Abhishek reported that after patch [1], hotplug operations are taking
roughly double the expected time. [2]
The reason behind is that the CPU callbacks that
migrate_on_reclaim_init() sets always call set_migration_target_nodes()
whenever a CPU is brought up/down.
But we only care about numa nodes going from having cpus to become
cpuless, and vice versa, as that influences the demotion_target order.
We do already have two CPU callbacks (vmstat_cpu_online() and
vmstat_cpu_dead()) that check exactly that, so get rid of the CPU
callbacks in migrate_on_reclaim_init() and only call
set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a
numa node change its N_CPU state.
[1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/
[2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/
[osalvador@suse.de: add feedback from Huang Ying]
Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
test_pages_in_a_zone() is just another nasty PFN walker that can easily
stumble over ZONE_DEVICE memory ranges falling into the same memory block
as ordinary system RAM: the memmap of parts of these ranges might possibly
be uninitialized. In fact, we observed (on an older kernel) with UBSAN:
UBSAN: Undefined behaviour in ./include/linux/mm.h:1133:50
index 7 is out of range for type 'zone [5]'
CPU: 121 PID: 35603 Comm: read_all Kdump: loaded Tainted: [...]
Hardware name: Dell Inc. PowerEdge R7425/08V001, BIOS 1.12.2 11/15/2019
Call Trace:
dump_stack+0x9a/0xf0
ubsan_epilogue+0x9/0x7a
__ubsan_handle_out_of_bounds+0x13a/0x181
test_pages_in_a_zone+0x3c4/0x500
show_valid_zones+0x1fa/0x380
dev_attr_show+0x43/0xb0
sysfs_kf_seq_show+0x1c5/0x440
seq_read+0x49d/0x1190
vfs_read+0xff/0x300
ksys_read+0xb8/0x170
do_syscall_64+0xa5/0x4b0
entry_SYSCALL_64_after_hwframe+0x6a/0xdf
RIP: 0033:0x7f01f4439b52
We seem to stumble over a memmap that contains a garbage zone id. While
we could try inserting pfn_to_online_page() calls, it will just make
memory offlining slower, because we use test_pages_in_a_zone() to make
sure we're offlining pages that all belong to the same zone.
Let's just get rid of this PFN walker and determine the single zone of a
memory block -- if any -- for early memory blocks during boot. For memory
onlining, we know the single zone already. Let's avoid any additional
memmap scanning and just rely on the zone information available during
boot.
For memory hot(un)plug, we only really care about memory blocks that:
* span a single zone (and, thereby, a single node)
* are completely System RAM (IOW, no holes, no ZONE_DEVICE)
If one of these conditions is not met, we reject memory offlining.
Hotplugged memory blocks (starting out offline), always meet both
conditions.
There are three scenarios to handle:
(1) Memory hot(un)plug
A memory block with zone == NULL cannot be offlined, corresponding to
our previous test_pages_in_a_zone() check.
After successful memory onlining/offlining, we simply set the zone
accordingly.
* Memory onlining: set the zone we just used for onlining
* Memory offlining: set zone = NULL
So a hotplugged memory block starts with zone = NULL. Once memory
onlining is done, we set the proper zone.
(2) Boot memory with !CONFIG_NUMA
We know that there is just a single pgdat, so we simply scan all zones
of that pgdat for an intersection with our memory block PFN range when
adding the memory block. If more than one zone intersects (e.g., DMA and
DMA32 on x86 for the first memory block) we set zone = NULL and
consequently mimic what test_pages_in_a_zone() used to do.
(3) Boot memory with CONFIG_NUMA
At the point in time we create the memory block devices during boot, we
don't know yet which nodes *actually* span a memory block. While we could
scan all zones of all nodes for intersections, overlapping nodes complicate
the situation and scanning all nodes is possibly expensive. But that
problem has already been solved by the code that sets the node of a memory
block and creates the link in the sysfs --
do_register_memory_block_under_node().
So, we hook into the code that sets the node id for a memory block. If
we already have a different node id set for the memory block, we know
that multiple nodes *actually* have PFNs falling into our memory block:
we set zone = NULL and consequently mimic what test_pages_in_a_zone() used
to do. If there is no node id set, we do the same as (2) for the given
node.
Note that the call order in driver_init() is:
-> memory_dev_init(): create memory block devices
-> node_dev_init(): link memory block devices to the node and set the
node id
So in summary, we detect if there is a single zone responsible for this
memory block and we consequently store the zone in that case in the
memory block, updating it during memory onlining/offlining.
Link: https://lkml.kernel.org/r/20220210184359.235565-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Rafael Parra <rparrazo@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rafael Parra <rparrazo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "drivers/base/memory: determine and store zone for single-zone memory blocks", v2.
I remember talking to Michal in the past about removing
test_pages_in_a_zone(), which we use for:
* verifying that a memory block we intend to offline is really only managed
by a single zone. We don't support offlining of memory blocks that are
managed by multiple zones (e.g., multiple nodes, DMA and DMA32)
* exposing that zone to user space via
/sys/devices/system/memory/memory*/valid_zones
Now that I identified some more cases where test_pages_in_a_zone() might
go wrong, and we received an UBSAN report (see patch #3), let's get rid of
this PFN walker.
So instead of detecting the zone at runtime with test_pages_in_a_zone() by
scanning the memmap, let's determine and remember for each memory block if
it's managed by a single zone. The stored zone can then be used for the
above two cases, avoiding a manual lookup using test_pages_in_a_zone().
This avoids eventually stumbling over uninitialized memmaps in corner
cases, especially when ZONE_DEVICE ranges partly fall into memory block
(that are responsible for managing System RAM).
Handling memory onlining is easy, because we online to exactly one zone.
Handling boot memory is more tricky, because we want to avoid scanning all
zones of all nodes to detect possible zones that overlap with the physical
memory region of interest. Fortunately, we already have code that
determines the applicable nodes for a memory block, to create sysfs links
-- we'll hook into that.
Patch #1 is a simple cleanup I had laying around for a longer time.
Patch #2 contains the main logic to remove test_pages_in_a_zone() and
further details.
[1] https://lkml.kernel.org/r/20220128144540.153902-1-david@redhat.com
[2] https://lkml.kernel.org/r/20220203105212.30385-1-david@redhat.com
This patch (of 2):
Let's adjust the stale terminology, making it match
unregister_memory_block_under_nodes() and
do_register_memory_block_under_node(). We're dealing with memory block
devices, which span 1..X memory sections.
Link: https://lkml.kernel.org/r/20220210184359.235565-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220210184359.235565-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rafael Parra <rparrazo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's misplaced since commit 7960509329 ("mm, memory_hotplug: print
reason for the offlining failure"). Move it to the right place.
Link: https://lkml.kernel.org/r/20220207133643.23427-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use helper macro node_spanned_pages to check whether node spans
pages. And we can change the parameter of check_cpu_on_node to nid as
that's what it really cares. Thus we can further get rid of the local
variable pgdat and improve the readability a bit.
Link: https://lkml.kernel.org/r/20220207133643.23427-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If zid reaches ZONE_NORMAL, the caller will always get the NORMAL zone no
matter what zone_intersects() returns. So we can save some possible cpu
cycles by avoid calling zone_intersects() for ZONE_NORMAL.
Link: https://lkml.kernel.org/r/20220207133643.23427-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "A few cleanup patches around memory_hotplug".
This series contains a few patches to fix obsolete and misplaced comments,
clean up the try_offline_node function and so on.
This patch (of 4):
Since commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online"), there is no need to pass in the zone.
[akpm@linux-foundation.org: remove the comment altogether, per David]
Link: https://lkml.kernel.org/r/20220207133643.23427-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220207133643.23427-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_mem_cgroup_per_node_info is allocated for each possible node and
this used to be a problem because !node_online nodes didn't have
appropriate data structure allocated. This has changed by "mm: handle
uninitialized numa nodes gracefully" so we can drop the special casing
here.
Link: https://lkml.kernel.org/r/20220127085305.20890-7-mhocko@kernel.org
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Rafael Aquini <raquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_area_init_node is also called from memory less node initialization
path (free_area_init_memoryless_node). It doesn't really make much sense
to display the physical memory range for those nodes: Initmem setup node
XX [mem 0x0000000000000000-0x0000000000000000]
Instead be explicit that the node is memoryless: Initmem setup node XX as
memoryless
Link: https://lkml.kernel.org/r/20220127085305.20890-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a !node_online node is brought up it needs a hotplug specific
initialization because the node could be either uninitialized yet or it
could have been recycled after previous hotremove. hotadd_init_pgdat is
responsible for that.
Internal pgdat state is initialized at two places currently
- hotadd_init_pgdat
- free_area_init_core_hotplug
There is no real clear cut what should go where but this patch's chosen to
move the whole internal state initialization into
free_area_init_core_hotplug. hotadd_init_pgdat is still responsible to
pull all the parts together - most notably to initialize zonelists because
those depend on the overall topology.
This patch doesn't introduce any functional change.
Link: https://lkml.kernel.org/r/20220127085305.20890-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prior to "mm: handle uninitialized numa nodes gracefully" memory hotplug
used to allocate pgdat when memory has been added to a node
(hotadd_init_pgdat) arch_free_nodedata has been only used in the failure
path because once the pgdat is exported (to be visible by NODA_DATA(nid))
it cannot really be freed because there is no synchronization available
for that.
pgdat is allocated for each possible nodes now so the memory hotplug
doesn't need to do the ever use arch_free_nodedata so drop it.
This patch doesn't introduce any functional change.
Link: https://lkml.kernel.org/r/20220127085305.20890-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have had several reports [1][2][3] that page allocator blows up when an
allocation from a possible node is requested. The underlying reason is
that NODE_DATA for the specific node is not allocated.
NUMA specific initialization is arch specific and it can vary a lot. E.g.
x86 tries to initialize all nodes that have some cpu affinity (see
init_cpu_to_node) but this can be insufficient because the node might be
cpuless for example.
One way to address this problem would be to check for !node_online nodes
when trying to get a zonelist and silently fall back to another node.
That is unfortunately adding a branch into allocator hot path and it
doesn't handle any other potential NODE_DATA users.
This patch takes a different approach (following a lead of [3]) and it pre
allocates pgdat for all possible nodes in an arch indipendent code -
free_area_init. All uninitialized nodes are treated as memoryless nodes.
node_state of the node is not changed because that would lead to other
side effects - e.g. sysfs representation of such a node and from past
discussions [4] it is known that some tools might have problems digesting
that.
Newly allocated pgdat only gets a minimal initialization and the rest of
the work is expected to be done by the memory hotplug - hotadd_new_pgdat
(renamed to hotadd_init_pgdat).
generic_alloc_nodedata is changed to use the memblock allocator because
neither page nor slab allocators are available at the stage when all
pgdats are allocated. Hotplug doesn't allocate pgdat anymore so we can
use the early boot allocator. The only arch specific implementation is
ia64 and that is changed to use the early allocator as well.
[1] http://lkml.kernel.org/r/20211101201312.11589-1-amakhalov@vmware.com
[2] http://lkml.kernel.org/r/20211207224013.880775-1-npache@redhat.com
[3] http://lkml.kernel.org/r/20190114082416.30939-1-mhocko@kernel.org
[4] http://lkml.kernel.org/r/20200428093836.27190-1-srikar@linux.vnet.ibm.com
[akpm@linux-foundation.org: replace comment, per Mike]
Link: https://lkml.kernel.org/r/Yfe7RBeLCijnWBON@dhcp22.suse.cz
Reported-by: Alexey Makhalov <amakhalov@vmware.com>
Tested-by: Alexey Makhalov <amakhalov@vmware.com>
Reported-by: Nico Pache <npache@redhat.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Tested-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The process_madvise() system call is expected to skip holes in vma passed
through 'struct iovec' vector list. But do_madvise, which
process_madvise() calls for each vma, returns ENOMEM in case of unmapped
holes, despite the VMA is processed.
Thus process_madvise() should treat ENOMEM as expected and consider the
VMA passed to as processed and continue processing other vma's in the
vector list. Returning -ENOMEM to user, despite the VMA is processed,
will be unable to figure out where to start the next madvise.
Link: https://lkml.kernel.org/r/4f091776142f2ebf7b94018146de72318474e686.1647008754.git.quic_charante@quicinc.com
Fixes: ecb8ac8b1f14("mm/madvise: introduce process_madvise() syscall: an external memory hinting API")
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: madvise: return correct bytes processed with
process_madvise", v2. With the process_madvise(), always choose to return
non zero processed bytes over an error. This can help the user to know on
which VMA, passed in the 'struct iovec' vector list, is failed to advise
thus can take the decission of retrying/skipping on that VMA.
This patch (of 2):
The process_madvise() system call returns error even after processing some
VMA's passed in the 'struct iovec' vector list which leaves the user
confused to know where to restart the advise next. It is also against
this syscall man page[1] documentation where it mentions that "return
value may be less than the total number of requested bytes, if an error
occurred after some iovec elements were already processed.".
Consider a user passed 10 VMA's in the 'struct iovec' vector list of which
9 are processed but one. Then it just returns the error caused on that
failed VMA despite the first 9 VMA's processed, leaving the user confused
about on which VMA it is failed. Returning the number of bytes processed
here can help the user to know which VMA it is failed on and thus can
retry/skip the advise on that VMA.
[1]https://man7.org/linux/man-pages/man2/process_madvise.2.html.
Link: https://lkml.kernel.org/r/cover.1647008754.git.quic_charante@quicinc.com
Link: https://lkml.kernel.org/r/125b61a0edcee5c2db8658aed9d06a43a19ccafc.1647008754.git.quic_charante@quicinc.com
Fixes: ecb8ac8b1f14("mm/madvise: introduce process_madvise() syscall: an external memory hinting API")
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using vma_lookup() verifies the start address is contained in the found
vma. This results in easier to read the code.
Link: https://lkml.kernel.org/r/20220311082731.63513-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hardware poison is tracked on a per-page basis, not on the head page.
Link: https://lkml.kernel.org/r/20220130013042.1906881-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper macro __ATTR_RW to define KSM_ATTR to make code more clear.
Minor readability improvement.
Link: https://lkml.kernel.org/r/20220221115809.26381-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When faults in from swap what used to be a KSM page and that page had been
swapped in before, system has to make a copy, and leaves remerging the
pages to a later pass of ksmd.
That is not good for performace, we'd better to reduce this kind of copy.
There are some ways to reduce it, for example lessen swappiness or
madvise(, , MADV_MERGEABLE) range. So add this event to support doing
this tuning. Just like this patch: "mm, THP, swap: add THP swapping out
fallback counting".
Link: https://lkml.kernel.org/r/20220113023839.758845-1-yang.yang29@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Cc: Hugh Dickins <hughd@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Saravanan D <saravanand@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once upon a time, all swapins counted toward memory pressure[1]. Then
Joonsoo introduced workingset detection for anonymous pages and we gained
the ability to distinguish hot from cold swapins[2][3]. But we failed to
update swap_readpage() accordingly, and now we account partial memory
pressure in the swapin path of cold memory.
Not for all situations - which adds more inconsistency: paths using the
conventional submit_bio() and lock_page() route will not see much pressure
- unless storage itself is heavily congested and the bio submissions
stall. ZRAM and ZSWAP do most of the work directly from swap_readpage()
and will see all swapins reflected as pressure.
