- Rework of the core ACPI resources parsing code to fix issues
in it and make using resource offsets more convenient and
consolidation of some resource-handing code in a couple of places
that have grown analagous data structures and code to cover the
the same gap in the core (Jiang Liu, Thomas Gleixner, Lv Zheng).
- ACPI-based IOAPIC hotplug support on top of the resources handling
rework (Jiang Liu, Yinghai Lu).
- ACPICA update to upstream release 20150204 including an interrupt
handling rework that allows drivers to install raw handlers for
ACPI GPEs which then become entirely responsible for the given GPE
and the ACPICA core code won't touch it (Lv Zheng, David E Box,
Octavian Purdila).
- ACPI EC driver rework to fix several concurrency issues and other
problems related to events handling on top of the ACPICA's new
support for raw GPE handlers (Lv Zheng).
- New ACPI driver for AMD SoCs analogous to the LPSS (Low-Power
Subsystem) driver for Intel chips (Ken Xue).
- Two minor fixes of the ACPI LPSS driver (Heikki Krogerus,
Jarkko Nikula).
- Two new blacklist entries for machines (Samsung 730U3E/740U3E and
510R) where the native backlight interface doesn't work correctly
while the ACPI one does (Hans de Goede).
- Rework of the ACPI processor driver's handling of idle states
to make the code more straightforward and less bloated overall
(Rafael J Wysocki).
- Assorted minor fixes related to ACPI and SFI (Andreas Ruprecht,
Andy Shevchenko, Hanjun Guo, Jan Beulich, Rafael J Wysocki,
Yaowei Bai).
- PCI core power management modification to avoid resuming (some)
runtime-suspended devices during system suspend if they are in
the right states already (Rafael J Wysocki).
- New SFI-based cpufreq driver for Intel platforms using SFI
(Srinidhi Kasagar).
- cpufreq core fixes, cleanups and simplifications (Viresh Kumar,
Doug Anderson, Wolfram Sang).
- SkyLake CPU support and other updates for the intel_pstate driver
(Kristen Carlson Accardi, Srinivas Pandruvada).
- cpufreq-dt driver cleanup (Markus Elfring).
- Init fix for the ARM big.LITTLE cpuidle driver (Sudeep Holla).
- Generic power domains core code fixes and cleanups (Ulf Hansson).
- Operating Performance Points (OPP) core code cleanups and kernel
documentation update (Nishanth Menon).
- New dabugfs interface to make the list of PM QoS constraints
available to user space (Nishanth Menon).
- New devfreq driver for Tegra Activity Monitor (Tomeu Vizoso).
- New devfreq class (devfreq_event) to provide raw utilization data
to devfreq governors (Chanwoo Choi).
- Assorted minor fixes and cleanups related to power management
(Andreas Ruprecht, Krzysztof Kozlowski, Rickard Strandqvist,
Pavel Machek, Todd E Brandt, Wonhong Kwon).
- turbostat updates (Len Brown) and cpupower Makefile improvement
(Sriram Raghunathan).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJU2neOAAoJEILEb/54YlRx51QP/jrv1Wb5eMaemzMksPIWI5Zn
I8IbxzToxu7wDDsrTBRv+LuyllMPrnppFOHHvB35gUYu7Y6I066s3ErwuqeFlbmy
+VicmyGMahv3yN74qg49MXzWtaJZa8hrFXn8ItujiUIcs08yELi0vBQFlZImIbTB
PdQngO88VfiOVjDvmKkYUU//9Sc9LCU0ZcdUQXSnA1oNOxuUHjiARz98R03hhSqu
BWR+7M0uaFbu6XeK+BExMXJTpKicIBZ1GAF6hWrS8V4aYg+hH1cwjf2neDAzZkcU
UkXieJlLJrCq+ZBNcy7WEhkWQkqJNWei5WYiy6eoQeQpNoliY2V+2OtSMJaKqDye
PIiMwXstyDc5rgyULN0d1UUzY6mbcUt2rOL0VN2bsFVIJ1HWCq8mr8qq689pQUYv
tcH18VQ2/6r2zW28sTO/ByWLYomklD/Y6bw2onMhGx3Knl0D8xYJKapVnTGhr5eY
d4k41ybHSWNKfXsZxdJc+RxndhPwj9rFLfvY/CZEhLcW+2pAiMarRDOPXDoUI7/l
aJpmPzy/6mPXGBnTfr6jKDSY3gXNazRIvfPbAdiGayKcHcdRM4glbSbNH0/h1Iq6
HKa8v9Fx87k1X5r4ZbhiPdABWlxuKDiM7725rfGpvjlWC3GNFOq7YTVMOuuBA225
Mu9PRZbOsZsnyNkixBpX
=zZER
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"We have a few new features this time, including a new SFI-based
cpufreq driver, a new devfreq driver for Tegra Activity Monitor, a new
devfreq class for providing its governors with raw utilization data
and a new ACPI driver for AMD SoCs.
Still, the majority of changes here are reworks of existing code to
make it more straightforward or to prepare it for implementing new
features on top of it. The primary example is the rework of ACPI
resources handling from Jiang Liu, Thomas Gleixner and Lv Zheng with
support for IOAPIC hotplug implemented on top of it, but there is
quite a number of changes of this kind in the cpufreq core, ACPICA,
ACPI EC driver, ACPI processor driver and the generic power domains
core code too.
The most active developer is Viresh Kumar with his cpufreq changes.
Specifics:
- Rework of the core ACPI resources parsing code to fix issues in it
and make using resource offsets more convenient and consolidation
of some resource-handing code in a couple of places that have grown
analagous data structures and code to cover the the same gap in the
core (Jiang Liu, Thomas Gleixner, Lv Zheng).
- ACPI-based IOAPIC hotplug support on top of the resources handling
rework (Jiang Liu, Yinghai Lu).
- ACPICA update to upstream release 20150204 including an interrupt
handling rework that allows drivers to install raw handlers for
ACPI GPEs which then become entirely responsible for the given GPE
and the ACPICA core code won't touch it (Lv Zheng, David E Box,
Octavian Purdila).
