Originally, I did not expect having to rewind a context upon
timeslicing: the point was to replace the executing context with a
non-executing one! However, given a second context that depends on
requests from the first, we may have to split the requests along the
first context to execute the second, causing us to partially replay the
first context and so have to rewind its RING_TAIL.
References: 5ba32c7be8 ("drm/i915/execlists: Always force a context reload when rewinding RING_TAIL")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200213140150.3639027-1-chris@chris-wilson.co.uk
Apply vast quantities of poison and not tell anyone to see if we fall
for the trap of using a stale RING_HEAD.
References: 42827350f7 ("drm/i915/gt: Avoid resetting ring->head outside of its timeline mutex")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200211205615.1190127-2-chris@chris-wilson.co.uk
Currently on execlists, we use a local hwsp for the kernel_context,
rather than the engine's HWSP, as this is the default for execlists.
However, seqno wrap requires allocating a new HWSP cacheline, and may
require pinning a new HWSP page in the GGTT. This operation requiring
pinning in the GGTT is not allowed within the kernel_context timeline,
as doing so may require re-entering the kernel_context in order to evict
from the GGTT. As we want to avoid requiring a new HWSP for the
kernel_context, we can use the permanently pinned engine's HWSP instead.
However to do so we must prevent the use of semaphores reading the
kernel_context's HWSP, as the use of semaphores do not support rollover
onto the same cacheline. Fortunately, the kernel_context is mostly
isolated, so unlikely to give benefit to semaphores.
Reported-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200210205722.794180-5-chris@chris-wilson.co.uk
We can not require that the system process a tasklet in reasonable time
(thanks be to ksoftirqd), but we can insist that having waited
sufficiently for the error interrupt to have been raised and having
kicked the tasklet, the reset has begun and the request will be marked
as in error (if not already completed).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200210205722.794180-3-chris@chris-wilson.co.uk
We manipulate ring->head while active in i915_request_retire underneath
the timeline manipulation. We cannot rely on a stable ring->head outside
of the timeline->mutex, in particular while setting up the context for
resume and reset.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/1126
Fixes: 0881954965 ("drm/i915: Introduce intel_context.pin_mutex for pin management")
Fixes: e5dadff4b0 ("drm/i915: Protect request retirement with timeline->mutex")
References: f3c0efc9fe ("drm/i915/execlists: Leave resetting ring to intel_ring")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200211120131.958949-1-chris@chris-wilson.co.uk
live_preempt_hang's use of hang injection has been superseded by
live_preempt_reset's use of an non-preemptible spinner. The latter does
not require intrusive hacks into the code.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200209230838.361154-2-chris@chris-wilson.co.uk
Now that we have offline error capture and can reset an engine from
inside an atomic context while also preserving the GPU state for
post-mortem analysis, it is time to handle error interrupts thrown by
the command parser.
This provides a much, much faster mechanism for us to detect known
problems than using heartbeats/hangchecks, and also provides a mechanism
for when those are disabled. However, it is limited to problems the HW
can detect in the CS and so not a complete solution for detecting lockups.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200128204318.4182039-2-chris@chris-wilson.co.uk
If we encounter a hang on a virtual engine, as we process the hang the
request may already have been moved back to the virtual engine (we are
processing the hang on the physical engine). We need to reclaim the
request from the virtual engine so that the locking is consistent and
local to the real engine on which we will hold the request for error
state capturing.
v2: Pull the reclamation into execlists_hold() and assert that cannot be
called from outside of the reset (i.e. with the tasklet disabled).
v3: Added selftest
v4: Drop the reference owned by the virtual engine
Fixes: 748317386a ("drm/i915/execlists: Offline error capture")
Testcase: igt/gem_exec_balancer/hang
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200122140243.495621-2-chris@chris-wilson.co.uk
Thanks to preempt-to-busy, we leave the request on the HW as we submit
the preemption request. This means that the request may complete at any
moment as we process HW events, and in particular the request may be
retired as we are planning to capture it for a preemption timeout.
Be more careful while obtaining the request to capture after a
preemption timeout, and check to see if it completed before we were able
to put it on the on-hold list. If we do see it did complete just before
we capture the request, proclaim the preemption-timeout a false positive
and pardon the reset as we should hit an arbitration point momentarily
and so be able to process the preemption.
Note that even after we move the request to be on hold it may be retired
(as the reset to stop the HW comes after), so we do require to hold our
own reference as we work on the request for capture (and all of the
peeking at state within the request needs to be carefully protected).