IOW, a workload doing cold swapins could see little to no pressure
reported with on-disk swap, but potentially high pressure with a zram or
zswap backend. That confuses any psi-based health monitoring, load
shedding, proactive reclaim, or userspace OOM killing schemes that might
be in place for the workload.
Restore consistency by making all swapin stall accounting conditional on
the page actually being part of the workingset.
[1] commit 937790699b ("mm/page_io.c: annotate refault stalls from swap_readpage")
[2] commit aae466b005 ("mm/swap: implement workingset detection for anonymous LRU")
[3] commit cad8320b4b ("mm/swap: don't SetPageWorkingset unconditionally during swapin")
Link: https://lkml.kernel.org/r/20220214214921.419687-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: CGEL <cgel.zte@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the NUMA balancing isn't used to optimize the page placement among
sockets but only among memory types, the hot pages in the fast memory
node couldn't be migrated (promoted) to anywhere. So it's unnecessary
to scan the pages in the fast memory node via changing their PTE/PMD
mapping to be PROT_NONE. So that the page faults could be avoided too.
In the test, if only the memory tiering NUMA balancing mode is enabled,
the number of the NUMA balancing hint faults for the DRAM node is
reduced to almost 0 with the patch. While the benchmark score doesn't
change visibly.
Link: https://lkml.kernel.org/r/20220221084529.1052339-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the advent of various new memory types, some machines will have
multiple types of memory, e.g. DRAM and PMEM (persistent memory). The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.
In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally. So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.
In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node. The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote. So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.
The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark. This
is a reasonable policy if there's only one memory type. But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types. Details are as follows.
It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes. Otherwise, it's
unnecessary to use the slow memory at all. So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node. To solve the issue, we have 2 choices as follows,
a. Ignore the free pages watermark checking when promoting hot pages
from the slow memory node to the fast memory node. This will
create some memory pressure in the fast memory node, thus trigger
the memory reclaiming. So that, the cold pages in the fast memory
node will be demoted to the slow memory node.
b. Define a new watermark called wmark_promo which is higher than
wmark_high, and have kswapd reclaiming pages until free pages reach
such watermark. The scenario is as follows: when we want to promote
hot-pages from a slow memory to a fast memory, but fast memory's free
pages would go lower than high watermark with such promotion, we wake
up kswapd with wmark_promo watermark in order to demote cold pages and
free us up some space. So, next time we want to promote hot-pages we
might have a chance of doing so.
The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g. the direct reclaiming may be triggered.
The choice "b" works much better at this aspect. If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation. So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added. Which is larger than the
high watermark and can be controlled via watermark_scale_factor.
In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types. So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.
The sysctl is converted from a Boolean value to a bits field. The
definition of the flags is,
- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING
We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model. The test results shows that the pmbench score can
improve up to 95.9%.
Thanks Andrew Morton to help fix the document format error.
Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13
With the advent of various new memory types, some machines will have
multiple types of memory, e.g. DRAM and PMEM (persistent memory). The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are different.
After commit c221c0b030 ("device-dax: "Hotplug" persistent memory for
use like normal RAM"), the PMEM could be used as the cost-effective
volatile memory in separate NUMA nodes. In a typical memory tiering
system, there are CPUs, DRAM and PMEM in each physical NUMA node. The
CPUs and the DRAM will be put in one logical node, while the PMEM will
be put in another (faked) logical node.
To optimize the system overall performance, the hot pages should be
placed in DRAM node. To do that, we need to identify the hot pages in
the PMEM node and migrate them to DRAM node via NUMA migration.
In the original NUMA balancing, there are already a set of existing
mechanisms to identify the pages recently accessed by the CPUs in a node
and migrate the pages to the node. So we can reuse these mechanisms to
build the mechanisms to optimize the page placement in the memory
tiering system. This is implemented in this patchset.
At the other hand, the cold pages should be placed in PMEM node. So, we
also need to identify the cold pages in the DRAM node and migrate them
to PMEM node.
In commit 26aa2d199d ("mm/migrate: demote pages during reclaim"), a
mechanism to demote the cold DRAM pages to PMEM node under memory
pressure is implemented. Based on that, the cold DRAM pages can be
demoted to PMEM node proactively to free some memory space on DRAM node
to accommodate the promoted hot PMEM pages. This is implemented in this
patchset too.
We have tested the solution with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent Memory
Model. The test results shows that the pmbench score can improve up to
95.9%.
This patch (of 3):
In a system with multiple memory types, e.g. DRAM and PMEM, the CPU
and DRAM in one socket will be put in one NUMA node as before, while
the PMEM will be put in another NUMA node as described in the
description of the commit c221c0b030 ("device-dax: "Hotplug"
persistent memory for use like normal RAM"). So, the NUMA balancing
mechanism will identify all PMEM accesses as remote access and try to
promote the PMEM pages to DRAM.
To distinguish the number of the inter-type promoted pages from that of
the inter-socket migrated pages. A new vmstat count is added. The
counter is per-node (count in the target node). So this can be used to
identify promotion imbalance among the NUMA nodes.
Link: https://lkml.kernel.org/r/20220301085329.3210428-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220221084529.1052339-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220221084529.1052339-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "powerpc/fadump: handle CMA activation failure appropriately", v3.
Commit 072355c1cf ("mm/cma: expose all pages to the buddy if
activation of an area fails") started exposing all pages to buddy
allocator on CMA activation failure. But there can be CMA users that
want to handle the reserved memory differently on CMA allocation
failure.
Provide an option to opt out from exposing pages to buddy for such
cases.
Link: https://lkml.kernel.org/r/20220117075246.36072-1-hbathini@linux.ibm.com
Link: https://lkml.kernel.org/r/20220117075246.36072-2-hbathini@linux.ibm.com
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration entries do not contribute to a page's reference count: move
__split_huge_pmd_locked()'s page_ref_add() into pmd_migration's else
block (along with the page_count() check - a page is quite likely to
have reference count frozen to 0 when a migration entry is found).
This will fix a very rare anonymous memory leak, after a
split_huge_pmd() raced with an anon split_huge_page() or an anon THP
migrate_pages(): since the wrongly raised refcount stopped the page
(perhaps small, perhaps huge, depending on when the race hit) from ever
being freed.
At first I thought there were worse risks, from prematurely unfreezing a
frozen page: but now think that would only affect page cache pages,
which do not come this way (except for anonymous pages in swap cache,
perhaps).
Link: https://lkml.kernel.org/r/84792468-f512-e48f-378c-e34c3641e97@google.com
Fixes: ec0abae6dc ("mm/thp: fix __split_huge_pmd_locked() for migration PMD")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory is tight, system may start to compact memory for large
continuous memory demands. If one process tries to lock a memory page
that is being locked and isolated for compaction, it may wait a long time
or even forever. This is because compaction will perform non-atomic
PG_Isolated clear while holding page lock, this may overwrite PG_waiters
set by the process that can't obtain the page lock and add itself to the
waiting queue to wait for the lock to be unlocked.
CPU1 CPU2
lock_page(page); (successful)
lock_page(); (failed)
__ClearPageIsolated(page); SetPageWaiters(page) (may be overwritten)
unlock_page(page);
The solution is to not perform non-atomic operation on page flags while
holding page lock.
Link: https://lkml.kernel.org/r/20220315030515.20263-1-andrew.yang@mediatek.com
Signed-off-by: andrew.yang <andrew.yang@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Vlastimil Babka" <vbabka@suse.cz>
Cc: David Howells <dhowells@redhat.com>
Cc: "William Kucharski" <william.kucharski@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Cc: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit ac16ec8353 ("mm: migrate: support multiple target nodes
demotion"), after the first demotion target node is found, we will
continue to check the next candidate obtained via find_next_best_node().
This is to find all demotion target nodes with same NUMA distance. But
one side effect of find_next_best_node() is that the candidate node
returned will be set in "used" parameter, even if the candidate node isn't
passed in the following NUMA distance checking, the candidate node will
not be used as demotion target node for the following nodes. For example,
for system as follows,
node distances:
node 0 1 2 3
0: 10 21 17 28
1: 21 10 28 17
2: 17 28 10 28
3: 28 17 28 10
when we establish demotion target node for node 0, in the first round node
2 is added to the demotion target node set. Then in the second round,
node 3 is checked and failed because distance(0, 3) > distance(0, 2). But
node 3 is set in "used" nodemask too. When we establish demotion target
node for node 1, there is no available node. This is wrong, node 3 should
be set as the demotion target of node 1.
To fix this, if the candidate node is failed to pass the distance
checking, it will be cleared in "used" nodemask. So that it can be used
for the following node.
The bug can be reproduced and fixed with this patch on a 2 socket server
machine with DRAM and PMEM.
Link: https://lkml.kernel.org/r/20220128055940.1792614-1-ying.huang@intel.com
Fixes: ac16ec8353 ("mm: migrate: support multiple target nodes demotion")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Xunlei Pang <xlpang@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_cpuset_eligible() is always called when !is_memcg_oom(). Remove this
unnecessary check.
Link: https://lkml.kernel.org/r/20220224115933.20154-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
v2.6.34 commit 9d8cebd4bc ("mm: fix mbind vma merge problem") introduced
vma_merge() to mbind_range(); but unlike madvise, mlock and mprotect, it
put a "continue" to next vma where its precedents go to update flags on
current vma before advancing: that left vma with the wrong setting in the
infamous vma_merge() case 8.
v3.10 commit 1444f92c84 ("mm: merging memory blocks resets mempolicy")
tried to fix that in vma_adjust(), without fully understanding the issue.
v3.11 commit 3964acd0db ("mm: mempolicy: fix mbind_range() &&
vma_adjust() interaction") reverted that, and went about the fix in the
right way, but chose to optimize out an unnecessary mpol_dup() with a
prior mpol_equal() test. But on tmpfs, that also pessimized out the vital
call to its ->set_policy(), leaving the new mbind unenforced.
The user visible effect was that the pages got allocated on the local
node (happened to be 0), after the mbind() caller had specifically
asked for them to be allocated on node 1. There was not any page
migration involved in the case reported: the pages simply got allocated
on the wrong node.
Just delete that optimization now (though it could be made conditional on
vma not having a set_policy). Also remove the "next" variable: it turned
out to be blameless, but also pointless.
Link: https://lkml.kernel.org/r/319e4db9-64ae-4bca-92f0-ade85d342ff@google.com
Fixes: 3964acd0db ("mm: mempolicy: fix mbind_range() && vma_adjust() interaction")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As Steven suggested [1], we should access the pointers from the trace
event to avoid dereferencing them to the tracepoint function when the
tracepoint is disabled.
[1] https://lkml.org/lkml/2021/11/3/409
Link: https://lkml.kernel.org/r/4cd393b4d57f8f01ed72c001509b28e3a3b1a8c1.1646985115.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b518154e59 ("mm/vmscan: protect the workingset on anonymous
LRU") requires to look twice for both mapped anon/file pages are used
more than once to take the decission of reclaim or activation. Correct
the documentation accordingly.
Link: https://lkml.kernel.org/r/1646925640-21324-1-git-send-email-quic_charante@quicinc.com
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 68d48e6a2d ("mm: workingset: add vmstat counter for shadow
nodes") introduced an IRQ-off check to ensure that a lock is held which
also disabled interrupts. This does not work the same way on PREEMPT_RT
because none of the locks, that are held, disable interrupts.
Replace this check with a lockdep assert which ensures that the lock is
held.
Link: https://lkml.kernel.org/r/20220301122143.1521823-3-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On systems that run FIFO:1 applications that busy loop, any SCHED_OTHER
task that attempts to execute on such a CPU (such as work threads) will
not be scheduled, which leads to system hangs.
Commit d479960e44 ("mm: disable LRU pagevec during the migration
temporarily") relies on queueing work items on all online CPUs to ensure
visibility of lru_disable_count.
To fix this, replace the usage of work items with synchronize_rcu,
which provides the same guarantees.
Readers of lru_disable_count are protected by either disabling
preemption or rcu_read_lock:
preempt_disable, local_irq_disable [bh_lru_lock()]
rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
preempt_disable [local_lock !CONFIG_PREEMPT_RT]
Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
preempt_disable() regions of code. So any CPU which sees
lru_disable_count = 0 will have exited the critical section when
synchronize_rcu() returns.
Link: https://lkml.kernel.org/r/Yin7hDxdt0s/x+fp@fuller.cnet
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 2c80cd57c7 ("mm/list_lru.c: fix list_lru_count_node() to
be race free"), we are tracking the total number of lru entries in a
list_lru_node in its nr_items field.
In the case of memcg_reparent_list_lru_node(), there is nothing to be
done if nr_items is 0. We don't even need to take the nlru->lock as no
new lru entry could be added by a racing list_lru_add() to the draining
src_idx memcg at this point.
On systems that serve a lot of containers, it is possible that there can
be thousands of list_lru's present due to the fact that each container
may mount its own container specific filesystems. As a typical
container uses only a few cpus, it is likely that only the list_lru_node
that contains those cpus will be utilized while the rests may be empty.
In other words, there can be a lot of list_lru_node with 0 nr_items.
By skipping a lock/unlock operation and loading a cacheline from
memcg_lrus, a sizeable number of cpu cycles can be saved. That can be
substantial if we are talking about thousands of list_lru_node's with 0
nr_items.
Link: https://lkml.kernel.org/r/20220309144000.1470138-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__isolate_lru_page_prepare() conflates two unrelated functions, with the
flags to one disjoint from the flags to the other; and hides some of the
important checks outside of isolate_migratepages_block(), where the
sequence is better to be visible. It comes from the days of lumpy
reclaim, before compaction, when the combination made more sense.
Move what's needed by mm/compaction.c isolate_migratepages_block() inline
there, and what's needed by mm/vmscan.c isolate_lru_pages() inline there.
Shorten "isolate_mode" to "mode", so the sequence of conditions is easier
to read. Declare a "mapping" variable, to save one call to page_mapping()
(but not another: calling again after page is locked is necessary).
Simplify isolate_lru_pages() with a "move_to" list pointer.
Link: https://lkml.kernel.org/r/879d62a8-91cc-d3c6-fb3b-69768236df68@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Alex Shi <alexs@kernel.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PF_SWAPWRITE has been redundant since v3.2 commit ee72886d8e ("mm:
vmscan: do not writeback filesystem pages in direct reclaim").
Coincidentally, NeilBrown's current patch "remove inode_congested()"
deletes may_write_to_inode(), which appeared to be the one function which
took notice of PF_SWAPWRITE. But if you study the old logic, and the
conditions under which may_write_to_inode() was called, you discover that
flag and function have been pointless for a decade.
Link: https://lkml.kernel.org/r/75e80e7-742d-e3bd-531-614db8961e4@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Jan Kara <jack@suse.de>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Userfaultfd is supposed to provide the full address (i.e., unmasked) of
the faulting access back to userspace. However, that is not the case for
quite some time.
Even running "userfaultfd_demo" from the userfaultfd man page provides the
wrong output (and contradicts the man page). Notice that
"UFFD_EVENT_PAGEFAULT event" shows the masked address (7fc5e30b3000) and
not the first read address (0x7fc5e30b300f).