- ACPI EC driver rework to fix several concurrency issues and other
problems related to events handling on top of the ACPICA's new
support for raw GPE handlers (Lv Zheng).
- New ACPI driver for AMD SoCs analogous to the LPSS (Low-Power
Subsystem) driver for Intel chips (Ken Xue).
- Two minor fixes of the ACPI LPSS driver (Heikki Krogerus, Jarkko
Nikula).
- Two new blacklist entries for machines (Samsung 730U3E/740U3E and
510R) where the native backlight interface doesn't work correctly
while the ACPI one does (Hans de Goede).
- Rework of the ACPI processor driver's handling of idle states to
make the code more straightforward and less bloated overall (Rafael
J Wysocki).
- Assorted minor fixes related to ACPI and SFI (Andreas Ruprecht,
Andy Shevchenko, Hanjun Guo, Jan Beulich, Rafael J Wysocki, Yaowei
Bai).
- PCI core power management modification to avoid resuming (some)
runtime-suspended devices during system suspend if they are in the
right states already (Rafael J Wysocki).
- New SFI-based cpufreq driver for Intel platforms using SFI
(Srinidhi Kasagar).
- cpufreq core fixes, cleanups and simplifications (Viresh Kumar,
Doug Anderson, Wolfram Sang).
- SkyLake CPU support and other updates for the intel_pstate driver
(Kristen Carlson Accardi, Srinivas Pandruvada).
- cpufreq-dt driver cleanup (Markus Elfring).
- Init fix for the ARM big.LITTLE cpuidle driver (Sudeep Holla).
- Generic power domains core code fixes and cleanups (Ulf Hansson).
- Operating Performance Points (OPP) core code cleanups and kernel
documentation update (Nishanth Menon).
- New dabugfs interface to make the list of PM QoS constraints
available to user space (Nishanth Menon).
- New devfreq driver for Tegra Activity Monitor (Tomeu Vizoso).
- New devfreq class (devfreq_event) to provide raw utilization data
to devfreq governors (Chanwoo Choi).
- Assorted minor fixes and cleanups related to power management
(Andreas Ruprecht, Krzysztof Kozlowski, Rickard Strandqvist, Pavel
Machek, Todd E Brandt, Wonhong Kwon).
- turbostat updates (Len Brown) and cpupower Makefile improvement
(Sriram Raghunathan)"
* tag 'pm+acpi-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (151 commits)
tools/power turbostat: relax dependency on APERF_MSR
tools/power turbostat: relax dependency on invariant TSC
Merge branch 'pci/host-generic' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci into acpi-resources
tools/power turbostat: decode MSR_*_PERF_LIMIT_REASONS
tools/power turbostat: relax dependency on root permission
ACPI / video: Add disable_native_backlight quirk for Samsung 510R
ACPI / PM: Remove unneeded nested #ifdef
USB / PM: Remove unneeded #ifdef and associated dead code
intel_pstate: provide option to only use intel_pstate with HWP
ACPI / EC: Add GPE reference counting debugging messages
ACPI / EC: Add query flushing support
ACPI / EC: Refine command storm prevention support
ACPI / EC: Add command flushing support.
ACPI / EC: Introduce STARTED/STOPPED flags to replace BLOCKED flag
ACPI: add AMD ACPI2Platform device support for x86 system
ACPI / table: remove duplicate NULL check for the handler of acpi_table_parse()
ACPI / EC: Update revision due to raw handler mode.
ACPI / EC: Reduce ec_poll() by referencing the last register access timestamp.
ACPI / EC: Fix several GPE handling issues by deploying ACPI_GPE_DISPATCH_RAW_HANDLER mode.
ACPICA: Events: Enable APIs to allow interrupt/polling adaptive request based GPE handling model
...
- Reworked handling for foreign (grant mapped) pages to simplify the
code, enable a number of additional use cases and fix a number of
long-standing bugs.
- Prefer the TSC over the Xen PV clock when dom0 (and the TSC is
stable).
- Assorted other cleanup and minor bug fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJU2JC+AAoJEFxbo/MsZsTRIvAH/1lgQ0EQlxaZtEFWY8cJBzxY
dXaTMfyGQOddGYDCW0r42hhXJHeX7DWXSERSD3aW9DZOn/eYdneHq9gWRD4uPrGn
hEFQ26J4jZWR5riGXaja0LqI2gJKLZ6BhHIQciLEbY+jw4ynkNBLNRPFehuwrCsZ
WdBwJkyvXC3RErekncRl/aNhxdi4p1P6qeiaW/mo3UcSO/CFSKybOLwT65iePazg
XuY9UiTn2+qcRkm/tjx8K9heHK8SBEGNWuoTcWYF1to8mwwUfKIAc4NO2UBDXJI+
rp7Z2lVFdII15JsQ08ATh3t7xDrMWLzCX/y4jCzmF3DBXLbSWdHCQMgI7TWt5pE=
=PyJK
-----END PGP SIGNATURE-----
Merge tag 'stable/for-linus-3.20-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen features and fixes from David Vrabel:
- Reworked handling for foreign (grant mapped) pages to simplify the
code, enable a number of additional use cases and fix a number of
long-standing bugs.
- Prefer the TSC over the Xen PV clock when dom0 (and the TSC is
stable).
- Assorted other cleanup and minor bug fixes.
* tag 'stable/for-linus-3.20-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (25 commits)
xen/manage: Fix USB interaction issues when resuming
xenbus: Add proper handling of XS_ERROR from Xenbus for transactions.
xen/gntdev: provide find_special_page VMA operation
xen/gntdev: mark userspace PTEs as special on x86 PV guests
xen-blkback: safely unmap grants in case they are still in use
xen/gntdev: safely unmap grants in case they are still in use
xen/gntdev: convert priv->lock to a mutex
xen/grant-table: add a mechanism to safely unmap pages that are in use
xen-netback: use foreign page information from the pages themselves
xen: mark grant mapped pages as foreign
xen/grant-table: add helpers for allocating pages
x86/xen: require ballooned pages for grant maps
xen: remove scratch frames for ballooned pages and m2p override
xen/grant-table: pre-populate kernel unmap ops for xen_gnttab_unmap_refs()
mm: add 'foreign' alias for the 'pinned' page flag
mm: provide a find_special_page vma operation
x86/xen: cleanup arch/x86/xen/mmu.c
x86/xen: add some __init annotations in arch/x86/xen/mmu.c
x86/xen: add some __init and static annotations in arch/x86/xen/setup.c
x86/xen: use correct types for addresses in arch/x86/xen/setup.c
...
