In __btrfs_run_delayed_refs, the error path when run_delayed_extent_op
fails sets locked_ref->processing = 0 but doesn't re-increment
delayed_refs->num_heads_ready. As a result, we end up triggering
the WARN_ON in btrfs_select_ref_head.
Fixes: d7df2c796d (Btrfs: attach delayed ref updates to delayed ref heads)
Reported-by: Jon Nelson <jnelson-suse@jamponi.net>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In function btrfs_uuid_tree_iterate(), errno is assigned to variable ret
on errors. However, it directly returns 0. It may be better to return
ret. This patch also removes the warning, because the caller already
prints a warning.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=188731
Signed-off-by: Pan Bian <bianpan2016@163.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
[ edited subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
Problem statement: unprivileged user who has read-write access to more than
one btrfs subvolume may easily consume all kernel memory (eventually
triggering oom-killer).
Reproducer (./mkrmdir below essentially loops over mkdir/rmdir):
[root@kteam1 ~]# cat prep.sh
DEV=/dev/sdb
mkfs.btrfs -f $DEV
mount $DEV /mnt
for i in `seq 1 16`
do
mkdir /mnt/$i
btrfs subvolume create /mnt/SV_$i
ID=`btrfs subvolume list /mnt |grep "SV_$i$" |cut -d ' ' -f 2`
mount -t btrfs -o subvolid=$ID $DEV /mnt/$i
chmod a+rwx /mnt/$i
done
[root@kteam1 ~]# sh prep.sh
[maxim@kteam1 ~]$ for i in `seq 1 16`; do ./mkrmdir /mnt/$i 2000 2000 & done
[root@kteam1 ~]# for i in `seq 1 4`; do grep "kmalloc-128" /proc/slabinfo | grep -v dma; sleep 60; done
kmalloc-128 10144 10144 128 32 1 : tunables 0 0 0 : slabdata 317 317 0
kmalloc-128 9992352 9992352 128 32 1 : tunables 0 0 0 : slabdata 312261 312261 0
kmalloc-128 24226752 24226752 128 32 1 : tunables 0 0 0 : slabdata 757086 757086 0
kmalloc-128 42754240 42754240 128 32 1 : tunables 0 0 0 : slabdata 1336070 1336070 0
The huge numbers above come from insane number of async_work-s allocated
and queued by btrfs_wq_run_delayed_node.
The problem is caused by btrfs_wq_run_delayed_node() queuing more and more
works if the number of delayed items is above BTRFS_DELAYED_BACKGROUND. The
worker func (btrfs_async_run_delayed_root) processes at least
BTRFS_DELAYED_BATCH items (if they are present in the list). So, the machinery
works as expected while the list is almost empty. As soon as it is getting
bigger, worker func starts to process more than one item at a time, it takes
longer, and the chances to have async_works queued more than needed is getting
higher.
The problem above is worsened by another flaw of delayed-inode implementation:
if async_work was queued in a throttling branch (number of items >=
BTRFS_DELAYED_WRITEBACK), corresponding worker func won't quit until
the number of items < BTRFS_DELAYED_BACKGROUND / 2. So, it is possible that
the func occupies CPU infinitely (up to 30sec in my experiments): while the
func is trying to drain the list, the user activity may add more and more
items to the list.
The patch fixes both problems in straightforward way: refuse queuing too
many works in btrfs_wq_run_delayed_node and bail out of worker func if
at least BTRFS_DELAYED_WRITEBACK items are processed.
Changed in v2: remove support of thresh == NO_THRESHOLD.
Signed-off-by: Maxim Patlasov <mpatlasov@virtuozzo.com>
Signed-off-by: Chris Mason <clm@fb.com>
Cc: stable@vger.kernel.org # v3.15+
Patches queued up by Filipe:
The most important change is still the fix for the extent tree
corruption that happens due to balance when qgroups are enabled (a
regression introduced in 4.7 by a fix for a regression from the last
qgroups rework). This has been hitting SLE and openSUSE users and QA
very badly, where transactions keep getting aborted when running
delayed references leaving the root filesystem in RO mode and nearly
unusable. There are fixes here that allow us to run xfstests again
with the integrity checker enabled, which has been impossible since 4.8
(apparently I'm the only one running xfstests with the integrity
checker enabled, which is useful to validate dirtied leafs, like
checking if there are keys out of order, etc). The rest are just some
trivial fixes, most of them tagged for stable, and two cleanups.