Address returned by mmap() = 0x7fc5e30b3000
fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fc5e30b3000
(uffdio_copy.copy returned 4096)
Read address 0x7fc5e30b300f in main(): A
Read address 0x7fc5e30b340f in main(): A
Read address 0x7fc5e30b380f in main(): A
Read address 0x7fc5e30b3c0f in main(): A
The exact address is useful for various reasons and specifically for
prefetching decisions. If it is known that the memory is populated by
certain objects whose size is not page-aligned, then based on the faulting
address, the uffd-monitor can decide whether to prefetch and prefault the
adjacent page.
This bug has been for quite some time in the kernel: since commit
1a29d85eb0 ("mm: use vmf->address instead of of vmf->virtual_address")
vmf->virtual_address"), which dates back to 2016. A concern has been
raised that existing userspace application might rely on the old/wrong
behavior in which the address is masked. Therefore, it was suggested to
provide the masked address unless the user explicitly asks for the exact
address.
Add a new userfaultfd feature UFFD_FEATURE_EXACT_ADDRESS to direct
userfaultfd to provide the exact address. Add a new "real_address" field
to vmf to hold the unmasked address. Provide the address to userspace
accordingly.
Initialize real_address in various code-paths to be consistent with
address, even when it is not used, to be on the safe side.
[namit@vmware.com: initialize real_address on all code paths, per Jan]
Link: https://lkml.kernel.org/r/20220226022655.350562-1-namit@vmware.com
[akpm@linux-foundation.org: fix typo in comment, per Jan]
Link: https://lkml.kernel.org/r/20220218041003.3508-1-namit@vmware.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can pass FOLL_GET | FOLL_DUMP to follow_page directly to simplify the
code a bit in add_page_for_migration and split_huge_pages_pid.
Link: https://lkml.kernel.org/r/20220311072002.35575-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export PageHeadHuge() - it's used by folio_test_hugetlb() and thence by
such as folio_file_page() and folio_contains(). Matthew suggested I use
the first of those instead of doing the same calculation manually - but I
can't call it from a module.
Kirill suggested rearranging things to put it in a header, but that
introduces header dependencies because of where constants are defined.
[akpm@linux-foundation.org: s/EXPORT_SYMBOL/EXPORT_SYMBOL_GPL/, per Christoph]
Link: https://lkml.kernel.org/r/2494562.1646054576@warthog.procyon.org.uk
Link: https://lore.kernel.org/r/163707085314.3221130.14783857863702203440.stgit@warthog.procyon.org.uk/
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper macro __ATTR_RW to define HSTATE_ATTR to make code more clear.
Minor readability improvement.
Link: https://lkml.kernel.org/r/20220222112731.33479-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently introduced code allows numa nodes to be specified on the kernel
command line for hugetlb allocations or CMA reservations. The node
values are user specified and used as indicies into arrays. This
generated the following smatch warnings:
mm/hugetlb.c:4170 hugepages_setup() warn: potential spectre issue 'default_hugepages_in_node' [w]
mm/hugetlb.c:4172 hugepages_setup() warn: potential spectre issue 'parsed_hstate->max_huge_pages_node' [w]
mm/hugetlb.c:6898 cmdline_parse_hugetlb_cma() warn: potential spectre issue 'hugetlb_cma_size_in_node' [w] (local cap)
Clean up by using array_index_nospec to sanitize array indicies.
The routine cmdline_parse_hugetlb_cma has the same overflow/truncation
issue addressed in [1]. That is also fixed with this change.
[1] https://lore.kernel.org/linux-mm/20220209134018.8242-1-liuyuntao10@huawei.com/
As Michal pointed out, this is unlikely to be exploitable because it is
__init code. But the patch suppresses the warnings.
[mike.kravetz@oracle.com: v2]
Link: https://lkml.kernel.org/r/20220218212946.35441-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20220217234218.192885-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Zhenguo Yao <yaozhenguo1@gmail.com>
Cc: Liu Yuntao <liuyuntao10@huawei.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARCH_WANT_GENERAL_HUGETLB config has duplicate definitions on platforms
that subscribe it. Instead make it a generic config option which can be
selected on applicable platforms when required.
Link: https://lkml.kernel.org/r/1643718465-4324-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmemmap_remap_free/alloc are relevant to HugeTLB, so move those
functiongs to the scope of CONFIG_HUGETLB_PAGE_FREE_VMEMMAP.
Link: https://lkml.kernel.org/r/20211101031651.75851-6-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The init_mm.page_table_lock is used to protect kernel page tables, we
can use it to serialize splitting vmemmap PMD mappings instead of mmap
write lock, which can increase the concurrency of vmemmap_remap_free().
Actually, It increase the concurrency between allocations of HugeTLB
pages. But it is not the only benefit. There are a lot of users of
mmap read lock of init_mm. The mmap write lock is holding through
vmemmap_remap_free(), removing mmap write lock usage to make it does not
affect other users of mmap read lock. It is not making anything worse
and always a win to move.
Now the kernel page table walker does not hold the page_table_lock when
walking pmd entries. There may be consistency issue of a pmd entry,
because pmd entry might change from a huge pmd entry to a PTE page
table. There is only one user of kernel page table walker, namely
ptdump. The ptdump already considers the consistency, which use a local
variable to cache the value of pmd entry. But we also need to update
->action to ACTION_CONTINUE to make sure the walker does not walk every
pte entry again when concurrent thread has split the huge pmd.
Link: https://lkml.kernel.org/r/20211101031651.75851-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_fixed_fake_head() is used throughout memory management and the
conditional check requires checking a global variable, although the
overhead of this check may be small, it increases when the memory cache
comes under pressure. Also, the global variable will not be modified
after system boot, so it is very appropriate to use static key machanism.
Link: https://lkml.kernel.org/r/20211101031651.75851-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Free the 2nd vmemmap page associated with each HugeTLB
page", v7.
This series can minimize the overhead of struct page for 2MB HugeTLB
pages significantly. It further reduces the overhead of struct page by
12.5% for a 2MB HugeTLB compared to the previous approach, which means
2GB per 1TB HugeTLB. It is a nice gain. Comments and reviews are
welcome. Thanks.
The main implementation and details can refer to the commit log of patch
1. In this series, I have changed the following four helpers, the
following table shows the impact of the overhead of those helpers.
+------------------+-----------------------+
| APIs | head page | tail page |
+------------------+-----------+-----------+
| PageHead() | Y | N |
+------------------+-----------+-----------+
| PageTail() | Y | N |
+------------------+-----------+-----------+
| PageCompound() | N | N |
+------------------+-----------+-----------+
| compound_head() | Y | N |
+------------------+-----------+-----------+
Y: Overhead is increased.
N: Overhead is _NOT_ increased.
It shows that the overhead of those helpers on a tail page don't change
between "hugetlb_free_vmemmap=on" and "hugetlb_free_vmemmap=off". But the
overhead on a head page will be increased when "hugetlb_free_vmemmap=on"
(except PageCompound()). So I believe that Matthew Wilcox's folio series
will help with this.
The users of PageHead() and PageTail() are much less than compound_head()
and most users of PageTail() are VM_BUG_ON(), so I have done some tests
about the overhead of compound_head() on head pages.
I have tested the overhead of calling compound_head() on a head page,
which is 2.11ns (Measure the call time of 10 million times
compound_head(), and then average).
For a head page whose address is not aligned with PAGE_SIZE or a
non-compound page, the overhead of compound_head() is 2.54ns which is
increased by 20%. For a head page whose address is aligned with
PAGE_SIZE, the overhead of compound_head() is 2.97ns which is increased by
40%. Most pages are the former. I do not think the overhead is
significant since the overhead of compound_head() itself is low.
This patch (of 5):
This patch minimizes the overhead of struct page for 2MB HugeTLB pages
significantly. It further reduces the overhead of struct page by 12.5%
for a 2MB HugeTLB compared to the previous approach, which means 2GB per
1TB HugeTLB (2MB type).
After the feature of "Free sonme vmemmap pages of HugeTLB page" is
enabled, the mapping of the vmemmap addresses associated with a 2MB
HugeTLB page becomes the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | ----------------^ ^ ^ ^ ^ ^
| | +-----------+ | | | | |
| | | 3 | ------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | --------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | ----------------------+ | |
| | +-----------+ | |
| | | 6 | ------------------------+ |
| | +-----------+ |
| | | 7 | --------------------------+
| | +-----------+
| |
| |
| |
+-----------+
As we can see, the 2nd vmemmap page frame (indexed by 1) is reused and
remaped. However, the 2nd vmemmap page frame is also can be freed to
the buddy allocator, then we can change the mapping from the figure
above to the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | ---------------^ ^ ^ ^ ^ ^ ^
| | +-----------+ | | | | | |
| | | 2 | -----------------+ | | | | |
| | +-----------+ | | | | |
| | | 3 | -------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | ---------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | -----------------------+ | |
| | +-----------+ | |
| | | 6 | -------------------------+ |
| | +-----------+ |
| | | 7 | ---------------------------+
| | +-----------+
| |
| |
| |
+-----------+
After we do this, all tail vmemmap pages (1-7) are mapped to the head
vmemmap page frame (0). In other words, there are more than one page
struct with PG_head associated with each HugeTLB page. We __know__ that
there is only one head page struct, the tail page structs with PG_head are
fake head page structs. We need an approach to distinguish between those
two different types of page structs so that compound_head(), PageHead()
and PageTail() can work properly if the parameter is the tail page struct
but with PG_head.
The following code snippet describes how to distinguish between real and
fake head page struct.
if (test_bit(PG_head, &page->flags)) {
unsigned long head = READ_ONCE(page[1].compound_head);
if (head & 1) {
if (head == (unsigned long)page + 1)
==> head page struct
else
==> tail page struct
} else
==> head page struct
}
We can safely access the field of the @page[1] with PG_head because the
@page is a compound page composed with at least two contiguous pages.
[songmuchun@bytedance.com: restore lost comment changes]
Link: https://lkml.kernel.org/r/20211101031651.75851-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20211101031651.75851-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
user_shm_lock forgets to set allowed to 0 when get_ucounts fails. So
the later user_shm_unlock might do the extra dec_rlimit_ucounts. Fix
this by resetting allowed to 0.
Link: https://lkml.kernel.org/r/20220310132417.41189-1-linmiaohe@huawei.com
Fixes: d7c9e99aee ("Reimplement RLIMIT_MEMLOCK on top of ucounts")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can not really handle non-LRU movable pages in memory failure.
Typically they are balloon, zsmalloc, etc.
Assuming we run into a base (4K) non-LRU movable page, we could reach as
far as identify_page_state(), it should not fall into any category
except me_unknown.
For the non-LRU compound movable pages, they could be taken for
transhuge pages but it's unexpected to split non-LRU movable pages using
split_huge_page_to_list in memory_failure. So we could just simply make
non-LRU movable pages unhandlable to avoid these possible nasty cases.
Link: https://lkml.kernel.org/r/20220312074613.4798-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 042c4f32323b ("mm/truncate: Inline invalidate_complete_page()
into its one caller"), invalidate_inode_page() can invalidate the pages
in the swap cache because the check of page->mapping != mapping is
removed. But invalidate_inode_page() is not expected to deal with the
pages in swap cache. Also non-lru movable page can reach here too.
They're not page cache pages. Skip these pages by checking
PageSwapCache and PageLRU.
Link: https://lkml.kernel.org/r/20220312074613.4798-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "A few fixup patches for memory failure", v2.
This series contains a few patches to fix the race with changing page
compound page, make non-LRU movable pages unhandlable and so on. More
details can be found in the respective changelogs.
There is a race window where we got the compound_head, the hugetlb page
could be freed to buddy, or even changed to another compound page just
before we try to get hwpoison page. Think about the below race window:
CPU 1 CPU 2
memory_failure_hugetlb
struct page *head = compound_head(p);
hugetlb page might be freed to
buddy, or even changed to another
compound page.
get_hwpoison_page -- page is not what we want now...
If this race happens, just bail out. Also MF_MSG_DIFFERENT_PAGE_SIZE is
introduced to record this event.
[akpm@linux-foundation.org: s@/**@/*@, per Naoya Horiguchi]
Link: https://lkml.kernel.org/r/20220312074613.4798-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220312074613.4798-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After successfully obtaining the reference count of the huge page, it is
still necessary to call hwpoison_filter() to make a filter judgement,
otherwise the filter hugepage will be unmaped and the related process
may be killed.
Link: https://lkml.kernel.org/r/20220223082254.2769757-1-luofei@unicloud.com
Signed-off-by: luofei <luofei@unicloud.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the hwpoison page meets the filter conditions, it should not be
regarded as successful memory_failure() processing for mce handler, but
should return a distinct value, otherwise mce handler regards the error
page has been identified and isolated, which may lead to calling
set_mce_nospec() to change page attribute, etc.
Here memory_failure() return -EOPNOTSUPP to indicate that the error
event is filtered, mce handler should not take any action for this
situation and hwpoison injector should treat as correct.
Link: https://lkml.kernel.org/r/20220223082135.2769649-1-luofei@unicloud.com
Signed-off-by: luofei <luofei@unicloud.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory_failure() can handle free buddy page. Support injecting hwpoison
to free page by adding is_free_buddy_page check when hwpoison filter is
disabled.
[akpm@linux-foundation.org: export is_free_buddy_page() to modules]
Link: https://lkml.kernel.org/r/20220218092052.3853-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we reach here, we're guaranteed to have non-compound page as thp is
already splited. Remove this unnecessary PageTransTail check.
Link: https://lkml.kernel.org/r/20220218090118.1105-9-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only for hugetlb pages in shared mappings, try_to_unmap should take
semaphore in write mode here. Rework the code to make it clear.
Link: https://lkml.kernel.org/r/20220218090118.1105-7-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 03e5ac2fc3 ("mm: fix crash when using XFS on loopback"),
page_mapping() can handle the Slab pages. So remove this unnecessary
PageSlab check and obsolete comment.
Link: https://lkml.kernel.org/r/20220218090118.1105-6-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're only intended to deal with the non-Compound page after we split
thp in memory_failure. However, the page could have changed compound
pages due to race window. If this happens, we could retry once to
hopefully handle the page next round. Also remove unneeded orig_head.
It's always equal to the hpage. So we can use hpage directly and remove
this redundant one.
Link: https://lkml.kernel.org/r/20220218090118.1105-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
BUS_MCEERR_AR code is only sent when MF_ACTION_REQUIRED is set and the
target is current. Rework the code to make this clear.
Link: https://lkml.kernel.org/r/20220218090118.1105-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unexpected to walk the page table when vma_address() return
-EFAULT. But dev_pagemap_mapping_shift() is called only when vma
associated to the error page is found already in
collect_procs_{file,anon}, so vma_address() should not return -EFAULT
except with some bug, as Naoya pointed out. We can use VM_BUG_ON_VMA()
to catch this bug here.
Link: https://lkml.kernel.org/r/20220218090118.1105-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "A few cleanup and fixup patches for memory failure", v3.
This series contains a few patches to simplify the code logic, remove
unneeded variable and remove obsolete comment. Also we fix race
changing page more robustly in memory_failure. More details can be
found in the respective changelogs.
This patch (of 8):
The flags always has MF_ACTION_REQUIRED and MF_MUST_KILL set. So we do
not need to check these flags again.