* pm-tools:
tools/power turbostat: relax dependency on APERF_MSR
tools/power turbostat: relax dependency on invariant TSC
tools/power turbostat: decode MSR_*_PERF_LIMIT_REASONS
tools/power turbostat: relax dependency on root permission
cpupower Makefile change to help run the tool without 'make install'
* pm-cpufreq: (46 commits)
intel_pstate: provide option to only use intel_pstate with HWP
cpufreq-dt: Drop unnecessary check before cpufreq_cooling_unregister() invocation
cpufreq: Create for_each_governor()
cpufreq: Create for_each_policy()
cpufreq: Drop cpufreq_disabled() check from cpufreq_cpu_{get|put}()
cpufreq: Set cpufreq_cpu_data to NULL before putting kobject
intel_pstate: honor user space min_perf_pct override on resume
intel_pstate: respect cpufreq policy request
intel_pstate: Add num_pstates to sysfs
intel_pstate: expose turbo range to sysfs
intel_pstate: Add support for SkyLake
cpufreq: stats: drop unnecessary locking
cpufreq: stats: don't update stats on false notifiers
cpufreq: stats: don't update stats from show_trans_table()
cpufreq: stats: time_in_state can't be NULL in cpufreq_stats_update()
cpufreq: stats: create sysfs group once we are ready
cpufreq: remove CPUFREQ_UPDATE_POLICY_CPU notifications
cpufreq: stats: drop 'cpu' field of struct cpufreq_stats
cpufreq: Remove (now) unused 'last_cpu' from struct cpufreq_policy
cpufreq: stats: rename 'struct cpufreq_stats' objects as 'stats'
...
Pull x86 SoC updates from Ingo Molnar:
"Various Intel Atom SoC updates (mostly to enhance debuggability), plus
an apb_timer cleanup"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: pmc_atom: Expose contents of PSS
x86: pmc_atom: Clean up init function
x86: pmc-atom: Remove unused macro
x86: pmc_atom: don%27t check for NULL twice
x86: pmc-atom: Assign debugfs node as soon as possible
x86/platform: Remove unused function from apb_timer.c
Pull x86 fpu updates from Ingo Molnar:
"Initial round of kernel_fpu_begin/end cleanups from Oleg Nesterov,
plus a cleanup from Borislav Petkov"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, fpu: Fix math_state_restore() race with kernel_fpu_begin()
x86, fpu: Don't abuse has_fpu in __kernel_fpu_begin/end()
x86, fpu: Introduce per-cpu in_kernel_fpu state
x86/fpu: Use a symbolic name for asm operand
Pull x86 asm changes from Ingo Molnar:
"The main changes in this cycle were the x86/entry and sysret
enhancements from Andy Lutomirski, see merge commits 772a9aca12 and
b57c0b5175 for details"
[ Exectutive summary: IST exceptions that interrupt user space will run
on the regular kernel stack instead of the IST stack. Which
simplifies things particularly on return to user space.
The sysret cleanup ends up simplifying the logic on when we can use
sysret vs when we have to use iret. - Linus ]
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86_64, entry: Remove the syscall exit audit and schedule optimizations
x86_64, entry: Use sysret to return to userspace when possible
x86, traps: Fix ist_enter from userspace
x86, vdso: teach 'make clean' remove vdso64 binaries
x86_64 entry: Fix RCX for ptraced syscalls
x86: entry_64.S: fold SAVE_ARGS_IRQ macro into its sole user
x86: ia32entry.S: fix wrong symbolic constant usage: R11->ARGOFFSET
x86: entry_64.S: delete unused code
x86, mce: Get rid of TIF_MCE_NOTIFY and associated mce tricks
x86, traps: Add ist_begin_non_atomic and ist_end_non_atomic
x86: Clean up current_stack_pointer
x86, traps: Track entry into and exit from IST context
x86, entry: Switch stacks on a paranoid entry from userspace
Pull x86 APIC updates from Ingo Molnar:
"Continued fallout of the conversion of the x86 IRQ code to the
hierarchical irqdomain framework: more cleanups, simplifications,
memory allocation behavior enhancements, mainly in the interrupt
remapping and APIC code"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
x86, init: Fix UP boot regression on x86_64
iommu/amd: Fix irq remapping detection logic
x86/acpi: Make acpi_[un]register_gsi_ioapic() depend on CONFIG_X86_LOCAL_APIC
x86: Consolidate boot cpu timer setup
x86/apic: Reuse apic_bsp_setup() for UP APIC setup
x86/smpboot: Sanitize uniprocessor init
x86/smpboot: Move apic init code to apic.c
init: Get rid of x86isms
x86/apic: Move apic_init_uniprocessor code
x86/smpboot: Cleanup ioapic handling
x86/apic: Sanitize ioapic handling
x86/ioapic: Add proper checks to setp/enable_IO_APIC()
x86/ioapic: Provide stub functions for IOAPIC%3Dn
x86/smpboot: Move smpboot inlines to code
x86/x2apic: Use state information for disable
x86/x2apic: Split enable and setup function
x86/x2apic: Disable x2apic from nox2apic setup
x86/x2apic: Add proper state tracking
x86/x2apic: Clarify remapping mode for x2apic enablement
x86/x2apic: Move code in conditional region
...
Pull SFI-based cpufreq driver for v3.20 from Len Brown.
* 'sfi' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux:
cpufreq: Add SFI based cpufreq driver support
SFI: fix compiler warnings
The Processor generation code-named Haswell
added MSR_{CORE | GFX | RING}_PERF_LIMIT_REASONS
to explain when and how the processor limits frequency.
turbostat -v
will now decode these bits.