Signed-off-by: Chris Mason <clm@fb.com>
This is exposing an existing deadlock between fsync and AIO. Until we
have the deadlock fixed, I'm pulling this one out.
This reverts commit a23eaa875f.
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_transaction_abort() has a WARN() to help us nail down whatever
problem lead to the abort. But most of the time, we're aborting for EIO,
and the warning just adds noise.
Signed-off-by: Chris Mason <clm@fb.com>
Now we only use the root parameter to print the root objectid in
a tracepoint. We can use the root parameter from the transaction
handle for that. It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_write_and_wait_marked_extents and btrfs_sync_log both call
btrfs_wait_marked_extents, which provides a core loop and then handles
errors differently based on whether it's it's a log root or not.
This means that btrfs_write_and_wait_marked_extents needs to take a root
because btrfs_wait_marked_extents requires one, even though it's only
used to determine whether the root is a log root. The log root code
won't ever call into the transaction commit code using a log root, so we
can factor out the core loop and provide the error handling appropriate
to each waiter in new routines. This allows us to eventually remove
the root argument from btrfs_commit_transaction, and as a result,
btrfs_end_transaction.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer. Let's convert those to
just accept an fs_info pointer directly.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the exception of the one case where btrfs_wait_cache_io is called
without a block group, it's called with the same arguments. The root
argument is only used in the special case, so let's factor out the core
and simplify the call in the normal case to require a trans, block group,
and path.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent-tree tracepoints all operate on the extent root, regardless of
which root is passed in. Let's just use the extent root objectid instead.
If it turns out that nobody is depending on the format of this tracepoint,
we can drop the root printing entirely.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This results in btrfs_assert_delayed_root_empty and
btrfs_destroy_delayed_inode taking an fs_info instead of a root.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable. This makes the code considerably
more readable.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We track the node sizes per-root, but they never vary from the values
in the superblock. This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The io_ctl->root member was only being used to access root->fs_info.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root is never used. We substitute extent_root in for the
reada_find_extent call, since it's only ever used to obtain the node
size. This call site will be changed to use fs_info in a later patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root member is never used except for obtaining an fs_info pointer.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Even though a separate root is passed in, we're still operating on the
extent root. Let's use that for the trace point.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_init_new_device only uses the root passed in via the ioctl to
start the transaction. Nothing else that happens is related to whatever
root the user used to initiate the ioctl. We can drop the root requirement
and just use fs_info->dev_root instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many functions that are always called with the same root
argument. Rather than passing the same root every time, we can
pass an fs_info pointer instead and have the function get the root
pointer itself.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are 11 functions that accept a root parameter and immediately
overwrite it. We can pass those an fs_info pointer instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a log tree has a layout like the following:
leaf N:
...
item 240 key (282 DIR_LOG_ITEM 0) itemoff 8189 itemsize 8
dir log end 1275809046
leaf N + 1:
item 0 key (282 DIR_LOG_ITEM 3936149215) itemoff 16275 itemsize 8
dir log end 18446744073709551615
...
When we pass the value 1275809046 + 1 as the parameter start_ret to the
function tree-log.c:find_dir_range() (done by replay_dir_deletes()), we
end up with path->slots[0] having the value 239 (points to the last item
of leaf N, item 240). Because the dir log item in that position has an
offset value smaller than *start_ret (1275809046 + 1) we need to move on
to the next leaf, however the logic for that is wrong since it compares
the current slot to the number of items in the leaf, which is smaller
and therefore we don't lookup for the next leaf but instead we set the
slot to point to an item that does not exist, at slot 240, and we later
operate on that slot which has unexpected content or in the worst case
can result in an invalid memory access (accessing beyond the last page
of leaf N's extent buffer).
So fix the logic that checks when we need to lookup at the next leaf
by first incrementing the slot and only after to check if that slot
is beyond the last item of the current leaf.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Fixes: e02119d5a7 (Btrfs: Add a write ahead tree log to optimize synchronous operations)
Cc: stable@vger.kernel.org # 2.6.29+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
The hole punching can result in adding new leafs (and as a consequence
new nodes) to the tree because when we find file extent items that span
beyond the hole range we may end up not deleting them (just adjusting
them, reducing their range by reducing their length or increasing their
offset field) and add new file extent items representing holes.
So after splitting a leaf (therefore creating a new one) to insert a new
file extent item representing a hole, a new node might be added to each
level of the tree in the worst case scenario (since there's a new key
and every parent node was full).