Link: https://lkml.kernel.org/r/20220218090118.1105-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220218090118.1105-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes the page offlining code can leave behind a hwpoisoned clean
page cache page. This can lead to programs being killed over and over
and over again as they fault in the hwpoisoned page, get killed, and
then get re-spawned by whatever wanted to run them.
This is particularly embarrassing when the page was offlined due to
having too many corrected memory errors. Now we are killing tasks due
to them trying to access memory that probably isn't even corrupted.
This problem can be avoided by invalidating the page from the page fault
handler, which already has a branch for dealing with these kinds of
pages. With this patch we simply pretend the page fault was successful
if the page was invalidated, return to userspace, incur another page
fault, read in the file from disk (to a new memory page), and then
everything works again.
Link: https://lkml.kernel.org/r/20220212213740.423efcea@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a
UCNA signature, and the core reporting and SRAR signature machine check
when the data is about to be consumed.
If the CMCI wins that race, the page is marked poisoned when
uc_decode_notifier() calls memory_failure() and the machine check
processing code finds the page already poisoned. It calls
kill_accessing_process() to make sure a SIGBUS is sent. But returns the
wrong error code.
Console log looks like this:
mce: Uncorrected hardware memory error in user-access at 3710b3400
Memory failure: 0x3710b3: recovery action for dirty LRU page: Recovered
Memory failure: 0x3710b3: already hardware poisoned
Memory failure: 0x3710b3: Sending SIGBUS to einj_mem_uc:361438 due to hardware memory corruption
mce: Memory error not recovered
kill_accessing_process() is supposed to return -EHWPOISON to notify that
SIGBUS is already set to the process and kill_me_maybe() doesn't have to
send it again. But current code simply fails to do this, so fix it to
make sure to work as intended. This change avoids the noise message
"Memory error not recovered" and skips duplicate SIGBUSs.
[tony.luck@intel.com: reword some parts of commit message]
Link: https://lkml.kernel.org/r/20220113231117.1021405-1-naoya.horiguchi@linux.dev
Fixes: a3f5d80ea4 ("mm,hwpoison: send SIGBUS with error virutal address")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Youquan Song <youquan.song@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the introduction of mf_mutex, most of memory error handling process
is mutually exclusive, so the in-line comment about subtlety about
double-checking PageHWPoison is no more correct. So remove it.
Link: https://lkml.kernel.org/r/20220125025601.3054511-1-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eric Dumazet pointed out that commit 44042b4498 ("mm/page_alloc: allow
high-order pages to be stored on the per-cpu lists") only checks the
head page during PCP refill and allocation operations. This was an
oversight and all pages should be checked. This will incur a small
performance penalty but it's necessary for correctness.
Link: https://lkml.kernel.org/r/20220310092456.GJ15701@techsingularity.net
Fixes: 44042b4498 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Eric Dumazet <edumazet@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For high order pages not using pcp, rmqueue() is currently calling the
costly check_new_pages() while zone spinlock is held, and hard irqs
masked.
This is not needed, we can release the spinlock sooner to reduce zone
spinlock contention.
Note that after this patch, we call __mod_zone_freepage_state() before
deciding to leak the page because it is in bad state.
Link: https://lkml.kernel.org/r/20220304170215.1868106-1-eric.dumazet@gmail.com
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When page allocation in direct reclaim path fails, the system will make
one attempt to shrink per-cpu page lists and free pages from high alloc
reserves. Draining per-cpu pages into buddy allocator can be a very
slow operation because it's done using workqueues and the task in direct
reclaim waits for all of them to finish before proceeding. Currently
this time is not accounted as psi memory stall.
While testing mobile devices under extreme memory pressure, when
allocations are failing during direct reclaim, we notices that psi
events which would be expected in such conditions were not triggered.
After profiling these cases it was determined that the reason for
missing psi events was that a big chunk of time spent in direct reclaim
is not accounted as memory stall, therefore psi would not reach the
levels at which an event is generated. Further investigation revealed
that the bulk of that unaccounted time was spent inside drain_all_pages
call.
A typical captured case when drain_all_pages path gets activated:
__alloc_pages_slowpath took 44.644.613ns
__perform_reclaim took 751.668ns (1.7%)
drain_all_pages took 43.887.167ns (98.3%)
PSI in this case records the time spent in __perform_reclaim but ignores
drain_all_pages, IOW it misses 98.3% of the time spent in
__alloc_pages_slowpath.
Annotate __alloc_pages_direct_reclaim in its entirety so that delays
from handling page allocation failure in the direct reclaim path are
accounted as memory stall.
Link: https://lkml.kernel.org/r/20220223194812.1299646-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Tim Murray <timmurray@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On x86, prior to ("mm: handle uninitialized numa nodes gracecully"), NUMA
nodes could be allocated at three different places.
- numa_register_memblks
- init_cpu_to_node
- init_gi_nodes
All these calls happen at setup_arch, and have the following order:
setup_arch
...
x86_numa_init
numa_init
numa_register_memblks
...
init_cpu_to_node
init_memory_less_node
alloc_node_data
free_area_init_memoryless_node
init_gi_nodes
init_memory_less_node
alloc_node_data
free_area_init_memoryless_node
numa_register_memblks() is only interested in those nodes which have
memory, so it skips over any memoryless node it founds. Later on, when
we have read ACPI's SRAT table, we call init_cpu_to_node() and
init_gi_nodes(), which initialize any memoryless node we might have that
have either CPU or Initiator affinity, meaning we allocate pg_data_t
struct for them and we mark them as ONLINE.
So far so good, but the thing is that after ("mm: handle uninitialized
numa nodes gracefully"), we allocate all possible NUMA nodes in
free_area_init(), meaning we have a picture like the following:
setup_arch
x86_numa_init
numa_init
numa_register_memblks <-- allocate non-memoryless node
x86_init.paging.pagetable_init
...
free_area_init
free_area_init_memoryless <-- allocate memoryless node
init_cpu_to_node
alloc_node_data <-- allocate memoryless node with CPU
free_area_init_memoryless_node
init_gi_nodes
alloc_node_data <-- allocate memoryless node with Initiator
free_area_init_memoryless_node
free_area_init() already allocates all possible NUMA nodes, but
init_cpu_to_node() and init_gi_nodes() are clueless about that, so they
go ahead and allocate a new pg_data_t struct without checking anything,
meaning we end up allocating twice.
It should be mad clear that this only happens in the case where
memoryless NUMA node happens to have a CPU/Initiator affinity.
So get rid of init_memory_less_node() and just set the node online.
Note that setting the node online is needed, otherwise we choke down the
chain when bringup_nonboot_cpus() ends up calling
__try_online_node()->register_one_node()->... and we blow up in
bus_add_device(). As can be seen here:
BUG: kernel NULL pointer dereference, address: 0000000000000060
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.0-rc4-1-default+ #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/4
RIP: 0010:bus_add_device+0x5a/0x140
Code: 8b 74 24 20 48 89 df e8 84 96 ff ff 85 c0 89 c5 75 38 48 8b 53 50 48 85 d2 0f 84 bb 00 004
RSP: 0000:ffffc9000022bd10 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888100987400 RCX: ffff8881003e4e19
RDX: ffff8881009a5e00 RSI: ffff888100987400 RDI: ffff888100987400
RBP: 0000000000000000 R08: ffff8881003e4e18 R09: ffff8881003e4c98
R10: 0000000000000000 R11: ffff888100402bc0 R12: ffffffff822ceba0
R13: 0000000000000000 R14: ffff888100987400 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88853fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000060 CR3: 000000000200a001 CR4: 00000000001706b0
Call Trace:
device_add+0x4c0/0x910
__register_one_node+0x97/0x2d0
__try_online_node+0x85/0xc0
try_online_node+0x25/0x40
cpu_up+0x4f/0x100
bringup_nonboot_cpus+0x4f/0x60
smp_init+0x26/0x79
kernel_init_freeable+0x130/0x2f1
kernel_init+0x17/0x150
ret_from_fork+0x22/0x30
The reason is simple, by the time bringup_nonboot_cpus() gets called, we
did not register the node_subsys bus yet, so we crash when
bus_add_device() tries to dereference bus()->p.
The following shows the order of the calls:
kernel_init_freeable
smp_init
bringup_nonboot_cpus
...
bus_add_device() <- we did not register node_subsys yet
do_basic_setup
do_initcalls
postcore_initcall(register_node_type);
register_node_type
subsys_system_register
subsys_register
bus_register <- register node_subsys bus
Why setting the node online saves us then? Well, simply because
__try_online_node() backs off when the node is online, meaning we do not
end up calling register_one_node() in the first place.
This is subtle, broken and deserves a deep analysis and thought about
how to put this into shape, but for now let us have this easy fix for
the leaking memory issue.
[osalvador@suse.de: add comments]
Link: https://lkml.kernel.org/r/20220221142649.3457-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20220218224302.5282-2-osalvador@suse.de
Fixes: da4490c958ad ("mm: handle uninitialized numa nodes gracefully")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Rafael Aquini <raquini@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pcppages_bulk() has taken two passes through the pcp lists since
commit 0a5f4e5b45 ("mm/free_pcppages_bulk: do not hold lock when
picking pages to free") due to deferring the cost of selecting PCP lists
until the zone lock is held.
As the list processing now takes place under the zone lock, it's less
clear that this will always benefit for two reasons.
1. There is a guaranteed cost to calculating the buddy which definitely
has to be calculated again. However, as the zone lock is held and
there is no deferring of buddy merging, there is no guarantee that the
prefetch will have completed when the second buddy calculation takes
place and buddies are being merged. With or without the prefetch, there
may be further stalls depending on how many pages get merged. In other
words, a stall due to merging is inevitable and at best only one stall
might be avoided at the cost of calculating the buddy location twice.
2. As the zone lock is held, prefetch_nr makes less sense as once
prefetch_nr expires, the cache lines of interest have already been
merged.
The main concern is that there is a definite cost to calculating the
buddy location early for the prefetch and it is a "maybe win" depending
on whether the CPU prefetch logic and memory is fast enough. Remove the
prefetch logic on the basis that reduced instructions in a path is
always a saving where as the prefetch might save one memory stall
depending on the CPU and memory.
In most cases, this has marginal benefit as the calculations are a small
part of the overall freeing of pages. However, it was detectable on at
least one machine.
5.17.0-rc3 5.17.0-rc3
mm-highpcplimit-v2r1 mm-noprefetch-v1r1
Min elapsed 630.00 ( 0.00%) 610.00 ( 3.17%)
Amean elapsed 639.00 ( 0.00%) 623.00 * 2.50%*
Max elapsed 660.00 ( 0.00%) 660.00 ( 0.00%)
Link: https://lkml.kernel.org/r/20220221094119.15282-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Aaron Lu <aaron.lu@intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a PCP is mostly used for frees then high-order pages can exist on
PCP lists for some time. This is problematic when the allocation
pattern is all allocations from one CPU and all frees from another
resulting in colder pages being used. When bulk freeing pages, limit
the number of high-order pages that are stored on the PCP lists.
Netperf running on localhost exhibits this pattern and while it does not
matter for some machines, it does matter for others with smaller caches
where cache misses cause problems due to reduced page reuse. Pages
freed directly to the buddy list may be reused quickly while still cache
hot where as storing on the PCP lists may be cold by the time
free_pcppages_bulk() is called.
Using perf kmem:mm_page_alloc, the 5 most used page frames were
5.17-rc3
13041 pfn=0x111a30
13081 pfn=0x5814d0
13097 pfn=0x108258
13121 pfn=0x689598
13128 pfn=0x5814d8
5.17-revert-highpcp
192009 pfn=0x54c140
195426 pfn=0x1081d0
200908 pfn=0x61c808
243515 pfn=0xa9dc20
402523 pfn=0x222bb8
5.17-full-series
142693 pfn=0x346208
162227 pfn=0x13bf08
166413 pfn=0x2711e0
166950 pfn=0x2702f8
The spread is wider as there is still time before pages freed to one PCP
get released with a tradeoff between fast reuse and reduced zone lock
acquisition.
On the machine used to gather the traces, the headline performance was
equivalent.
netperf-tcp
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1r1 mm-highpcplimit-v2
Hmean 64 839.93 ( 0.00%) 840.77 ( 0.10%) 841.02 ( 0.13%)
Hmean 128 1614.22 ( 0.00%) 1622.07 * 0.49%* 1636.41 * 1.37%*
Hmean 256 2952.00 ( 0.00%) 2953.19 ( 0.04%) 2977.76 * 0.87%*
Hmean 1024 10291.67 ( 0.00%) 10239.17 ( -0.51%) 10434.41 * 1.39%*
Hmean 2048 17335.08 ( 0.00%) 17399.97 ( 0.37%) 17134.81 * -1.16%*
Hmean 3312 22628.15 ( 0.00%) 22471.97 ( -0.69%) 22422.78 ( -0.91%)
Hmean 4096 25009.50 ( 0.00%) 24752.83 * -1.03%* 24740.41 ( -1.08%)
Hmean 8192 32745.01 ( 0.00%) 31682.63 * -3.24%* 32153.50 * -1.81%*
Hmean 16384 39759.59 ( 0.00%) 36805.78 * -7.43%* 38948.13 * -2.04%*
On a 1-socket skylake machine with a small CPU cache that suffers more if
cache misses are too high
netperf-tcp
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1 mm-highpcplimit-v2
Hmean 64 938.95 ( 0.00%) 941.50 * 0.27%* 943.61 * 0.50%*
Hmean 128 1843.10 ( 0.00%) 1857.58 * 0.79%* 1861.09 * 0.98%*
Hmean 256 3573.07 ( 0.00%) 3667.45 * 2.64%* 3674.91 * 2.85%*
Hmean 1024 13206.52 ( 0.00%) 13487.80 * 2.13%* 13393.21 * 1.41%*
Hmean 2048 22870.23 ( 0.00%) 23337.96 * 2.05%* 23188.41 * 1.39%*
Hmean 3312 31001.99 ( 0.00%) 32206.50 * 3.89%* 31863.62 * 2.78%*
Hmean 4096 35364.59 ( 0.00%) 36490.96 * 3.19%* 36112.54 * 2.11%*
Hmean 8192 48497.71 ( 0.00%) 49954.05 * 3.00%* 49588.26 * 2.25%*
Hmean 16384 58410.86 ( 0.00%) 60839.80 * 4.16%* 62282.96 * 6.63%*
Note that this was a machine that did not benefit from caching high-order
pages and performance is almost restored with the series applied. It's
not fully restored as cache misses are still higher. This is a trade-off
between optimising for a workload that does all allocs on one CPU and
frees on another or more general workloads that need high-order pages for
SLUB and benefit from avoiding zone->lock for every SLUB refill/drain.
Link: https://lkml.kernel.org/r/20220217002227.5739-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prior to the series, pindex 0 (order-0 MIGRATE_UNMOVABLE) was always
skipped first and the precise reason is forgotten. A potential reason
may have been to artificially preserve MIGRATE_UNMOVABLE but there is no
reason why that would be optimal as it depends on the workload. The
more likely reason is that it was less complicated to do a pre-increment
instead of a post-increment in terms of overall code flow. As
free_pcppages_bulk() now typically receives the pindex of the PCP list
that exceeded high, always start draining that list.