Each MSR has an "Active" set of bits which describe
current conditions, and a "Logged" set of bits,
which describe what has happened since last cleared.
Turbostat currently doesn't clear the log bits.
Signed-off-by: Len Brown <len.brown@intel.com>
Some PCI device drivers assume that pci_dev->irq won't change after
calling pci_disable_device() and pci_enable_device() during suspend and
resume.
Commit c03b3b0738 ("x86, irq, mpparse: Release IOAPIC pin when
PCI device is disabled") frees PCI IRQ resources when pci_disable_device()
is called and reallocate IRQ resources when pci_enable_device() is
called again. This breaks above assumption. So commit 3eec595235
("x86, irq, PCI: Keep IRQ assignment for PCI devices during
suspend/hibernation") and 9eabc99a63 ("x86, irq, PCI: Keep IRQ
assignment for runtime power management") fix the issue by avoiding
freeing/reallocating IRQ resources during PCI device suspend/resume.
They achieve this by checking dev.power.is_prepared and
dev.power.runtime_status. PM maintainer, Rafael, then pointed out that
it's really an ugly fix which leaking PM internal state information to
IRQ subsystem.
Recently David Vrabel <david.vrabel@citrix.com> also reports an
regression in pciback driver caused by commit cffe0a2b5a ("x86, irq:
Keep balance of IOAPIC pin reference count"). Please refer to:
http://lkml.org/lkml/2015/1/14/546
So this patch refine the way to release PCI IRQ resources. Instead of
releasing PCI IRQ resources in pci_disable_device()/
pcibios_disable_device(), we now release it at driver unbinding
notification BUS_NOTIFY_UNBOUND_DRIVER. In other word, we only release
PCI IRQ resources when there's no driver bound to the PCI device, and
it keeps the assumption that pci_dev->irq won't through multiple
invocation of pci_enable_device()/pci_disable_device().
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The new hw_breakpoint bits are now ready for v3.20, merge them
into the main branch, to avoid conflicts.
Conflicts:
tools/perf/Documentation/perf-record.txt
Signed-off-by: Ingo Molnar <mingo@kernel.org>
of this is an IST rework. When an IST exception interrupts user
space, we will handle it on the per-thread kernel stack instead of
on the IST stack. This sounds messy, but it actually simplifies the
IST entry/exit code, because it eliminates some ugly games we used
to play in order to handle rescheduling, signal delivery, etc on the
way out of an IST exception.
The IST rework introduces proper context tracking to IST exception
handlers. I haven't seen any bug reports, but the old code could
have incorrectly treated an IST exception handler as an RCU extended
quiescent state.
The memory failure change (included in this pull request with
Borislav and Tony's permission) eliminates a bunch of code that
is no longer needed now that user memory failure handlers are
called in process context.
Finally, this includes a few on Denys' uncontroversial and Obviously
Correct (tm) cleanups.
The IST and memory failure changes have been in -next for a while.
LKML references:
IST rework:
http://lkml.kernel.org/r/cover.1416604491.git.luto@amacapital.net
Memory failure change:
http://lkml.kernel.org/r/54ab2ffa301102cd6e@agluck-desk.sc.intel.com
Denys' cleanups:
http://lkml.kernel.org/r/1420927210-19738-1-git-send-email-dvlasenk@redhat.com
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUtvkFAAoJEK9N98ZeDfrkcfsIAJxZ0UBUCEDvulbqgk/iPGOa
fIpKLMowS7CpKtw6Wdc/YvAIkeHXWm1vU44Hj0TrjSrXCgVF8yCngs/xlXtOjoa1
dosXQqgqVJJ+hyui7chAEWyalLW7bEO8raq/6snhiMrhiuEkVKpEr7Fer4FVVCZL
4VALmNQQsbV+Qq4pXIhuagZC0Nt/XKi/+/cKvhS4p//q1F/TbHTz0FpDUrh0jPMh
18WFy0jWgxdkMRnSp/wJhekvdXX6PwUy5BdES9fjw8LQJZxxFpqN3Fe1kgfyzV0k
yuvEHw1hPt2aBGj3q69wQvDVyyn4OqMpRDBhk4S+GJYmVh7mFyFMN4BDMEy/EY8=
=LXVl
-----END PGP SIGNATURE-----
Merge tag 'pr-20150114-x86-entry' of git://git.kernel.org/pub/scm/linux/kernel/git/luto/linux into x86/asm
Pull x86/entry enhancements from Andy Lutomirski:
" This is my accumulated x86 entry work, part 1, for 3.20. The meat
of this is an IST rework. When an IST exception interrupts user
space, we will handle it on the per-thread kernel stack instead of
on the IST stack. This sounds messy, but it actually simplifies the
IST entry/exit code, because it eliminates some ugly games we used
to play in order to handle rescheduling, signal delivery, etc on the
way out of an IST exception.
The IST rework introduces proper context tracking to IST exception
handlers. I haven't seen any bug reports, but the old code could
have incorrectly treated an IST exception handler as an RCU extended
quiescent state.
The memory failure change (included in this pull request with
Borislav and Tony's permission) eliminates a bunch of code that
is no longer needed now that user memory failure handlers are
called in process context.
Finally, this includes a few on Denys' uncontroversial and Obviously
Correct (tm) cleanups.
The IST and memory failure changes have been in -next for a while.
LKML references:
IST rework:
http://lkml.kernel.org/r/cover.1416604491.git.luto@amacapital.net
Memory failure change:
http://lkml.kernel.org/r/54ab2ffa301102cd6e@agluck-desk.sc.intel.com
Denys' cleanups:
http://lkml.kernel.org/r/1420927210-19738-1-git-send-email-dvlasenk@redhat.com
"
This tree semantically depends on and is based on the following RCU commit:
734d168013 ("rcu: Make rcu_nmi_enter() handle nesting")
... and for that reason won't be pushed upstream before the RCU bits hit Linus's tree.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scratch frame mappings for ballooned pages and the m2p override
are broken. Remove them in preparation for replacing them with
simpler mechanisms that works.
The scratch pages did not ensure that the page was not in use. In
particular, the foreign page could still be in use by hardware. If
the guest reused the frame the hardware could read or write that
frame.