Fixes: 32ff621fd7 ("drm/i915/gt: Allow temporary suspension of inflight requests")
Closes: https://gitlab.freedesktop.org/drm/intel/issues/997
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200122140243.495621-1-chris@chris-wilson.co.uk
In order to support out-of-line error capture, we need to remove the
active request from HW and put it to one side while a worker compresses
and stores all the details associated with that request. (As that
compression may take an arbitrary user-controlled amount of time, we
want to let the engine continue running on other workloads while the
hanging request is dumped.) Not only do we need to remove the active
request, but we also have to remove its context and all requests that
were dependent on it (both in flight, queued and future submission).
Finally once the capture is complete, we need to be able to resubmit the
request and its dependents and allow them to execute.
v2: Replace stack recursion with a simple list.
v3: Check all the parents, not just the first, when searching for a
stuck ancestor!
References: https://gitlab.freedesktop.org/drm/intel/issues/738
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200116184754.2860848-2-chris@chris-wilson.co.uk
Avoid spinning indefinitely waiting for the request to be submitted, and
instead apply a timeout. A secondary benefit is that the error message
will show which suspect is blocked.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200106114234.2529613-2-chris@chris-wilson.co.uk
When creating the initial LRC image, we also want to clear the MI_NOOPs
and register values. Rather than use a blanket memset beforehand, apply
the clears inline, close the context image and force inhibition of the
uninitialised reminder.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200102131707.1463945-2-chris@chris-wilson.co.uk
Empirically the minimal context image we use for rcs is insufficient to
state the engine. This is demonstrated if we poison the context image
such that any uninitialised state is invalid, and so if the engine
samples beyond our defined region, will fail to start.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200102131707.1463945-1-chris@chris-wilson.co.uk
Allocate only an internal intel_context for the kernel_context, forgoing
a global GEM context for internal use as we only require a separate
address space (for our own protection).
Now having weaned GT from requiring ce->gem_context, we can stop
referencing it entirely. This also means we no longer have to create random
and unnecessary GEM contexts for internal use.
GEM contexts are now entirely for tracking GEM clients, and intel_context
the execution environment on the GPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191221160324.1073045-1-chris@chris-wilson.co.uk
Keep the intel_context as being the primary state for i915_request, with
the GEM context a backpointer from the low level state for the rarer
cases we need client information. Our goal is to remove such references
to clients from the backend, and leave the HW submission agnostic to
client interfaces and self-contained.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191220101230.256839-1-chris@chris-wilson.co.uk
As the engine->kernel_context is used within the engine-pm barrier, we
have to be careful when emitting requests outside of the barrier, as the
strict timeline locking rules do not apply. Instead, we must ensure the
engine_park() cannot be entered as we build the request, which is
simplest by taking an explicit engine-pm wakeref around the request
construction.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191125105858.1718307-1-chris@chris-wilson.co.uk
Bonded request submission is designed to allow requests to execute in
parallel as laid out by the user. If the master request is already
finished before its bonded pair is submitted, the pair were not destined
to run in parallel and we lose the information about the master engine
to dictate selection of the secondary. If the second request was
required to be run on a particular engine in a virtual set, that should
have been specified, rather than left to the whims of a random
unconnected requests!
In the selftest, I made the mistake of not ensuring the master would
overlap with its bonded pairs, meaning that it could indeed complete
before we submitted the bonds. Those bonds were then free to select any
available engine in their virtual set, and not the one expected by the
test.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191122112152.660743-1-chris@chris-wilson.co.uk
Verify that we can execute a long chain of dependent requests from
userspace, each one slightly more important than the last.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191114225736.616885-4-chris@chris-wilson.co.uk
An interesting observation made with our parallel selftests was that on
our small/single cpu systems we would call kthread_stop() before the
kthreads were spawned. If this happens, the kthread is never run at all;
completely bypassing the test.
A simple yield() from the parent will ensure that all children have the
opportunity to start before we reap them.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191101084940.31838-1-chris@chris-wilson.co.uk
Execlists uses a scheduling quantum (a timeslice) to alternate execution
between ready-to-run contexts of equal priority. This ensures that all
users (though only if they of equal importance) have the opportunity to
run and prevents livelocks where contexts may have implicit ordering due
to userspace semaphores. However, not all workloads necessarily benefit
from timeslicing and in the extreme some sysadmin may want to disable or
reduce the timeslicing granularity.