Link: https://lkml.kernel.org/r/20220217002227.5739-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pcppages_bulk() selects pages to free by round-robining between
lists. Originally this was to evenly shrink pages by migratetype but
uneven freeing is inevitable due to high pages. Simplify list selection
by starting with a list that definitely has pages on it in
free_unref_page_commit() and for drain, it does not matter where
draining starts as all pages are removed.
Link: https://lkml.kernel.org/r/20220217002227.5739-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pcppages_bulk() frees pages in a round-robin fashion. Originally,
this was dealing only with migratetypes but storing high-order pages
means that there can be many more empty lists that are uselessly
checked. Track the minimum and maximum active pindex to reduce the
search space.
Link: https://lkml.kernel.org/r/20220217002227.5739-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Follow-up on high-order PCP caching", v2.
Commit 44042b4498 ("mm/page_alloc: allow high-order pages to be stored
on the per-cpu lists") was primarily aimed at reducing the cost of SLUB
cache refills of high-order pages in two ways. Firstly, zone lock
acquisitions was reduced and secondly, there were fewer buddy list
modifications. This is a follow-up series fixing some issues that
became apparant after merging.
Patch 1 is a functional fix. It's harmless but inefficient.
Patches 2-5 reduce the overhead of bulk freeing of PCP pages. While the
overhead is small, it's cumulative and noticable when truncating large
files. The changelog for patch 4 includes results of a microbench that
deletes large sparse files with data in page cache. Sparse files were
used to eliminate filesystem overhead.
Patch 6 addresses issues with high-order PCP pages being stored on PCP
lists for too long. Pages freed on a CPU potentially may not be quickly
reused and in some cases this can increase cache miss rates. Details
are included in the changelog.
This patch (of 6):
free_pcppages_bulk() prefetches buddies about to be freed but the order
must also be passed in as PCP lists store multiple orders.
Link: https://lkml.kernel.org/r/20220217002227.5739-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20220217002227.5739-2-mgorman@techsingularity.net
Fixes: 44042b4498 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ZONE_MOVABLE uses the remaining memory in each node. Its starting pfn
is also aligned to MAX_ORDER_NR_PAGES. It is possible for the remaining
memory in a node to be less than MAX_ORDER_NR_PAGES, meaning there is
not enough room for ZONE_MOVABLE on that node.
Unfortunately this condition is not checked for. This leads to
zone_movable_pfn[] getting set to a pfn greater than the last pfn in a
node.
calculate_node_totalpages() then sets zone->present_pages to be greater
than zone->spanned_pages which is invalid, as spanned_pages represents
the maximum number of pages in a zone assuming no holes.
Subsequently it is possible free_area_init_core() will observe a zone of
size zero with present pages. In this case it will skip setting up the
zone, including the initialisation of free_lists[].
However populated_zone() checks zone->present_pages to see if a zone has
memory available. This is used by iterators such as
walk_zones_in_node(). pagetypeinfo_showfree() uses this to walk the
free_list of each zone in each node, which are assumed to be initialised
due to the zone not being empty.
As free_area_init_core() never initialised the free_lists[] this results
in the following kernel crash when trying to read /proc/pagetypeinfo:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
CPU: 0 PID: 456 Comm: cat Not tainted 5.16.0 #461
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
RIP: 0010:pagetypeinfo_show+0x163/0x460
Code: 9e 82 e8 80 57 0e 00 49 8b 06 b9 01 00 00 00 4c 39 f0 75 16 e9 65 02 00 00 48 83 c1 01 48 81 f9 a0 86 01 00 0f 84 48 02 00 00 <48> 8b 00 4c 39 f0 75 e7 48 c7 c2 80 a2 e2 82 48 c7 c6 79 ef e3 82
RSP: 0018:ffffc90001c4bd10 EFLAGS: 00010003
RAX: 0000000000000000 RBX: ffff88801105f638 RCX: 0000000000000001
RDX: 0000000000000001 RSI: 000000000000068b RDI: ffff8880163dc68b
RBP: ffffc90001c4bd90 R08: 0000000000000001 R09: ffff8880163dc67e
R10: 656c6261766f6d6e R11: 6c6261766f6d6e55 R12: ffff88807ffb4a00
R13: ffff88807ffb49f8 R14: ffff88807ffb4580 R15: ffff88807ffb3000
FS: 00007f9c83eff5c0(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000013c8e000 CR4: 0000000000350ef0
Call Trace:
seq_read_iter+0x128/0x460
proc_reg_read_iter+0x51/0x80
new_sync_read+0x113/0x1a0
vfs_read+0x136/0x1d0
ksys_read+0x70/0xf0
__x64_sys_read+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this by checking that the aligned zone_movable_pfn[] does not exceed
the end of the node, and if it does skip creating a movable zone on this
node.
Link: https://lkml.kernel.org/r/20220215025831.2113067-1-apopple@nvidia.com
Fixes: 2a1e274acf ("Create the ZONE_MOVABLE zone")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9983a9d577 ("locking/local_lock: Make the empty local_lock_*()
function a macro.") in the -tip tree converted the local_lock_*()
functions into macros, which causes a warning with clang with
CONFIG_PREEMPT_RT=n + CONFIG_DEBUG_LOCK_ALLOC=n:
mm/page_alloc.c:131:40: error: variable 'pagesets' is not needed and will not be emitted [-Werror,-Wunneeded-internal-declaration]
static DEFINE_PER_CPU(struct pagesets, pagesets) = {
^
1 error generated.
Prior to that change, clang was not able to tell that pagesets was
unused in this configuration because it does not perform cross function
analysis in the frontend. After that change, it sees that the macros
just do a typecheck on the lock member of pagesets, which is evaluated
at compile time (so the variable is technically "used"), meaning the
variable is not needed in the final assembly, as the warning states.
Mark the variable as __maybe_unused to make it clear to clang that this
is expected in this configuration so there is no more warning.
Link: https://github.com/ClangBuiltLinux/linux/issues/1593
Link: https://lkml.kernel.org/r/20220215184322.440969-1-nathan@kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some places in the kernel don't really expect pageblock_order >=
MAX_ORDER, and it looks like this is only possible in corner cases:
1) CONFIG_DEFERRED_STRUCT_PAGE_INIT we'll end up freeing pageblock_order
pages via __free_pages_core(), which cannot possibly work.
2) find_zone_movable_pfns_for_nodes() will roundup the ZONE_MOVABLE
start PFN to MAX_ORDER_NR_PAGES. Consequently with a bigger
pageblock_order, we could have a single pageblock partially managed by
two zones.
3) compaction code runs into __fragmentation_index() with order
>= MAX_ORDER, when checking WARN_ON_ONCE(order >= MAX_ORDER). [1]
4) mm/page_reporting.c won't be reporting any pages with default
page_reporting_order == pageblock_order, as we'll be skipping the
reporting loop inside page_reporting_process_zone().
5) __rmqueue_fallback() will never be able to steal with
ALLOC_NOFRAGMENT.
pageblock_order >= MAX_ORDER is weird either way: it's a pure
optimization for making alloc_contig_range(), as used for allcoation of
gigantic pages, a little more reliable to succeed. However, if there is
demand for somewhat reliable allocation of gigantic pages, affected
setups should be using CMA or boottime allocations instead.
So let's make sure that pageblock_order < MAX_ORDER and simplify.
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
Link: https://lkml.kernel.org/r/20220214174132.219303-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: enforce pageblock_order < MAX_ORDER".
Having pageblock_order >= MAX_ORDER seems to be able to happen in corner
cases and some parts of the kernel are not prepared for it.
For example, Aneesh has shown [1] that such kernels can be compiled on
ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will
run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right
during boot.
We can get pageblock_order >= MAX_ORDER when the default hugetlb size is
bigger than the maximum allocation granularity of the buddy, in which
case we are no longer talking about huge pages but instead gigantic
pages.
Having pageblock_order >= MAX_ORDER can only make alloc_contig_range()
of such gigantic pages more likely to succeed.
Reliable use of gigantic pages either requires boot time allcoation or
CMA, no need to overcomplicate some places in the kernel to optimize for
corner cases that are broken in other areas of the kernel.
This patch (of 2):
Let's enforce pageblock_order < MAX_ORDER and simplify.
Especially patch #1 can be regarded a cleanup before:
[PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range
alignment. [2]
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
[2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_unref_page_commit() doesn't make use of its pfn argument, so get
rid of it.
Link: https://lkml.kernel.org/r/20220202140451.415928-1-nsaenzju@redhat.com
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is done in addition to MIGRATE_ISOLATE pageblock merge avoidance.
It prepares for the upcoming removal of the MAX_ORDER-1 alignment
requirement for CMA and alloc_contig_range().
MIGRATE_HIGHATOMIC should not merge with other migratetypes like
MIGRATE_ISOLATE and MIGRARTE_CMA[1], so this commit prevents that too.
Remove MIGRATE_CMA and MIGRATE_ISOLATE from fallbacks list, since they
are never used.
[1] https://lore.kernel.org/linux-mm/20211130100853.GP3366@techsingularity.net/
Link: https://lkml.kernel.org/r/20220124175957.1261961-1-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
That extra variable has been introduced just for keeping an original
passed gfp_mask because it is updated with __GFP_NOWARN on entry, thus
error handling messages were broken.
Instead we can keep an original gfp_mask without modifying it and add an
extra __GFP_NOWARN flag together with gfp_mask as a parameter to the
vm_area_alloc_pages() function. It will make it less confused.
Link: https://lkml.kernel.org/r/20220119143540.601149-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extend the find_vmap_lowest_match() function with one more parameter.
It is "adjust_search_size" boolean variable, so it is possible to
control an accuracy of search block if a specific alignment is required.
With this patch, a search size is always adjusted, to serve a request as
fast as possible because of performance reason.
But there is one exception though, it is short ranges where requested
size corresponds to passed vstart/vend restriction together with a
specific alignment request. In such scenario an adjustment wold not
lead to success allocation.
Link: https://lkml.kernel.org/r/20220119143540.601149-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A caller initiates the drain procces from its context once the
drain threshold is reached or passed. There are at least two
drawbacks of doing so:
a) a caller can be a high-prio or RT task. In that case it can
stuck in doing the actual drain of all lazily freed areas.
This is not optimal because such tasks usually are latency
sensitive where the control should be returned back as soon
as possible in order to drive such workloads in time. See
96e2db4561 ("mm/vmalloc: rework the drain logic")
b) It is not safe to call vfree() during holding a spinlock due
to the vmap_purge_lock mutex. The was a report about this from
Zeal Robot <zealci@zte.com.cn> here:
https://lore.kernel.org/all/20211222081026.484058-1-chi.minghao@zte.com.cn
Moving the drain to the separate work context addresses those
issues.
v1->v2:
- Added prefix "_work" to the drain worker function.
v2->v3:
- Remove the drain_vmap_work_in_progress. Extra queuing
is expectable under heavy load but it can be disregarded
because a work will bail out if nothing to be done.
Link: https://lkml.kernel.org/r/20220131144058.35608-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The forward declaration for lazy_max_pages() is unnecessary. Remove it.
Link: https://lkml.kernel.org/r/20220124133752.60663-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's only used in the sparse.c now. So we can make it static and further
clean up the relevant code.
Link: https://lkml.kernel.org/r/20220127093221.63524-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using vma_lookup() verifies the address is contained in the found vma.
This results in easier to read code.
Link: https://lkml.kernel.org/r/20220312083118.48284-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RLIMIT_MEMLOCK is already reimplemented on top of ucounts now. And
since commit 83c1fd763b ("mm,hugetlb: remove mlock ulimit for
SHM_HUGETLB"), mlock ulimit for SHM_HUGETLB is further removed.
So we should remove this obsolete comment.
Link: https://lkml.kernel.org/r/20220309090623.13036-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
_install_special_mapping() adds the VM_SPECIAL bit VM_DONTEXPAND (and
never attempts to update locked_vm), so it ought to be consistent with
mmap_region() and mlock_fixup(), making sure not to add VM_LOCKED or
VM_LOCKONFAULT. I doubt that this fixes any problem in practice: just
do it for consistency.
Link: https://lkml.kernel.org/r/a85315a9-21d1-6133-c5fc-c89863dfb25b@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper macro min and max to help simplify the code logic. Minor
readability improvement.
Link: https://lkml.kernel.org/r/20220224121134.35068-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper function range_in_vma() to check if address, address + size are
within the vma range. Minor readability improvement.
Link: https://lkml.kernel.org/r/20220219021441.29173-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment). This prevents:
Unknown kernel command line parameters \
"BOOT_IMAGE=/boot/bzImage-517rc5 stack_guard_gap=100", will be \
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc5
stack_guard_gap=100
Return 1 to indicate that the boot option has been handled.
Note that there is no warning message if someone enters:
stack_guard_gap=anything_invalid
and 'val' and stack_guard_gap are both set to 0 due to the use of
simple_strtoul(). This could be improved by using kstrtoxxx() and
checking for an error.
It appears that having stack_guard_gap == 0 is valid (if unexpected) since
using "stack_guard_gap=0" on the kernel command line does that.
Link: https://lkml.kernel.org/r/20220222005817.11087-1-rdunlap@infradead.org
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Fixes: 1be7107fbe ("mm: larger stack guard gap, between vmas")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean the code up by merging the device private/exclusive swap entry
handling with the rest, then we merge the pte clear operation too.
struct* page is defined in multiple places in the function, move it
upward.
free_swap_and_cache() is only useful for !non_swap_entry() case, put it
into the condition.
No functional change intended.
Link: https://lkml.kernel.org/r/20220216094810.60572-5-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have a zap_mapping pointer maintained in zap_details, when
it is specified we only want to zap the pages that has the same mapping
with what the caller has specified.
But what we want to do is actually simpler: we want to skip zapping
private (COW-ed) pages in some cases. We can refer to
unmap_mapping_pages() callers where we could have passed in different
even_cows values. The other user is unmap_mapping_folio() where we
always want to skip private pages.
According to Hugh, we used a mapping pointer for historical reason, as
explained here:
https://lore.kernel.org/lkml/391aa58d-ce84-9d4-d68d-d98a9c533255@google.com/
Quoting partly from Hugh:
Which raises the question again of why I did not just use a boolean flag
there originally: aah, I think I've found why. In those days there was a
horrible "optimization", for better performance on some benchmark I guess,
which when you read from /dev/zero into a private mapping, would map the zero
page there (look up read_zero_pagealigned() and zeromap_page_range() if you
dare). So there was another category of page to be skipped along with the
anon COWs, and I didn't want multiple tests in the zap loop, so checking
check_mapping against page->mapping did both. I think nowadays you could do
it by checking for PageAnon page (or genuine swap entry) instead.
This patch replaces the zap_details.zap_mapping pointer into the even_cows
boolean, then we check it against PageAnon.
Link: https://lkml.kernel.org/r/20220216094810.60572-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous name is against the natural way people think. Invert the
meaning and also the return value. No functional change intended.
Link: https://lkml.kernel.org/r/20220216094810.60572-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Rework zap ptes on swap entries", v5.
Patch 1 should fix a long standing bug for zap_pte_range() on
zap_details usage. The risk is we could have some swap entries skipped
while we should have zapped them.
Migration entries are not the major concern because file backed memory
always zap in the pattern that "first time without page lock, then
re-zap with page lock" hence the 2nd zap will always make sure all
migration entries are already recovered.