The m2p override did not handle the same frame being granted by two
different grant references. Trying an M2P override lookup in this
case is impossible.
With the m2p override removed, the grant map/unmap for the kernel
mappings (for x86 PV) can be easily batched in
set_foreign_p2m_mapping() and clear_foreign_p2m_mapping().
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
When unmapping grants, instead of converting the kernel map ops to
unmap ops on the fly, pre-populate the set of unmap ops.
This allows the grant unmap for the kernel mappings to be trivially
batched in the future.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
The Witcher 2 did something like this to allocate a TLS segment index:
struct user_desc u_info;
bzero(&u_info, sizeof(u_info));
u_info.entry_number = (uint32_t)-1;
syscall(SYS_set_thread_area, &u_info);
Strictly speaking, this code was never correct. It should have set
read_exec_only and seg_not_present to 1 to indicate that it wanted
to find a free slot without putting anything there, or it should
have put something sensible in the TLS slot if it wanted to allocate
a TLS entry for real. The actual effect of this code was to
allocate a bogus segment that could be used to exploit espfix.
The set_thread_area hardening patches changed the behavior, causing
set_thread_area to return -EINVAL and crashing the game.
This changes set_thread_area to interpret this as a request to find
a free slot and to leave it empty, which isn't *quite* what the game
expects but should be close enough to keep it working. In
particular, using the code above to allocate two segments will
allocate the same segment both times.
According to FrostbittenKing on Github, this fixes The Witcher 2.
If this somehow still causes problems, we could instead allocate
a limit==0 32-bit data segment, but that seems rather ugly to me.
Fixes: 41bdc78544 x86/tls: Validate TLS entries to protect espfix
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: stable@vger.kernel.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/0cb251abe1ff0958b8e468a9a9a905b80ae3a746.1421954363.git.luto@amacapital.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The 3.19 merge window saw some TLB modifications merged which caused a
performance regression. They were fixed in commit 045bbb9fa.
Once that fix was applied, I also noticed that there was a small
but intermittent regression still present. It was not present
consistently enough to bisect reliably, but I'm fairly confident
that it came from (my own) MPX patches. The source was reading
a relatively unused field in the mm_struct via arch_unmap.
I also noted that this code was in the main instruction flow of
do_munmap() and probably had more icache impact than we want.
This patch does two things:
1. Adds a static (via Kconfig) and dynamic (via cpuid) check
for MPX with cpu_feature_enabled(). This keeps us from
reading that cacheline in the mm and trades it for a check
of the global CPUID variables at least on CPUs without MPX.
2. Adds an unlikely() to ensure that the MPX call ends up out
of the main instruction flow in do_munmap(). I've added
a detailed comment about why this was done and why we want
it even on systems where MPX is present.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: luto@amacapital.net
Cc: Dave Hansen <dave@sr71.net>
Link: http://lkml.kernel.org/r/20150108223021.AEEAB987@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Extend apic_bsp_setup() so the same code flow can be used for
APIC_init_uniprocessor().
Folded Jiangs fix to provide proper ordering of the UP setup.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20150115211704.084765674@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We better provide proper functions which implement the required code
flow in the apic code rather than letting the smpboot code open code
it. That allows to make more functions static and confines the APIC
functionality to apic.c where it belongs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20150115211703.907616730@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To avoid lots of ifdeffery provide proper stubs for setup_IO_APIC(),
enable_IO_APIC() and setup_ioapic_dest().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20150115211703.397170414@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point for a separate header file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20150115211703.304126687@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
enable_x2apic() is a convoluted unreadable mess because it is used for
both enablement in early boot and for setup in cpu_init().
Split the code into x2apic_enable() for enablement and x2apic_setup()
for setup of (secondary cpus). Make use of the new state tracking to
simplify the logic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20150115211703.129287153@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no point in postponing the hardware disablement of x2apic. It
can be disabled right away in the nox2apic setup function.
Disable it right away and set the state to DISABLED . This allows to
remove all the nox2apic conditionals all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20150115211703.051214090@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in having try_to_enable_x2apic() outside of the
CONFIG_X86_X2APIC section and having inline functions and more ifdefs
to deal with it. Move the code into the existing ifdef section and
remove the inline cruft.
Fixup the printk about not enabling interrupt remapping as suggested
by Boris.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20150115211702.795388613@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in delaying the x2apic detection for the CONFIG_X86_X2APIC=n
case to enable_IR_x2apic(). We rather detect that before we try to
setup anything there.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20150115211702.702479404@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The x2apic_preenabled flag is just a horrible hack and if X2APIC
support is disabled it does not reflect the actual hardware
state. Check the hardware instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20150115211702.541280622@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in having a static variable around which is always 0. Let the
compiler optimize code out if disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20150115211702.363274310@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
enable_IR_x2apic() grew a open coded x2apic detection. Implement a
proper helper function which shares the code with the already existing
x2apic_enabled().
Made it use rdmsrl_safe as suggested by Boris.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20150115211702.285038186@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
math_state_restore() can race with kernel_fpu_begin() if irq comes
right after __thread_fpu_begin(), __save_init_fpu() will overwrite
fpu->state we are going to restore.
Add 2 simple helpers, kernel_fpu_disable() and kernel_fpu_enable()
which simply set/clear in_kernel_fpu, and change math_state_restore()
to exclude kernel_fpu_begin() in between.
Alternatively we could use local_irq_save/restore, but probably these
new helpers can have more users.
Perhaps they should disable/enable preemption themselves, in this case
we can remove preempt_disable() in __restore_xstate_sig().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: matt.fleming@intel.com
Cc: bp@suse.de
Cc: pbonzini@redhat.com
Cc: luto@amacapital.net
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Link: http://lkml.kernel.org/r/20150115192028.GD27332@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
interrupted_kernel_fpu_idle() tries to detect if kernel_fpu_begin()
is safe or not. In particular it should obviously deny the nested
kernel_fpu_begin() and this logic looks very confusing.