For example if a file has an extent item representing the range 0 to 64Mb
and we punch a hole in the range 1Mb to 20Mb, the existing extent item is
duplicated and one of the copies is adjusted to represent the range 0 to
1Mb, the other copy adjusted to represent the range 20Mb to 64Mb, and a
new file extent item representing a hole in the range 1Mb to 20Mb is
inserted.
Fix this by using btrfs_calc_trans_metadata_size() instead of
btrfs_calc_trunc_metadata_size(), so that enough metadata space is
reserved for the worst possible case.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
This issue was found when I tried to delete a heavily reflinked file,
when deleting such files, other transaction operation will not have a
chance to make progress, for example, start_transaction() will blocked
in wait_current_trans(root) for long time, sometimes it even triggers
soft lockups, and the time taken to delete such heavily reflinked file
is also very large, often hundreds of seconds. Using perf top, it reports
that:
PerfTop: 7416 irqs/sec kernel:99.8% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
---------------------------------------------------------------------------------------
84.37% [btrfs] [k] __btrfs_run_delayed_refs.constprop.80
11.02% [kernel] [k] delay_tsc
0.79% [kernel] [k] _raw_spin_unlock_irq
0.78% [kernel] [k] _raw_spin_unlock_irqrestore
0.45% [kernel] [k] do_raw_spin_lock
0.18% [kernel] [k] __slab_alloc
It seems __btrfs_run_delayed_refs() took most cpu time, after some debug
work, I found it's select_delayed_ref() causing this issue, for a delayed
head, in our case, it'll be full of BTRFS_DROP_DELAYED_REF nodes, but
select_delayed_ref() will firstly try to iterate node list to find
BTRFS_ADD_DELAYED_REF nodes, obviously it's a disaster in this case, and
waste much time.
To fix this issue, we introduce a new ref_add_list in struct btrfs_delayed_ref_head,
then in select_delayed_ref(), if this list is not empty, we can directly use
nodes in this list. With this patch, it just took about 10~15 seconds to
delte the same file. Now using perf top, it reports that:
PerfTop: 2734 irqs/sec kernel:99.5% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
----------------------------------------------------------------------------------------
20.74% [kernel] [k] _raw_spin_unlock_irqrestore
16.33% [kernel] [k] __slab_alloc
5.41% [kernel] [k] lock_acquired
4.42% [kernel] [k] lock_acquire
4.05% [kernel] [k] lock_release
3.37% [kernel] [k] _raw_spin_unlock_irq
For normal files, this patch also gives help, at least we do not need to
iterate whole list to found BTRFS_ADD_DELAYED_REF nodes.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 62b99540a1 (btrfs: relocation: Fix leaking qgroups numbers
on data extents) only fixes the problem partly.
The previous fix is to trace all new data extents at transaction commit
time when balance finishes.
However balance is not done in a large transaction, every path
replacement can happen in its own transaction.
This makes the fix useless if transaction commits during relocation.
For example:
relocate_block_group()
|-merge_reloc_roots()
| |- merge_reloc_root()
| |- btrfs_start_transaction() <- Trans X
| |- replace_path() <- Cause leak
| |- btrfs_end_transaction_throttle() <- Trans X commits here
| | Leak not fixed
| |
| |- btrfs_start_transaction() <- Trans Y
| |- replace_path() <- Cause leak
| |- btrfs_end_transaction_throttle() <- Trans Y ends
| but not committed
|-btrfs_join_transaction() <- Still trans Y
|-qgroup_fix() <- Only fixes data leak
| in trans Y
|-btrfs_commit_transaction() <- Trans Y commits
In that case, qgroup fixup can only fix data leak in trans Y, data leak
in trans X is out of fix.
So the correct fix should happen in the same transaction of
replace_path().
This patch fixes it by tracing both subtrees of tree block swap, so it
can fix the problem and ensure all leaking and fix are in the same
transaction, so no leak again.
Reported-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move account_shared_subtree() to qgroup.c and rename it to
btrfs_qgroup_trace_subtree().
Do the same thing for account_leaf_items() and rename it to
btrfs_qgroup_trace_leaf_items().
Since all these functions are only for qgroup, move them to qgroup.c and
export them is more appropriate.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename btrfs_qgroup_insert_dirty_extent(_nolock) to
btrfs_qgroup_trace_extent(_nolock), according to the new
reserve/trace/account naming schema.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add explaination how btrfs qgroups work.