However there can be issues with real swap entries got skipped
errornoously. There's a reproducer provided in commit message of patch
1 for that.
Patch 2-4 are cleanups that are based on patch 1. After the whole
patchset applied, we should have a very clean view of zap_pte_range().
Only patch 1 needs to be backported to stable if necessary.
This patch (of 4):
The "details" pointer shouldn't be the token to decide whether we should
skip swap entries.
For example, when the callers specified details->zap_mapping==NULL, it
means the user wants to zap all the pages (including COWed pages), then
we need to look into swap entries because there can be private COWed
pages that was swapped out.
Skipping some swap entries when details is non-NULL may lead to wrongly
leaving some of the swap entries while we should have zapped them.
A reproducer of the problem:
===8<===
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
int page_size;
int shmem_fd;
char *buffer;
void main(void)
{
int ret;
char val;
page_size = getpagesize();
shmem_fd = memfd_create("test", 0);
assert(shmem_fd >= 0);
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
buffer = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE,
MAP_PRIVATE, shmem_fd, 0);
assert(buffer != MAP_FAILED);
/* Write private page, swap it out */
buffer[page_size] = 1;
madvise(buffer, page_size * 2, MADV_PAGEOUT);
/* This should drop private buffer[page_size] already */
ret = ftruncate(shmem_fd, page_size);
assert(ret == 0);
/* Recover the size */
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
/* Re-read the data, it should be all zero */
val = buffer[page_size];
if (val == 0)
printf("Good\n");
else
printf("BUG\n");
}
===8<===
We don't need to touch up the pmd path, because pmd never had a issue with
swap entries. For example, shmem pmd migration will always be split into
pte level, and same to swapping on anonymous.
Add another helper should_zap_cows() so that we can also check whether we
should zap private mappings when there's no page pointer specified.
This patch drops that trick, so we handle swap ptes coherently. Meanwhile
we should do the same check upon migration entry, hwpoison entry and
genuine swap entries too.
To be explicit, we should still remember to keep the private entries if
even_cows==false, and always zap them when even_cows==true.
The issue seems to exist starting from the initial commit of git.
[peterx@redhat.com: comment tweaks]
Link: https://lkml.kernel.org/r/20220217060746.71256-2-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220217060746.71256-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-2-peterx@redhat.com
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the code by using flush_dcache_folio().
Link: https://lkml.kernel.org/r/20220210123058.79206-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd calls mcopy_atomic_pte() and __mcopy_atomic() which do not
do any cache flushing for the target page. Then the target page will be
mapped to the user space with a different address (user address), which
might have an alias issue with the kernel address used to copy the data
from the user to. Fix this by insert flush_dcache_page() after
copy_from_user() succeeds.
Link: https://lkml.kernel.org/r/20220210123058.79206-7-songmuchun@bytedance.com
Fixes: b6ebaedb4c ("userfaultfd: avoid mmap_sem read recursion in mcopy_atomic")
Fixes: c1a4de99fa ("userfaultfd: mcopy_atomic|mfill_zeropage: UFFDIO_COPY|UFFDIO_ZEROPAGE preparation")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd calls shmem_mfill_atomic_pte() which does not do any cache
flushing for the target page. Then the target page will be mapped to
the user space with a different address (user address), which might have
an alias issue with the kernel address used to copy the data from the
user to. Insert flush_dcache_page() in non-zero-page case. And replace
clear_highpage() with clear_user_highpage() which already considers the
cache maintenance.
Link: https://lkml.kernel.org/r/20220210123058.79206-6-songmuchun@bytedance.com
Fixes: 8d10396342 ("userfaultfd: shmem: add shmem_mfill_zeropage_pte for userfaultfd support")
Fixes: 4c27fe4c4c ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
folio_copy() will copy the data from one page to the target page, then
the target page will be mapped to the user space address, which might
have an alias issue with the kernel address used to copy the data from
the page to. There are 2 ways to fix this issue.
1) insert flush_dcache_page() after folio_copy().
2) replace folio_copy() with copy_user_huge_page() which already
considers the cache maintenance.
We chose 2) way to fix the issue since architectures can optimize this
situation. It is also make backports easier.
Link: https://lkml.kernel.org/r/20220210123058.79206-5-songmuchun@bytedance.com
Fixes: 8cc5fcbb5b ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd calls copy_huge_page_from_user() which does not do any cache
flushing for the target page. Then the target page will be mapped to
the user space with a different address (user address), which might have
an alias issue with the kernel address used to copy the data from the
user to.
Fix this issue by flushing dcache in copy_huge_page_from_user().
Link: https://lkml.kernel.org/r/20220210123058.79206-4-songmuchun@bytedance.com
Fixes: fa4d75c1de ("userfaultfd: hugetlbfs: add copy_huge_page_from_user for hugetlb userfaultfd support")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The D-cache maintenance inside move_to_new_page() only consider one
page, there is still D-cache maintenance issue for tail pages of
compound page (e.g. THP or HugeTLB).
THP migration is only enabled on x86_64, ARM64 and powerpc, while
powerpc and arm64 need to maintain the consistency between I-Cache and
D-Cache, which depends on flush_dcache_page() to maintain the
consistency between I-Cache and D-Cache.
But there is no issues on arm64 and powerpc since they already considers
the compound page cache flushing in their icache flush function.
HugeTLB migration is enabled on arm, arm64, mips, parisc, powerpc,
riscv, s390 and sh, while arm has handled the compound page cache flush
in flush_dcache_page(), but most others do not.
In theory, the issue exists on many architectures. Fix this by not
using flush_dcache_folio() since it is not backportable.
Link: https://lkml.kernel.org/r/20220210123058.79206-3-songmuchun@bytedance.com
Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Fix some cache flush bugs", v5.
This series focuses on fixing cache maintenance.
This patch (of 7):
The flush_cache_range() is supposed to be justified only if the page is
already placed in process page table, and that is done right after
flush_cache_range(). So using this interface is wrong. And there is no
need to invalite cache since it was non-present before in
remove_migration_pmd(). So just to remove it.
Link: https://lkml.kernel.org/r/20220210123058.79206-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220210123058.79206-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each call into pte_mkhuge() is invariably followed by
arch_make_huge_pte(). Instead arch_make_huge_pte() can accommodate
pte_mkhuge() at the beginning. This updates generic fallback stub for
arch_make_huge_pte() and available platforms definitions. This makes huge
pte creation much cleaner and easier to follow.
Link: https://lkml.kernel.org/r/1643860669-26307-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg_cache_id() introduced by commit 2633d7a028 ("slab/slub:
consider a memcg parameter in kmem_create_cache") is used to index in the
kmem_cache->memcg_params->memcg_caches array. Since
kmem_cache->memcg_params.memcg_caches has been removed by commit
9855609bde ("mm: memcg/slab: use a single set of kmem_caches for all
accounted allocations"). So the name does not need to reflect cache
related. Just rename it to memcg_kmem_id. And it can reflect kmem
related.
Link: https://lkml.kernel.org/r/20220228122126.37293-17-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The name of list_lru_memcg was occupied before and became free since
last commit. Rename list_lru_per_memcg to list_lru_memcg since the name
is brief.
Link: https://lkml.kernel.org/r/20220228122126.37293-16-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The idr_alloc() does not include @max ID. So in the current
implementation, the maximum memcg ID is 65534 instead of 65535. It
seems a bug. So fix this.
Link: https://lkml.kernel.org/r/20220228122126.37293-15-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two idrs being used by memory cgroup, one is for kmem ID,
another is for memory cgroup ID. The maximum ID of both is 64Ki. Both
of them can limit the total number of memory cgroups. Actually, we can
reuse memory cgroup ID for kmem ID to simplify the code.
Link: https://lkml.kernel.org/r/20220228122126.37293-14-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we run 10k containers in the system, the size of the
list_lru_memcg->lrus can be ~96KB per list_lru. When we decrease the
number containers, the size of the array will not be shrinked. It is
not scalable. The xarray is a good choice for this case. We can save a
lot of memory when there are tens of thousands continers in the system.
If we use xarray, we also can remove the logic code of resizing array,
which can simplify the code.
[akpm@linux-foundation.org: remove unused local]
Link: https://lkml.kernel.org/r/20220228122126.37293-13-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The purpose of the memcg_drain_all_list_lrus() is list_lrus reparenting.
It is very similar to memcg_reparent_objcgs(). Rename it to
memcg_reparent_list_lrus() so that the name can more consistent with
memcg_reparent_objcgs().
Link: https://lkml.kernel.org/r/20220228122126.37293-12-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In our server, we found a suspected memory leak problem. The kmalloc-32
consumes more than 6GB of memory. Other kmem_caches consume less than
2GB memory.
After our in-depth analysis, the memory consumption of kmalloc-32 slab
cache is the cause of list_lru_one allocation.
crash> p memcg_nr_cache_ids
memcg_nr_cache_ids = $2 = 24574
memcg_nr_cache_ids is very large and memory consumption of each list_lru
can be calculated with the following formula.
num_numa_node * memcg_nr_cache_ids * 32 (kmalloc-32)
There are 4 numa nodes in our system, so each list_lru consumes ~3MB.
crash> list super_blocks | wc -l
952
Every mount will register 2 list lrus, one is for inode, another is for
dentry. There are 952 super_blocks. So the total memory is 952 * 2 * 3
MB (~5.6GB). But the number of memory cgroup is less than 500. So I
guess more than 12286 containers have been deployed on this machine (I do
not know why there are so many containers, it may be a user's bug or the
user really want to do that). And memcg_nr_cache_ids has not been reduced
to a suitable value. This can waste a lot of memory.
Now the infrastructure for dynamic list_lru_one allocation is ready, so
remove statically allocated memory code to save memory.
Link: https://lkml.kernel.org/r/20220228122126.37293-11-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It will simplify the code if moving memcg_online_kmem() to
mem_cgroup_css_online() and do not need to set ->kmemcg_id to -1 to
indicate the memcg is offline. In the next patch, ->kmemcg_id will be
used to sync list lru reparenting which requires not to change
->kmemcg_id.
Link: https://lkml.kernel.org/r/20220228122126.37293-10-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The workingset will add the xa_node to the shadow_nodes list. So the
allocation of xa_node should be done by kmem_cache_alloc_lru(). Using
xas_set_lru() to pass the list_lru which we want to insert xa_node into to
set up the xa_node reclaim context correctly.
Link: https://lkml.kernel.org/r/20220228122126.37293-9-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inode allocation is supposed to use alloc_inode_sb(), so convert
kmem_cache_alloc() of all filesystems to alloc_inode_sb().
Link: https://lkml.kernel.org/r/20220228122126.37293-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Theodore Ts'o <tytso@mit.edu> [ext4]
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently allocate scope for every memcg to be able to tracked on
every superblock instantiated in the system, regardless of whether that
superblock is even accessible to that memcg.
These huge memcg counts come from container hosts where memcgs are
confined to just a small subset of the total number of superblocks that
instantiated at any given point in time.
For these systems with huge container counts, list_lru does not need the
capability of tracking every memcg on every superblock. What it comes
down to is that adding the memcg to the list_lru at the first insert.
So introduce kmem_cache_alloc_lru to allocate objects and its list_lru.
In the later patch, we will convert all inode and dentry allocation from
kmem_cache_alloc to kmem_cache_alloc_lru.
Link: https://lkml.kernel.org/r/20220228122126.37293-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Optimize list lru memory consumption", v6.
In our server, we found a suspected memory leak problem. The kmalloc-32
consumes more than 6GB of memory. Other kmem_caches consume less than
2GB memory.
After our in-depth analysis, the memory consumption of kmalloc-32 slab
cache is the cause of list_lru_one allocation.
crash> p
memcg_nr_cache_ids memcg_nr_cache_ids = $2 = 24574
memcg_nr_cache_ids is very large and memory consumption of each list_lru
can be calculated with the following formula.
num_numa_node * memcg_nr_cache_ids * 32 (kmalloc-32)
There are 4 numa nodes in our system, so each list_lru consumes ~3MB.
crash> list super_blocks | wc -l
952
Every mount will register 2 list lrus, one is for inode, another is for
dentry. There are 952 super_blocks. So the total memory is 952 * 2 * 3
MB (~5.6GB). But now the number of memory cgroups is less than 500. So
I guess more than 12286 memory cgroups have been created on this machine
(I do not know why there are so many cgroups, it may be a user's bug or
the user really want to do that). Because memcg_nr_cache_ids has not
been reduced to a suitable value. It leads to waste a lot of memory.
If we want to reduce memcg_nr_cache_ids, we have to *reboot* the server.
This is not what we want.
In order to reduce memcg_nr_cache_ids, I had posted a patchset [1] to do
this. But this did not fundamentally solve the problem.
We currently allocate scope for every memcg to be able to tracked on
every superblock instantiated in the system, regardless of whether that
superblock is even accessible to that memcg.
These huge memcg counts come from container hosts where memcgs are
confined to just a small subset of the total number of superblocks that
instantiated at any given point in time.
For these systems with huge container counts, list_lru does not need the
capability of tracking every memcg on every superblock.
What it comes down to is that the list_lru is only needed for a given
memcg if that memcg is instatiating and freeing objects on a given
list_lru.
As Dave said, "Which makes me think we should be moving more towards 'add
the memcg to the list_lru at the first insert' model rather than
'instantiate all at memcg init time just in case'."
This patchset aims to optimize the list lru memory consumption from
different aspects.
I had done a easy test to show the optimization. I create 10k memory
cgroups and mount 10k filesystems in the systems. We use free command to
show how many memory does the systems comsumes after this operation (There
are 2 numa nodes in the system).
+-----------------------+------------------------+
| condition | memory consumption |
+-----------------------+------------------------+
| without this patchset | 24464 MB |
+-----------------------+------------------------+
| after patch 1 | 21957 MB | <--------+
+-----------------------+------------------------+ |
| after patch 10 | 6895 MB | |
+-----------------------+------------------------+ |
| after patch 12 | 4367 MB | |
+-----------------------+------------------------+ |
|
The more the number of nodes, the more obvious the effect---+
BTW, there was a recent discussion [2] on the same issue.
[1] https://lore.kernel.org/all/20210428094949.43579-1-songmuchun@bytedance.com/
[2] https://lore.kernel.org/all/20210405054848.GA1077931@in.ibm.com/
This series not only optimizes the memory usage of list_lru but also
simplifies the code.
This patch (of 16):
The current scheme of maintaining per-node per-memcg lru lists looks like:
struct list_lru {
struct list_lru_node *node; (for each node)
struct list_lru_memcg *memcg_lrus;
struct list_lru_one *lru[]; (for each memcg)
}
By effectively transposing the two-dimension array of list_lru_one's structures
(per-node per-memcg => per-memcg per-node) it's possible to save some memory
and simplify alloc/dealloc paths. The new scheme looks like:
struct list_lru {
struct list_lru_memcg *mlrus;
struct list_lru_per_memcg *mlru[]; (for each memcg)
struct list_lru_one node[0]; (for each node)
}
Memory savings are coming from not only 'struct rcu_head' but also some
pointer arrays used to store the pointer to 'struct list_lru_one'. The
array is per node and its size is 8 (a pointer) * num_memcgs. So the
total size of the arrays is 8 * num_nodes * memcg_nr_cache_ids. After
this patch, the size becomes 8 * memcg_nr_cache_ids.