If use_eager_fpu() == T we rely on a) __thread_has_fpu() check in
interrupted_kernel_fpu_idle(), and b) on the fact that _begin() does
__thread_clear_has_fpu().
Otherwise we demand that the interrupted task has no FPU if it is in
kernel mode, this works because __kernel_fpu_begin() does clts() and
interrupted_kernel_fpu_idle() checks X86_CR0_TS.
Add the per-cpu "bool in_kernel_fpu" variable, and change this code
to check/set/clear it. This allows to do more cleanups and fixes, see
the next changes.
The patch also moves WARN_ON_ONCE() under preempt_disable() just to
make this_cpu_read() look better, this is not really needed. And in
fact I think we should move it into __kernel_fpu_begin().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: matt.fleming@intel.com
Cc: bp@suse.de
Cc: pbonzini@redhat.com
Cc: luto@amacapital.net
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Link: http://lkml.kernel.org/r/20150115191943.GB27332@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The PSS register reflects the power state of each island on SoC. It would be
useful to know which of the islands is on or off at the momemnt.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Aubrey Li <aubrey.li@linux.intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Kumar P. Mahesh <mahesh.kumar.p@intel.com>
Link: http://lkml.kernel.org/r/1421253575-22509-6-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Xen overrides __acpi_register_gsi and leaves __acpi_unregister_gsi as is.
That means, an IRQ allocated by acpi_register_gsi_xen_hvm() or
acpi_register_gsi_xen() will be freed by acpi_unregister_gsi_ioapic(),
which may cause undesired effects. So override __acpi_unregister_gsi to
NULL for safety.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Cc: Tony Luck <tony.luck@intel.com>
Cc: xen-devel@lists.xenproject.org
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Graeme Gregory <graeme.gregory@linaro.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Link: http://lkml.kernel.org/r/1421720467-7709-4-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Simplify irq_remapping code by killing irq_remapping_supported() and
related interfaces.
Joerg posted a similar patch at https://lkml.org/lkml/2014/12/15/490,
so assume an signed-off from Joerg.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: iommu@lists.linux-foundation.org
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Rientjes <rientjes@google.com>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Oren Twaig <oren@scalemp.com>
Link: http://lkml.kernel.org/r/1420615903-28253-14-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
enable_IR_x2apic() calls setup_irq_remapping_ops() which by default
installs the intel dmar remapping ops and then calls the amd iommu irq
remapping prepare callback to figure out whether we are running on an
AMD machine with irq remapping hardware.
Right after that it calls irq_remapping_prepare() which pointlessly
checks:
if (!remap_ops || !remap_ops->prepare)
return -ENODEV;
and then calls
remap_ops->prepare()
which is silly in the AMD case as it got called from
setup_irq_remapping_ops() already a few microseconds ago.
Simplify this and just collapse everything into
irq_remapping_prepare().
The irq_remapping_prepare() remains still silly as it assigns blindly
the intel ops, but that's not scope of this patch.
The scope here is to move the preperatory work, i.e. memory
allocations out of the atomic section which is required to enable irq
remapping.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Acked-and-tested-by: Joerg Roedel <joro@8bytes.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: iommu@lists.linux-foundation.org
Cc: Joerg Roedel <jroedel@suse.de>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Oren Twaig <oren@scalemp.com>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20141205084147.232633738@linutronix.de
Link: http://lkml.kernel.org/r/1420615903-28253-2-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A define, two macros and an unreferenced bit of assembly are gone.
Acked-by: Borislav Petkov <bp@suse.de>
CC: Linus Torvalds <torvalds@linux-foundation.org>
CC: Oleg Nesterov <oleg@redhat.com>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Andy Lutomirski <luto@amacapital.net>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: X86 ML <x86@kernel.org>
CC: Alexei Starovoitov <ast@plumgrid.com>
CC: Will Drewry <wad@chromium.org>
CC: Kees Cook <keescook@chromium.org>
CC: linux-kernel@vger.kernel.org
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
We now switch to the kernel stack when a machine check interrupts
during user mode. This means that we can perform recovery actions
in the tail of do_machine_check()
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
In some IST handlers, if the interrupt came from user mode,
we can safely enable preemption. Add helpers to do it safely.
This is intended to be used my the memory failure code in
do_machine_check.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
There's no good reason for it to be a macro, and x86_64 will want to
use it, so it should be in a header.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
We currently pretend that IST context is like standard exception
context, but this is incorrect. IST entries from userspace are like
standard exceptions except that they use per-cpu stacks, so they are
atomic. IST entries from kernel space are like NMIs from RCU's
perspective -- they are not quiescent states even if they
interrupted the kernel during a quiescent state.
Add and use ist_enter and ist_exit to track IST context. Even
though x86_32 has no IST stacks, we track these interrupts the same
way.
This fixes two issues:
- Scheduling from an IST interrupt handler will now warn. It would
previously appear to work as long as we got lucky and nothing
overwrote the stack frame. (I don't know of any bugs in this
that would trigger the warning, but it's good to be on the safe
side.)
- RCU handling in IST context was dangerous. As far as I know,
only machine checks were likely to trigger this, but it's good to
be on the safe side.
Note that the machine check handlers appears to have been missing
any context tracking at all before this patch.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
safe (it just adds a volatile).
I don't think it fixes an actual bug (the __getcpu calls in the
pvclock code may not have been needed in the first place), but
discussion on that point is ongoing.
It also fixes a big performance issue in 3.18 and earlier in which
the lsl instructions in vclock_gettime got hoisted so far up the
function that they happened even when the function they were in was
never called. n 3.19, the performance issue seems to be gone due to
the whims of my compiler and some interaction with a branch that's
now gone.