Qgroup is split into 3 main phrases:
1) Reserve
To ensure qgroup doesn't exceed its limit
2) Trace
To info qgroup to trace which extent
3) Account
Calculate qgroup number change for each traced extent.
This should save quite some time for new developers.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
And remove the bogus check for a NULL return value from kmap, which
can't happen. While we're at it: I don't think that kmapping up to 256
will work without deadlocks on highmem machines, a better idea would
be to use vm_map_ram to map all of them into a single virtual address
range. Incidentally that would also simplify the code a lot.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rework the loop a little bit to use the generic bio_for_each_segment_all
helper for iterating over the bio.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the bvec offset and len members to prepare for multipage bvecs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using bi_vcnt to calculate it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use bio_for_each_segment_all to iterate over the segments instead.
This requires a bit of reshuffling so that we only lookup up the ordered
item once inside the bio_for_each_segment_all loop.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just use bio_for_each_segment_all to iterate over all segments.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just use bio_for_each_segment_all to iterate over all segments.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the full bio to the decompression routines and use bio iterators
to iterate over the data in the bio.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes the WARN_ON on BTRFS_I(inode)->reserved_extents in
btrfs_destroy_inode and the WARN_ON on nonzero delalloc bytes on umount
with qgroups enabled.
I was able to reproduce this by setting up a small (~500kb) quota limit
and writing a file one byte at a time until I hit the limit. The warnings
would all hit on umount.
The root cause is that we would reserve a block-sized range in both
the reservation and the quota in btrfs_check_data_free_space, but if we
encountered a problem (like e.g. EDQUOT), we would only release the single
byte in the qgroup reservation. That caused an iotree state split, which
increased the number of outstanding extents, in turn disallowing releasing
the metadata reservation.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At this point we will have dropped extent entries from the file, so if we fail
to insert the new hole entries then we are leaving the fs in a corrupt state
(albeit an easily fixed one). Abort the transaciton if this happens so we can
avoid corrupting the fs. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to do hole punching we have a block reserve to hold the reservation we
need to drop the extents in our range. Since we could end up dropping a lot of
extents we set rsv->failfast so we can just loop around again and drop the
remaining of the range. Unfortunately we unconditionally fill the hole extents
in and start from the last extent we encountered, which we may or may not have
dropped. So this can result in overlapping file extent entries, which can be
tripped over in a variety of ways, either by hitting BUG_ON(!ret) in
fill_holes() after the search, or in btrfs_set_item_key_safe() in
btrfs_drop_extent() at a later time by an unrelated task. Fix this by only
setting drop_end to the last extent we did actually drop. This way our holes
are filled in properly for the range that we did drop, and the rest of the range
that remains to be dropped is actually dropped. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we process the last item in the leaf and hit an I/O error while
reading the next leaf, we return -EIO without having adjusted the
position. Since we have emitted dirents, getdents() will return
the byte count to the user instead of the error. Subsequent callers
will emit the last successful dirent again, and return -EIO again,
with the same result. Callers loop forever.
Instead, if we always increment ctx->pos after emitting or skipping
the dirent, we'll be sure that we won't hit the same one again. When
we go to process the next leaf, we won't have emitted any dirents
and the -EIO will be returned to the user properly. We also don't
need to track if we've emitted a dirent already or if we've changed
the position yet.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 3de4586c52 (Btrfs: Allow subvolumes and snapshots anywhere
in the directory tree) introduced the current system of placing
snapshots in the directory tree. It also introduced the behavior of
creating the snapshot and then creating the directory entries for it.
We've kept this code around for compatibility reasons, but it turns
out that no file systems with the old tree_root based snapshots can
be mounted on newer (>= 2009) kernels anyway. About a month after the
above commit, commit 2a7108ad89 (Btrfs: rev the disk format for the
inode compat and csum selection changes) landed, changing the superblock
magic number.
As a result, we know that we'll never encounter tree_root-based dirents
or have to deal with skipping our own snapshot dirents. Since that
also means that we're now only iterating over DIR_INDEX items, which only
contain one directory entry per leaf item, we don't need to loop over
the leaf item contents anymore either.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If zlib_inflateInit2 fails, the input page is never unmapped.
Add a call to kunmap when it fails.
Signed-off-by: Nick Terrell <nickrterrell@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The balance status item contains currently known filter values, but the
stripes filter was unintentionally not among them. This would mean, that
interrupted and automatically restarted balance does not apply the
stripe filters.
Fixes: dee32d0ac3
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: David Sterba <dsterba@suse.com>