Link: https://lkml.kernel.org/r/20220228122126.37293-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220228122126.37293-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Chao Yu <chao@kernel.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the for-each-CPU loop, preemption is disabled so that so that
drain_local_stock() can be invoked directly instead of scheduling a
worker. Ensuring that drain_local_stock() completed on the local CPU is
not correctness problem. It _could_ be that the charging path will be
forced to reclaim memory because cached charges are still waiting for
their draining.
Disabling preemption before invoking drain_local_stock() is problematic
on PREEMPT_RT due to the sleeping locks involved. To ensure that no CPU
migrations happens across for_each_online_cpu() it is enouhg to use
migrate_disable() which disables migration and keeps context preemptible
to a sleeping lock can be acquired. A race with CPU hotplug is not a
problem because pcp data is not going away. In the worst case we just
schedule draining of an empty stock.
Use migrate_disable() instead of get_cpu() around the
for_each_online_cpu() loop.
Link: https://lkml.kernel.org/r/20220226204144.1008339-7-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The members of the per-CPU structure memcg_stock_pcp are protected by
disabling interrupts. This is not working on PREEMPT_RT because it
creates atomic context in which actions are performed which require
preemptible context. One example is obj_cgroup_release().
The IRQ-disable sections can be replaced with local_lock_t which
preserves the explicit disabling of interrupts while keeps the code
preemptible on PREEMPT_RT.
drain_obj_stock() drops a reference on obj_cgroup which leads to an
invocat= ion of obj_cgroup_release() if it is the last object. This in
turn leads to recursive locking of the local_lock_t. To avoid this,
obj_cgroup_release() = is invoked outside of the locked section.
obj_cgroup_uncharge_pages() can be invoked with the local_lock_t
acquired a= nd without it. This will lead later to a recursion in
refill_stock(). To avoid the locking recursion provide
obj_cgroup_uncharge_pages_locked() which uses the locked version of
refill_stock().
- Replace disabling interrupts for memcg_stock with a local_lock_t.
- Let drain_obj_stock() return the old struct obj_cgroup which is
passed to obj_cgroup_put() outside of the locked section.
- Provide obj_cgroup_uncharge_pages_locked() which uses the locked
version of refill_stock() to avoid recursive locking in
drain_obj_stock().
Link: https://lkml.kernel.org/r/20220209014709.GA26885@xsang-OptiPlex-9020
Link: https://lkml.kernel.org/r/20220226204144.1008339-6-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide the inner part of refill_stock() as __refill_stock() without
disabling interrupts. This eases the integration of local_lock_t where
recursive locking must be avoided.
Open code obj_cgroup_uncharge_pages() in drain_obj_stock() and use
__refill_stock(). The caller of drain_obj_stock() already disables
interrupts.
[bigeasy@linutronix.de: patch body around Johannes' diff]
Link: https://lkml.kernel.org/r/20220226204144.1008339-5-bigeasy@linutronix.de
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-CPU counter are modified with the non-atomic modifier. The
consistency is ensured by disabling interrupts for the update. On non
PREEMPT_RT configuration this works because acquiring a spinlock_t typed
lock with the _irq() suffix disables interrupts. On PREEMPT_RT
configurations the RMW operation can be interrupted.
Another problem is that mem_cgroup_swapout() expects to be invoked with
disabled interrupts because the caller has to acquire a spinlock_t which
is acquired with disabled interrupts. Since spinlock_t never disables
interrupts on PREEMPT_RT the interrupts are never disabled at this
point.
The code is never called from in_irq() context on PREEMPT_RT therefore
disabling preemption during the update is sufficient on PREEMPT_RT. The
sections which explicitly disable interrupts can remain on PREEMPT_RT
because the sections remain short and they don't involve sleeping locks
(memcg_check_events() is doing nothing on PREEMPT_RT).
Disable preemption during update of the per-CPU variables which do not
explicitly disable interrupts.
Link: https://lkml.kernel.org/r/20220226204144.1008339-4-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During the integration of PREEMPT_RT support, the code flow around
memcg_check_events() resulted in `twisted code'. Moving the code around
and avoiding then would then lead to an additional local-irq-save
section within memcg_check_events(). While looking better, it adds a
local-irq-save section to code flow which is usually within an
local-irq-off block on non-PREEMPT_RT configurations.
The threshold event handler is a deprecated memcg v1 feature. Instead
of trying to get it to work under PREEMPT_RT just disable it. There
should be no users on PREEMPT_RT. From that perspective it makes even
less sense to get it to work under PREEMPT_RT while having zero users.
Make memory.soft_limit_in_bytes and cgroup.event_control return
-EOPNOTSUPP on PREEMPT_RT. Make an empty memcg_check_events() and
memcg_write_event_control() which return only -EOPNOTSUPP on PREEMPT_RT.
Document that the two knobs are disabled on PREEMPT_RT.
Link: https://lkml.kernel.org/r/20220226204144.1008339-3-bigeasy@linutronix.de
Suggested-by: Michal Hocko <mhocko@kernel.org>
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memcg: Address PREEMPT_RT problems instead of disabling it", v5.
This series aims to address the memcg related problem on PREEMPT_RT.
I tested them on CONFIG_PREEMPT and CONFIG_PREEMPT_RT with the
tools/testing/selftests/cgroup/* tests and I haven't observed any
regressions (other than the lockdep report that is already there).
This patch (of 6):
The optimisation is based on a micro benchmark where local_irq_save() is
more expensive than a preempt_disable(). There is no evidence that it
is visible in a real-world workload and there are CPUs where the
opposite is true (local_irq_save() is cheaper than preempt_disable()).
Based on micro benchmarks, the optimisation makes sense on PREEMPT_NONE
where preempt_disable() is optimized away. There is no improvement with
PREEMPT_DYNAMIC since the preemption counter is always available.
The optimization makes also the PREEMPT_RT integration more complicated
since most of the assumption are not true on PREEMPT_RT.
Revert the optimisation since it complicates the PREEMPT_RT integration
and the improvement is hardly visible.
[bigeasy@linutronix.de: patch body around Michal's diff]
Link: https://lkml.kernel.org/r/20220226204144.1008339-1-bigeasy@linutronix.de
Link: https://lore.kernel.org/all/YgOGkXXCrD%2F1k+p4@dhcp22.suse.cz
Link: https://lkml.kernel.org/r/YdX+INO9gQje6d0S@linutronix.de
Link: https://lkml.kernel.org/r/20220226204144.1008339-2-bigeasy@linutronix.de
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment).
The only reason that this particular __setup handler does not pollute
init's environment is that the setup string contains a '.', as in
"cgroup.memory". This causes init/main.c::unknown_boottoption() to
consider it to be an "Unused module parameter" and ignore it. (This is
for parsing of loadable module parameters any time after kernel init.)
Otherwise the string "cgroup.memory=whatever" would be added to init's
environment strings.
Instead of relying on this '.' quirk, just return 1 to indicate that the
boot option has been handled.
Note that there is no warning message if someone enters:
cgroup.memory=anything_invalid
Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org
Fixes: f7e1cb6ec5 ("mm: memcontrol: account socket memory in unified hierarchy memory controller")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The high limit is used to throttle the workload without invoking the
oom-killer. Recently we tried to use the high limit to right size our
internal workloads. More specifically dynamically adjusting the limits
of the workload without letting the workload get oom-killed. However
due to the limitation of the implementation of high limit enforcement,
we observed the mechanism fails for some real workloads.
The high limit is enforced on return-to-userspace i.e. the kernel let
the usage goes over the limit and when the execution returns to
userspace, the high reclaim is triggered and the process can get
throttled as well. However this mechanism fails for workloads which do
large allocations in a single kernel entry e.g. applications that
mlock() a large chunk of memory in a single syscall. Such applications
bypass the high limit and can trigger the oom-killer.
To make high limit enforcement more robust, this patch makes the limit
enforcement synchronous only if the accumulated overcharge becomes
larger than MEMCG_CHARGE_BATCH. So, most of the allocations would still
be throttled on the return-to-userspace path but only the extreme
allocations which accumulates large amount of overcharge without
returning to the userspace will be throttled synchronously. The value
MEMCG_CHARGE_BATCH is a bit arbitrary but most of other places in the
memcg codebase uses this constant therefore for now uses the same one.
Link: https://lkml.kernel.org/r/20220211064917.2028469-5-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel force charges the allocations which have __GFP_HIGH
flag without triggering the memory reclaim. __GFP_HIGH indicates that
the caller is high priority and since commit 869712fd3d ("mm:
memcontrol: fix network errors from failing __GFP_ATOMIC charges") the
kernel lets such allocations do force charging. Please note that
__GFP_ATOMIC has been replaced by __GFP_HIGH.
__GFP_HIGH does not tell if the caller can block or can trigger reclaim.
There are separate checks to determine that. So, there is no need to
skip reclaiming for __GFP_HIGH allocations. So, handle __GFP_HIGH
together with __GFP_NOFAIL which also does force charging.
Please note that this is a noop change as there are no __GFP_HIGH
allocators in the kernel which also have __GFP_ACCOUNT (or SLAB_ACCOUNT)
and does not allow reclaim for now.
Link: https://lkml.kernel.org/r/20220211064917.2028469-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcg: robust enforcement of memory.high", v2.
Due to the semantics of memory.high enforcement i.e. throttle the
workload without oom-kill, we are trying to use it for right sizing the
workloads in our production environment. However we observed the
mechanism fails for some specific applications which does big chunck of
allocations in a single syscall. The reason behind this failure is due
to the limitation of the memory.high enforcement's current
implementation.
This patch series solves this issue by enforcing the memory.high
synchronously if the current process has accumulated a large amount of
high overcharge.
This patch (of 4):
The function mem_cgroup_oom returns enum which has four possible values
but the caller does not care about such values and only cares if the
return value is OOM_SUCCESS or not. So, remove the enum altogether and
make mem_cgroup_oom returns a simple bool.
Link: https://lkml.kernel.org/r/20220211064917.2028469-1-shakeelb@google.com
Link: https://lkml.kernel.org/r/20220211064917.2028469-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kzalloc_node() would set data to 0, so it's not necessary to set it
again.
Link: https://lkml.kernel.org/r/20220201004643.8391-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently memcg stats show several types of kernel memory: kernel stack,
page tables, sock, vmalloc, and slab. However, there are other
allocations with __GFP_ACCOUNT (or supersets such as GFP_KERNEL_ACCOUNT)
that are not accounted in any of those stats, a few examples are:
- various kvm allocations (e.g. allocated pages to create vcpus)
- io_uring
- tmp_page in pipes during pipe_write()
- bpf ringbuffers
- unix sockets
Keeping track of the total kernel memory is essential for the ease of
migration from cgroup v1 to v2 as there are large discrepancies between
v1's kmem.usage_in_bytes and the sum of the available kernel memory
stats in v2. Adding separate memcg stats for all __GFP_ACCOUNT kernel
allocations is an impractical maintenance burden as there a lot of those
all over the kernel code, with more use cases likely to show up in the
future.
Therefore, add a "kernel" memcg stat that is analogous to kmem page
counter, with added benefits such as using rstat infrastructure which
aggregates stats more efficiently. Additionally, this provides a
lighter alternative in case the legacy kmem is deprecated in the future
[yosryahmed@google.com: v2]
Link: https://lkml.kernel.org/r/20220203193856.972500-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20220201200823.3283171-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the deprecated in_interrupt() with !in_task() because
in_interrupt() returns true for BH disabled even if the call happens in
the task context. in_task() is the right interface to differentiate
task context from NMI, hard IRQ and softirq contexts.
Link: https://lkml.kernel.org/r/20220127162636.3461256-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper macro __ATTR_RW to define shmem_enabled_attr to make code
more clear. Minor readability improvement.
Link: https://lkml.kernel.org/r/20220312082252.55586-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikulas asked in "Do we still need commit a0ee5ec520 ('tmpfs: allocate
on read when stacked')?" in [1]
Lukas noticed this unusual behavior of loop device backed by tmpfs in [2].
Normally, shmem_file_read_iter() copies the ZERO_PAGE when reading
holes; but if it looks like it might be a read for "a stacking
filesystem", it allocates actual pages to the page cache, and even marks
them as dirty. And reads from the loop device do satisfy the test that
is used.
This oddity was added for an old version of unionfs, to help to limit
its usage to the limited size of the tmpfs mount involved; but about the
same time as the tmpfs mod went in (2.6.25), unionfs was reworked to
proceed differently; and the mod kept just in case others needed it.
Do we still need it? I cannot answer with more certainty than "Probably
not". It's nasty enough that we really should try to delete it; but if
a regression is reported somewhere, then we might have to revert later.
It's not quite as simple as just removing the test (as Mikulas did):
xfstests generic/013 hung because splice from tmpfs failed on page not
up-to-date and page mapping unset. That can be fixed just by marking
the ZERO_PAGE as Uptodate, which of course it is: do so in
pagecache_init() - it might be useful to others than tmpfs.
My intention, though, was to stop using the ZERO_PAGE here altogether:
surely iov_iter_zero() is better for this case? Sadly not: it relies on
clear_user(), and the x86 clear_user() is slower than its copy_user() [3].
But while we are still using the ZERO_PAGE, let's stop dirtying its
struct page cacheline with unnecessary get_page() and put_page().
Link: https://lore.kernel.org/linux-mm/alpine.LRH.2.02.2007210510230.6959@file01.intranet.prod.int.rdu2.redhat.com/ [1]
Link: https://lore.kernel.org/linux-mm/20211126075100.gd64odg2bcptiqeb@work/ [2]
Link: https://lore.kernel.org/lkml/2f5ca5e4-e250-a41c-11fb-a7f4ebc7e1c9@google.com/ [3]
Link: https://lkml.kernel.org/r/90bc5e69-9984-b5fa-a685-be55f2b64b@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Reported-by: Lukas Czerner <lczerner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Zdenek Kabelac <zkabelac@redhat.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I added page_mapped() resilience in __delete_from_page_cache() for
the mapping_exiting() case, I missed that mapping_set_exiting() is done
in truncate_inode_pages_final(), which is not actually called for shmem.
(Today, it is folio_mapped() resilience in filemap_unaccount_folio().)
So the fixup to avoid a memory leak in this case never worked on shmem:
add a mapping_set_exiting() in shmem_evict_inode() at last. But this is
hardly a candidate for stable, since it's only useful if "Bad page".
Link: https://lkml.kernel.org/r/beefffda-6326-e36d-2d41-ed15b51af872@google.com
Fixes: 06b241f32c ("mm: __delete_from_page_cache show Bad page if mapped")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For unevictable pages, we don't need mark them.
Link: https://lkml.kernel.org/r/20220311141519.59948-1-libang.linuxer@gmail.com
Signed-off-by: Bang Li <libang.linuxer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the last caller of get_user_pages_locked() is gone, remove it.
Link: https://lkml.kernel.org/r/20220204020010.68930-6-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The purpose of calling get_user_pages_locked() from lookup_node() was to
allow for unlocking the mmap_lock when reading a page from the disk
during a page fault (hidden behind VM_FAULT_RETRY). The idea was to
reduce contention on the heavily-used mmap_lock. (Thanks to Jan Kara
for clearly pointing that out, and in fact I've used some of his wording
here.)