I'll hopefully have a much bigger overhaul of the pvclock code
for 3.20, but it needs careful review.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUmduGAAoJEK9N98ZeDfrk874H/RkkP+y6/DmdKVR1dTOUQW4u
f1wPU0/sc5xywGjNcfR3XwUuyBJyd3s81WVaE5XXHfCHnbjG2Z4CNTqga27hL1D0
io01Q2s3dh1Y5c0cccVmJmyw//YVzMUOzGTNM9R0NKQNXmYUz6jgQaqk+wWORdD6
JXCU3/LI5VT0fjNPLj1M9l59eC2Qg/V4GqY2xRJ1AfbwkX1CFZTcWUPb+4FScVYv
9gds/vOoFg54MypVJD4SeIC9I8U0qcim9gV7gGFdzyDNCXS5J4P+02sEOFNu8oYy
HVK1B0LXhswT08Ho1yRxXUhFxpqEGeGJvTlDTvwy+r/yuKE2AVBtlhLQBqMPhnY=
=u3d2
-----END PGP SIGNATURE-----
Merge tag 'pr-20141223-x86-vdso' of git://git.kernel.org/pub/scm/linux/kernel/git/luto/linux into x86/urgent
Pull VDSO fix from Andy Lutomirski:
"This is hopefully the last vdso fix for 3.19. It should be very
safe (it just adds a volatile).
I don't think it fixes an actual bug (the __getcpu calls in the
pvclock code may not have been needed in the first place), but
discussion on that point is ongoing.
It also fixes a big performance issue in 3.18 and earlier in which
the lsl instructions in vclock_gettime got hoisted so far up the
function that they happened even when the function they were in was
never called. n 3.19, the performance issue seems to be gone due to
the whims of my compiler and some interaction with a branch that's
now gone.
I'll hopefully have a much bigger overhaul of the pvclock code
for 3.20, but it needs careful review."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In Linux 3.18 and below, GCC hoists the lsl instructions in the
pvclock code all the way to the beginning of __vdso_clock_gettime,
slowing the non-paravirt case significantly. For unknown reasons,
presumably related to the removal of a branch, the performance issue
is gone as of
e76b027e64 x86,vdso: Use LSL unconditionally for vgetcpu
but I don't trust GCC enough to expect the problem to stay fixed.
There should be no correctness issue, because the __getcpu calls in
__vdso_vlock_gettime were never necessary in the first place.
Note to stable maintainers: In 3.18 and below, depending on
configuration, gcc 4.9.2 generates code like this:
9c3: 44 0f 03 e8 lsl %ax,%r13d
9c7: 45 89 eb mov %r13d,%r11d
9ca: 0f 03 d8 lsl %ax,%ebx
This patch won't apply as is to any released kernel, but I'll send a
trivial backported version if needed.
Fixes: 51c19b4f59 x86: vdso: pvclock gettime support
Cc: stable@vger.kernel.org # 3.8+
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Fix up the else-case in fpu_fxsave() which seems like it has
been overlooked. Correct comment style in restore_fpu_checking()
while at it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1419170543-11393-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com
ACCESS_ONCE might fail with specific compilers for non-scalar accesses.
Here is a set of patches to tackle that problem.
The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data structure
is larger than the machine word size memcpy is used and a warning is emitted.
The next patches fix up several in-tree users of ACCESS_ONCE on non-scalar
types.
This merge does not yet contain a patch that forces ACCESS_ONCE to work only
on scalar types. This is targetted for the next merge window as Linux next
already contains new offenders regarding ACCESS_ONCE vs. non-scalar types.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJUkrVGAAoJEBF7vIC1phx8stkP/2LmN5y6LOseoEW06xa5MX4m
cbIKsZNtsGHl7EDcTzzuWs6Sq5/Cj7V3yzeBF7QGbUKOqvFWU3jvpUBCCfjMg37C
77/Vf0ZPrxTXXxeJ4Ykdy2CGvuMtuYY9TWkrRNKmLU0xex7lGblEzCt9z6+mZviw
26/DN8ctjkHRvIUAi+7RfQBBc3oSMYAC1mzxYKBAsAFLV+LyFmsGU/4iofZMAsdt
XFyVXlrLn0Bjx/MeceGkOlMDiVx4FnfccfFaD4hhuTLBJXWitkUK/MRa4JBiXWzH
agY8942A8/j9wkI2DFp/pqZYqA/sTXLndyOWlhE//ZSti0n0BSJaOx3S27rTLkAc
5VmZEVyIrS3hyOpyyAi0sSoPkDnjeCHmQg9Rqn34/poKLd7JDrW2UkERNCf/T3eh
GI2rbhAlZz3v5mIShn8RrxzslWYmOObpMr3HYNUdRk8YUfTf6d6aZ3txHp2nP4mD
VBAEzsvP9rcVT2caVhU2dnBzeaZAj3zeDxBtjcb3X2osY9tI7qgLc9Fa/fWKgILk
2evkLcctsae2mlLNGHyaK3Dm/ZmYJv+57MyaQQEZNfZZgeB1y4k0DkxH4w1CFmCi
s8XlH5voEHgnyjSQXXgc/PNVlkPAKr78ZyTiAfiKmh8rpe41/W4hGcgao7L9Lgiu
SI0uSwKibuZt4dHGxQuG
=IQ5o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux
Pull ACCESS_ONCE cleanup preparation from Christian Borntraeger:
"kernel: Provide READ_ONCE and ASSIGN_ONCE
As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com
ACCESS_ONCE might fail with specific compilers for non-scalar
accesses.
Here is a set of patches to tackle that problem.
The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data
structure is larger than the machine word size memcpy is used and a
warning is emitted. The next patches fix up several in-tree users of
ACCESS_ONCE on non-scalar types.
This does not yet contain a patch that forces ACCESS_ONCE to work only
on scalar types. This is targetted for the next merge window as Linux
next already contains new offenders regarding ACCESS_ONCE vs.
non-scalar types"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux:
s390/kvm: REPLACE barrier fixup with READ_ONCE
arm/spinlock: Replace ACCESS_ONCE with READ_ONCE
arm64/spinlock: Replace ACCESS_ONCE READ_ONCE
mips/gup: Replace ACCESS_ONCE with READ_ONCE
x86/gup: Replace ACCESS_ONCE with READ_ONCE
x86/spinlock: Replace ACCESS_ONCE with READ_ONCE
mm: replace ACCESS_ONCE with READ_ONCE or barriers
kernel: Provide READ_ONCE and ASSIGN_ONCE
This adds the SFI based cpu freq driver for some of the Intel's
Silvermont based Atom architectures like Z34xx and Z35xx.