The timeslicing mechanism can be compiled out^W^W disabled (but should
DCE!) with
./scripts/config --set-val DRM_I915_TIMESLICE_DURATION 0
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029091632.26281-1-chris@chris-wilson.co.uk
As we use hard coded offsets for a few locations within the context
image, include those in the selftests to assert that they are valid.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191028121803.29408-1-chris@chris-wilson.co.uk
The location of RING_MI_MODE (used to stop the ring across resets) moved
for Tigerlake. Fixup the new location and include a selftest to verify
the location in the default context image.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Acked-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191026082220.32632-1-chris@chris-wilson.co.uk
On schedule-out (CS completion) of a banned context, scrub the context
image so that we do not replay the active payload. The intent is that we
skip banned payloads on request submission so that the timeline
advancement continues on in the background. However, if we are returning
to a preempted request, i915_request_skip() is ineffective and instead we
need to patch up the context image so that it continues from the start
of the next request.
v2: Fixup cancellation so that we only scrub the payload of the active
request and do not short-circuit the breadcrumbs (which might cause
other contexts to execute out of order).
v3: Grammar pass
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191023133108.21401-3-chris@chris-wilson.co.uk
If the preempted context takes too long to relinquish control, e.g. it
is stuck inside a shader with arbitration disabled, evict that context
with an engine reset. This ensures that preemptions are reasonably
responsive, providing a tighter QoS for the more important context at
the cost of flagging unresponsive contexts more frequently (i.e. instead
of using an ~10s hangcheck, we now evict at ~100ms). The challenge of
lies in picking a timeout that can be reasonably serviced by HW for
typical workloads, balancing the existing clients against the needs for
responsiveness.
Note that coupled with timeslicing, this will lead to rapid GPU "hang"
detection with multiple active contexts vying for GPU time.
The forced preemption mechanism can be compiled out with
./scripts/config --set-val DRM_I915_PREEMPT_TIMEOUT 0
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191023133108.21401-2-chris@chris-wilson.co.uk
The actual conditions are that we know the GPU is not accessing the
context, and we hold a pin on the context image to allow CPU access. We
used a fake lock on ce->pin_mutex so that we could try and use lockdep
to assert that access is serialised, but the various different
hardirq/softirq contexts where we need to *fake* holding the pin_mutex
are causing more trouble.
Still it would be nice if we did have a way to reassure ourselves that
the direct update to the context image is serialised with GPU execution.
In the meantime, stop lockdep complaining about false irq inversions.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111923
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191022122845.25038-1-chris@chris-wilson.co.uk
Normally, we try and skip submission if ELSP[1] is filled. However, we
may desire to enable timeslicing due to the queue priority, even if
ELSP[1] itself does not require timeslicing. That is the queue is equal
priority to ELSP[0] and higher priority then ELSP[1]. Previously, we
would wait until the context switch to preempt the current ELSP[1], but
with timeslicing, we want to preempt ELSP[0] and replace it with the
queue.
In writing the test case, it become quickly apparent that we were also
suppressing the tasklet during promotion and so failing to notice when
the queue started requiring timeslicing.
Fixes: 2229adc813 ("drm/i915/execlist: Trim immediate timeslice expiry")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191018072027.31948-1-chris@chris-wilson.co.uk
Where the function, or code segment, operates on intel_gt, we need to
start passing it instead of i915 to for_each_engine(_masked).
This is another partial step in migration of i915->engines[] to
gt->engines[].
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191017094500.21831-2-tvrtko.ursulin@linux.intel.com
We want the general purpose registers to be clear in all new contexts so
that we can be confident that no information is leaked from one to the
next.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191014090757.32111-7-chris@chris-wilson.co.uk
Check the logical ring context by asserting that the registers hold
expected start during execution. (It's a bit chicken-and-egg for how
could we manage to execute our request if the registers were not being
updated. Still, it's nice to verify that the HW is working as expected.)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191014090757.32111-6-chris@chris-wilson.co.uk
Keep track of the GEM contexts underneath i915->gem.contexts and assign
them their own lock for the purposes of list management.
v2: Focus on lock tracking; ctx->vm is protected by ctx->mutex
v3: Correct split with removal of logical HW ID
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-15-chris@chris-wilson.co.uk
We don't need to hold struct_mutex now for retiring requests, so drop it
from i915_retire_requests() and i915_gem_wait_for_idle(), finally
removing I915_WAIT_LOCKED for good.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-8-chris@chris-wilson.co.uk
Forgo the struct_mutex serialisation for i915_active, and interpose its
own mutex handling for active/retire.
