common hardware event "REF_CPU_CYCLES", so we need to skip the cpuid
unavaliblity check in the intel_pmc_perf_hw_id() for the last
REF_CPU_CYCLES event and update the confusing comment.
If the event is marked as unavailable in the Intel guest CPUID
0AH.EBX leaf, we need to avoid any perf_event creation, whether
it's a gp or fixed counter. To distinguish whether it is a rejected
event or an event that needs to be programmed with PERF_TYPE_RAW type,
a new special returned value of "PERF_COUNT_HW_MAX + 1" is introduced.
Fixes: 62079d8a43 ("KVM: PMU: add proper support for fixed counter 2")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220105051509.69437-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>