However, it is unlikely for lookup_node() to take a page fault. With
that in mind, change over to calling get_user_pages_fast(). This
simplifies the code, runs a little faster in the expected case, and
allows removing get_user_pages_locked() entirely, in a subsequent patch.
Link: https://lkml.kernel.org/r/20220204020010.68930-5-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This routine was used for a short while, but then the calling code was
refactored and the only caller was removed.
Link: https://lkml.kernel.org/r/20220204020010.68930-4-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove a quirky special case from follow_pfn_pte(), and adjust its
callers to match. Caller changes include:
__get_user_pages(): Regardless of any FOLL_* flags, get_user_pages() and
its variants should handle PFN-only entries by stopping early, if the
caller expected **pages to be filled in. This makes for a more reliable
API, as compared to the previous approach of skipping over such entries
(and thus leaving them silently unwritten).
move_pages(): squash the -EEXIST error return from follow_page() into
-EFAULT, because -EFAULT is listed in the man page, whereas -EEXIST is
not.
Link: https://lkml.kernel.org/r/20220204020010.68930-3-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/gup: some cleanups", v5.
This patch (of 5):
Alex reported invalid page pointer returned with pin_user_pages_remote()
from vfio after upstream commit 4b6c33b322 ("vfio/type1: Prepare for
batched pinning with struct vfio_batch").
It turns out that it's not the fault of the vfio commit; however after
vfio switches to a full page buffer to store the page pointers it starts
to expose the problem easier.
The problem is for VM_PFNMAP vmas we should normally fail with an
-EFAULT then vfio will carry on to handle the MMIO regions. However
when the bug triggered, follow_page_mask() returned -EEXIST for such a
page, which will jump over the current page, leaving that entry in
**pages untouched. However the caller is not aware of it, hence the
caller will reference the page as usual even if the pointer data can be
anything.
We had that -EEXIST logic since commit 1027e4436b ("mm: make GUP
handle pfn mapping unless FOLL_GET is requested") which seems very
reasonable. It could be that when we reworked GUP with FOLL_PIN we
could have overlooked that special path in commit 3faa52c03f ("mm/gup:
track FOLL_PIN pages"), even if that commit rightfully touched up
follow_devmap_pud() on checking FOLL_PIN when it needs to return an
-EEXIST.
Attaching the Fixes to the FOLL_PIN rework commit, as it happened later
than 1027e4436b.
[jhubbard@nvidia.com: added some tags, removed a reference to an out of tree module.]
Link: https://lkml.kernel.org/r/20220207062213.235127-1-jhubbard@nvidia.com
Link: https://lkml.kernel.org/r/20220204020010.68930-1-jhubbard@nvidia.com
Link: https://lkml.kernel.org/r/20220204020010.68930-2-jhubbard@nvidia.com
Fixes: 3faa52c03f ("mm/gup: track FOLL_PIN pages")
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reported-by: Alex Williamson <alex.williamson@redhat.com>
Debugged-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: David Hildenbrand <david@redhat.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a804552b9a ("mm/page-writeback.c: fix
dirty_balance_reserve subtraction from dirtyable memory"), local
variable x can not be negative. And it can not overflow when it is the
total number of dirtyable highmem pages. Thus remove the unneeded
comment and overflow check.
Link: https://lkml.kernel.org/r/20220224115416.46089-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unused now. Remove it and clean up the relevant comment.
Link: https://lkml.kernel.org/r/20220208134149.47299-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For device private memory, we do not create a linear mapping for the
memory because the device memory is un-accessible. Thus we do not add
kasan zero shadow for it. So it's unnecessary to do
kasan_remove_zero_shadow() for it.
Link: https://lkml.kernel.org/r/20220126092602.1425-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This framework is no longer used - so discard it.
Link: https://lkml.kernel.org/r/164549983747.9187.6171768583526866601.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These functions are no longer useful as no BDIs report congestions any
more.
Removing the test on bdi_write_contested() in current_may_throttle()
could cause a small change in behaviour, but only when PF_LOCAL_THROTTLE
is set.
So replace the calls by 'false' and simplify the code - and remove the
functions.
[akpm@linux-foundation.org: fix build]
Link: https://lkml.kernel.org/r/164549983742.9187.2570198746005819592.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs]
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
inode_congested() reports if the backing-device for the inode is
congested. No bdi reports congestion any more, so this always returns
'false'.
So remove inode_congested() and related functions, and remove the call
sites, assuming that inode_congested() always returns 'false'.
Link: https://lkml.kernel.org/r/164549983741.9187.2174285592262191311.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If ->readpages doesn't process all the pages, then it is best to act as
though they weren't requested so that a subsequent readahead can try
again.
So:
- remove any 'ahead' pages from the page cache so they can be loaded
with ->readahead() rather then multiple ->read()s
- update the file_ra_state to reflect the reads that were actually
submitted.
This allows ->readpages() to abort early due e.g. to congestion, which
will then allow us to remove the inode_read_congested() test from
page_Cache_async_ra().
Link: https://lkml.kernel.org/r/164549983736.9187.16755913785880819183.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add some "big-picture" documentation for read-ahead and polish the code
to make it fit this documentation.
The meaning of ->async_size is clarified to match its name. i.e. Any
request to ->readahead() has a sync part and an async part. The caller
will wait for the sync pages to complete, but will not wait for the
async pages. The first async page is still marked PG_readahead
Note that the current function names page_cache_sync_ra() and
page_cache_async_ra() are misleading. All ra request are partly sync
and partly async, so either part can be empty. A page_cache_sync_ra()
request will usually set ->async_size non-zero, implying it is not all
synchronous.
When a non-zero req_count is passed to page_cache_async_ra(), the
implication is that some prefix of the request is synchronous, though
the calculation made there is incorrect - I haven't tried to fix it.
Link: https://lkml.kernel.org/r/164549983734.9187.11586890887006601405.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Simplify the PASID handling to allocate the PASID once, associate it to
the mm of a process and free it on mm_exit(). The previous attempt of
refcounted PASIDs and dynamic alloc()/free() turned out to be error
prone and too complex. The PASID space is 20bits, so the case of
resource exhaustion is a pure academic concern.
- Populate the PASID MSR on demand via #GP to avoid racy updates via IPIs.
- Reenable ENQCMD and let objtool check for the forbidden usage of ENQCMD
in the kernel.
- Update the documentation for Shared Virtual Addressing accordingly.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmI4WpETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUfnD/0bY94rgEX4Uuy/mFQ1W8X8XlcyKrha
0/cRATb+4QV/pwJgGr2nClKhGlFMYPdJLvKMC1TCUPCVrLD1RNmluIZoFzeqXwhm
jDdCcFOuGZ2D4ujDPWwOOpKBT1ytovnQa7+lH6QJyKkEqdcC2ncOvGJQoiRxRQIG
8wTVs/OUvQJ5ZhSZQMKQN4uMWMyHEjhbroYS30/uNi/598jTPgzlEoa14XocQ9Os
nS6ALvjuc9MsJ34F61etMaJU1ZMI3Wx75u9QjEvX6hmJs87YdvgwE7lzJUKFDEuh
gewM0wp2fTa8/azzP0eMiHTin56PqFdmllzRqXmilbZMEPOeI29dZVArCdpKcAn0
r9p1kJUT3Xl2G3Oir/OdCaaQHcznD1Y5ZFOyh12wgEucZ/rdeSr7nq7n5HoOL5Bw
Q2o6YvTkE9DOL0nTN1lSXGiPspou7fzX0uUcRBrbJUS3sBv4zGIlaJXUaTVnSdAt
VZj4LeOK7v2BjyeiOY0iaaIQd3xjmLUF0UjozXS5M13SoVcToZRbyWqhDzPvNuKA
imQb/dnFpXhABgmuqAiJLeqM0VtGMFNc780OURkcsBSPng+iSEdV4DzuhK0jpU8x
Uk1RuGMd/vgmrlDFBrw+orQQiiKR1ixpI0LiHfcOBycfJhqTwcnrNZvAN5/do28Z
E23+QzlUbZF0cw==
=Dy8V
-----END PGP SIGNATURE-----
Merge tag 'x86-pasid-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PASID support from Thomas Gleixner:
"Reenable ENQCMD/PASID support:
- Simplify the PASID handling to allocate the PASID once, associate
it to the mm of a process and free it on mm_exit().
The previous attempt of refcounted PASIDs and dynamic
alloc()/free() turned out to be error prone and too complex. The
PASID space is 20bits, so the case of resource exhaustion is a pure
academic concern.
- Populate the PASID MSR on demand via #GP to avoid racy updates via
IPIs.
- Reenable ENQCMD and let objtool check for the forbidden usage of
ENQCMD in the kernel.
- Update the documentation for Shared Virtual Addressing accordingly"
* tag 'x86-pasid-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Update documentation for SVA (Shared Virtual Addressing)
tools/objtool: Check for use of the ENQCMD instruction in the kernel
x86/cpufeatures: Re-enable ENQCMD
x86/traps: Demand-populate PASID MSR via #GP
sched: Define and initialize a flag to identify valid PASID in the task
x86/fpu: Clear PASID when copying fpstate
iommu/sva: Assign a PASID to mm on PASID allocation and free it on mm exit
kernel/fork: Initialize mm's PASID
iommu/ioasid: Introduce a helper to check for valid PASIDs
mm: Change CONFIG option for mm->pasid field
iommu/sva: Rename CONFIG_IOMMU_SVA_LIB to CONFIG_IOMMU_SVA
if need_lock is true but folio_trylock fails, we should return false
instead of NULL to match the return value type exactly. No functional
change intended.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
If the VM_HUGEPAGE flag is set, attempt to allocate PMD-sized folios
during readahead, even if we have no history of readahead being
successful.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
do_page_cache_ra() was being exposed for the benefit of
do_sync_mmap_readahead(). Switch it over to page_cache_ra_order()
partly because it's a better interface but mostly for the benefit of
the next patch.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
When we have the opportunity to use PMDs to map a file, we want to follow
the same rules as DAX.
Signed-off-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Allocate large folios in the readahead code when the filesystem supports
them and it seems worth doing. The heuristic for choosing which folio
sizes will surely need some tuning, but this aggressive ramp-up has been
good for testing.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
We return -EEXIST if there are any non-shadow entries in the page
cache in the range covered by the folio. If there are multiple
shadow entries in the range, we set *shadowp to one of them (currently
the one at the highest index). If that turns out to be the wrong
answer, we can implement something more complex. This is mostly
modelled after the equivalent function in the shmem code.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
This function already required a head page to be passed, so this
just adds type-safety and removes a few implicit calls to
compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
We always write out an entire folio at once. This conversion removes
a few calls to compound_head() and gets the NR_VMSCAN_WRITE statistic
right when writing out a large folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
This function only has one caller, and it already has a folio. This
removes a number of calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
The statistics we gather should count the number of pages, not the
number of folios. The logic in this function is somewhat convoluted,
but even if we split the folio, I think the accounting is now correct.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
A large folio which is smaller than a PMD does not need to do the extra
work in try_to_unmap() of trying to split a PMD entry.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
We have to allocate memory in order to split a file-backed folio, so
it's not a good idea to split them in the memory freeing path. It also
doesn't work for XFS because pages have an extra reference count from
page_has_private() and split_huge_page() expects that reference to have
already been removed. Unfortunately, we still have to split shmem THPs
because we can't handle swapping out an entire THP yet.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
The rmap walking functions do not modify the rmap_walk_control, and
page_idle_clear_pte_refs() takes advantage of that to move construction
of the rmap_walk_control to compile time. This lets us remove an
unclean cast.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Add back page_lock_anon_vma_read() as a wrapper. This saves a few calls
to compound_head(). If any callers were passing a tail page before,
this would have failed to lock the anon VMA as page->mapping is not
valid for tail pages.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Move the PageTail check earlier so we can avoid even taking the folio
lock on tail pages. Otherwise, this is a straightforward use of
folios throughout.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Convert the callers to pass a folio and the try_to_migrate_one()
worker to use a folio throughout. Fixes an assumption that a
folio must be <= PMD size.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Convert split_huge_pmd_address() at the same time since it only passes
the folio through, and its two callers already have a folio on hand.
Removes numerous calls to compound_head() and removes an assumption
that a page cannot be larger than a PMD.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Both its callers pass a page which was previously on an LRU list,
so were passing a folio by definition. Use the type system to enforce
that and remove a few calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert mlock_page() into mlock_folio() and convert the callers. Keep
mlock_vma_page() as a wrapper.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
folio_mkclean() already passes down a head page, so convert it
back to a folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The PG_idle and PG_young bits are ignored if they're set on tail
pages, so ensure we're passing a folio around.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
page_mapped_in_vma() really just wants to walk one page, but as the
code stands, if passed the head page of a compound page, it will
walk every page in the compound page. Extract pfn/nr_pages/pgoff
from the struct page early, so they can be overridden by
page_mapped_in_vma().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Instead of declaring a struct page_vma_mapped_walk directly,
use these helpers to allow us to transition to a PFN approach in the
following patches.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
This is a convenience function; split_huge_page_to_list() can take
any page in a folio (and does so on purpose because that page will
be the one which keeps the refcount). But it's convenient for the
callers to pass the folio instead of the first page in the folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This implements the same algorithm as total_mapcount(), which is
transformed into a wrapper function.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We can save a function call by combining these two functions, which
are identical except for the return value. Also move the prototype
to mm/internal.h.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
This function has one caller which already has a reference to the
page, so we don't need to use get_page_unless_zero(). Also move the
prototype to mm/internal.h.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Now we can call mapping_evict_folio() instead of invalidate_inode_page()
and save a few calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Some of the callers already have the address_space and can avoid calling
folio_mapping() and checking if the folio was already truncated. Also
add kernel-doc and fix the return type (in case we ever support folios
larger than 4TB).
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Add kernel-doc and return the number of pages removed in order to
get the statistics right in __invalidate_mapping_pages().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
folio_mapped() is expensive because it has to check each page's mapcount
field. A cheaper check is whether there are any extra references to
the page, other than the one we own, one from the page private data and
the ones held by the page cache.
The call to remove_mapping() will fail in any case if it cannot freeze
the refcount, but failing here avoids cycling the i_pages spinlock.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
This saves a number of calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
invalidate_inode_page() is the only caller of invalidate_complete_page()
and inlining it reveals that the first check is unnecessary (because we
hold the page locked, and we just retrieved the mapping from the page).
Actually, it does make a difference, in that tail pages no longer fail
at this check, so it's now possible to remove a tail page from a mapping.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This removes a few hidden calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a putback_lru_page() wrapper. Removes a couple of compound_head()
calls.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This removes an assumption that THPs are the only kind of compound
pages and removes a couple of hidden calls to compound_head. It
also documents that you can't pass a tail page to mem_cgroup_swapout().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This removes an assumption that THPs are the only kind of compound
pages and removes a few hidden calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Switch from head pages to folios. This removes an assumption that
THPs are the only way to have a high-order page.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Add isolate_lru_page() as a wrapper around isolate_lru_folio().
TestClearPageLRU() would have always failed on a tail page, so
returning -EBUSY is the same behaviour.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>