This is a multi-layered sleight-of-hand. First, we had to ensure that no
active/retire callbacks accidentally inverted the mutex ordering rules,
nor assumed that they were themselves serialised by struct_mutex. More
challenging though, is the rule over updating elements of the active
rbtree. Instead of the whole i915_active now being serialised by
struct_mutex, allocations/rotations of the tree are serialised by the
i915_active.mutex and individual nodes are serialised by the caller
using the i915_timeline.mutex (we need to use nested spinlocks to
interact with the dma_fence callback lists).
The pain point here is that instead of a single mutex around execbuf, we
now have to take a mutex for active tracker (one for each vma, context,
etc) and a couple of spinlocks for each fence update. The improvement in
fine grained locking allowing for multiple concurrent clients
(eventually!) should be worth it in typical loads.
v2: Add some comments that barely elucidate anything :(
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-6-chris@chris-wilson.co.uk
If execlists's lite-restore is based on the common GEM context tag
rather than the per-intel_context LRCA, then a context switch between
two intel_contexts on the same engine derived from the same GEM context
will perform a lite-restore instead of a full context switch. We can
exploit this by poisoning the ringbuffer of the first context and trying
to trick a simple RING_TAIL update (i.e. lite-restore)
v2: Also check what happens if preempt ce[0] with ce[1] (both instances
on the same engine from the same parent context) [Tvrtko]
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191002183459.26614-1-chris@chris-wilson.co.uk
As we execute GPU resets on a gt/ basis, and use the intel_gt as the
primary for all other reset functions, also use it for the has-reset?
predicates. Gradually simplifying the churn of pointers.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190927211749.2181-1-chris@chris-wilson.co.uk
Before we submit the first context to HW, we need to construct a valid
image of the register state. This layout is defined by the HW and should
match the layout generated by HW when it saves the context image.
Asserting that this should be equivalent should help avoid any undefined
behaviour and verify that we haven't missed anything important!
Of course, having insisted that the initial register state within the
LRC should match that returned by HW, we need to ensure that it does.
v2: Drop the RELATIVE_MMIO flag from gen11, we ignore it for
constructing the lrc image.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190924145950.3011-1-chris@chris-wilson.co.uk
The request->timeline is only valid until the request is retired (i.e.
before it is completed). Upon retiring the request, the context may be
unpinned and freed, and along with it the timeline may be freed. We
therefore need to be very careful when chasing rq->timeline that the
pointer does not disappear beneath us. The vast majority of users are in
a protected context, either during request construction or retirement,
where the timeline->mutex is held and the timeline cannot disappear. It
is those few off the beaten path (where we access a second timeline) that
need extra scrutiny -- to be added in the next patch after first adding
the warnings about dangerous access.
One complication, where we cannot use the timeline->mutex itself, is
during request submission onto hardware (under spinlocks). Here, we want
to check on the timeline to finalize the breadcrumb, and so we need to
impose a second rule to ensure that the request->timeline is indeed
valid. As we are submitting the request, it's context and timeline must
be pinned, as it will be used by the hardware. Since it is pinned, we
know the request->timeline must still be valid, and we cannot submit the
idle barrier until after we release the engine->active.lock, ergo while
submitting and holding that spinlock, a second thread cannot release the
timeline.
v2: Don't be lazy inside selftests; hold the timeline->mutex for as long
as we need it, and tidy up acquiring the timeline with a bit of
refactoring (i915_active_add_request)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
Make sure that when submitting requests, we always serialize against
potential vma moves and clflushes.
Time for a i915_request_await_vma() interface!
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190819112033.30638-1-chris@chris-wilson.co.uk
The order in which we store the engines inside default_engines() for the
legacy ctx->engines[] has to match the legacy I915_EXEC_RING selector
mapping in execbuf::user_map. If we present VCS2 as being the second
instance of the video engine, legacy userspace calls that I915_EXEC_BSD2
and so we need to insert it into the second video slot.
v2: Record the legacy mapping (hopefully we can remove this need in the
future)
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111328
Fixes: 2edda80db3 ("drm/i915: Rename engines to match their user interface")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> #v1
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190808110612.23539-2-chris@chris-wilson.co.uk