Signed-off-by: Rudramuni, Vishwesh M <vishwesh.m.rudramuni@intel.com>
Signed-off-by: Srinidhi Kasagar <srinidhi.kasagar@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Len Brown <len.brown@intel.com>
Pull x86 apic updates from Thomas Gleixner:
"After stopping the full x86/apic branch, I took some time to go
through the first block of patches again, which are mostly cleanups
and preparatory work for the irqdomain conversion and ioapic hotplug
support.
Unfortunaly one of the real problematic commits was right at the
beginning, so I rebased this portion of the pending patches without
the offenders.
It would be great to get this into 3.19. That makes reworking the
problematic parts simpler. The usual tip testing did not unearth any
issues and it is fully bisectible now.
I'm pretty confident that this wont affect the calmness of the xmas
season.
Changes:
- Split the convoluted io_apic.c code into domain specific parts
(vector, ioapic, msi, htirq)
- Introduce proper helper functions to retrieve irq specific data
instead of open coded dereferencing of pointers
- Preparatory work for ioapic hotplug and irqdomain conversion
- Removal of the non functional pci-ioapic driver
- Removal of unused irq entry stubs
- Make native_smp_prepare_cpus() preemtible to avoid GFP_ATOMIC
allocations for everything which is called from there.
- Small cleanups and fixes"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
iommu/amd: Use helpers to access irq_cfg data structure associated with IRQ
iommu/vt-d: Use helpers to access irq_cfg data structure associated with IRQ
x86: irq_remapping: Use helpers to access irq_cfg data structure associated with IRQ
x86, irq: Use helpers to access irq_cfg data structure associated with IRQ
x86, irq: Make MSI and HT_IRQ indepenent of X86_IO_APIC
x86, irq: Move IRQ initialization routines from io_apic.c into vector.c
x86, irq: Move IOAPIC related declarations from hw_irq.h into io_apic.h
x86, irq: Move HT IRQ related code from io_apic.c into htirq.c
x86, irq: Move PCI MSI related code from io_apic.c into msi.c
x86, irq: Replace printk(KERN_LVL) with pr_lvl() utilities
x86, irq: Make UP version of irq_complete_move() an inline stub
x86, irq: Move local APIC related code from io_apic.c into vector.c
x86, irq: Introduce helpers to access struct irq_cfg
x86, irq: Protect __clear_irq_vector() with vector_lock
x86, irq: Rename local APIC related functions in io_apic.c as apic_xxx()
x86, irq: Refine hw_irq.h to prepare for irqdomain support
x86, irq: Convert irq_2_pin list to generic list
x86, irq: Kill useless parameter 'irq_attr' of IO_APIC_get_PCI_irq_vector()
x86, irq, acpi: Get rid of special handling of GSI for ACPI SCI
x86, irq: Introduce helper to check whether an IOAPIC has been registered
...
Pull x86 fix from Ingo Molnar:
"This contains a single TLS ABI validation fix from Andy Lutomirski"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tls: Don't validate lm in set_thread_area() after all
- spring cleaning: removed support for IA64, and for hardware-assisted
virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken because
the (non-KVM) XSAVES patches inadvertently changed the KVM userspace
ABI whenever XSAVES was enabled; hence, this part is going to stable.
Guest support is just a matter of exposing the feature and CPUID leaves
support.
Right now KVM is broken for PPC BookE in your tree (doesn't compile).
I'll reply to the pull request with a patch, please apply it either
before the pull request or in the merge commit, in order to preserve
bisectability somewhat.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJUkpg+AAoJEL/70l94x66DUmoH/jzXYkptSW9NGgm79KqxGJlD
lzLnLBkitVvx++Mz5YBhdJEhKKLUlCtifFT1zPJQ/pthQhIRSaaAwZyNGgUs5w5x
yMGKHiPQFyZRbmQtZhCInW0BftJoYHHciO3nUfHCZnp34My9MP2D55W7/z+fYFfQ
DuqBSE9ThyZJtZ4zh8NRA9fCOeuqwVYRyoBs820Wbsh4cpIBoIK63Dg7k+CLE+ZV
MZa/mRL6bAfsn9W5bnOUAgHJ3SPznnWbO3/g0aV+roL/5pffblprJx9lKNR08xUM
6hDFLop2gDehDJesDkY/o8Ckp1hEouvfsVpSShry4vcgtn0hgh2O5/6Orbmj6vE=
=Zwq1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"3.19 changes for KVM:
- spring cleaning: removed support for IA64, and for hardware-
assisted virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken
because the (non-KVM) XSAVES patches inadvertently changed the KVM
userspace ABI whenever XSAVES was enabled; hence, this part is
going to stable. Guest support is just a matter of exposing the
feature and CPUID leaves support"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (179 commits)
KVM: move APIC types to arch/x86/
KVM: PPC: Book3S: Enable in-kernel XICS emulation by default
KVM: PPC: Book3S HV: Improve H_CONFER implementation
KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register
KVM: PPC: Book3S HV: Remove code for PPC970 processors
KVM: PPC: Book3S HV: Tracepoints for KVM HV guest interactions
KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
arch: powerpc: kvm: book3s_paired_singles.c: Remove unused function
arch: powerpc: kvm: book3s_pr.c: Remove unused function
arch: powerpc: kvm: book3s.c: Remove some unused functions
arch: powerpc: kvm: book3s_32_mmu.c: Remove unused function
KVM: PPC: Book3S HV: Check wait conditions before sleeping in kvmppc_vcore_blocked
KVM: PPC: Book3S HV: ptes are big endian
KVM: PPC: Book3S HV: Fix inaccuracies in ICP emulation for H_IPI
KVM: PPC: Book3S HV: Fix KSM memory corruption
KVM: PPC: Book3S HV: Fix an issue where guest is paused on receiving HMI
KVM: PPC: Book3S HV: Fix computation of tlbie operand
KVM: PPC: Book3S HV: Add missing HPTE unlock
KVM: PPC: BookE: Improve irq inject tracepoint
arm/arm64: KVM: Require in-kernel vgic for the arch timers
...
It turns out that there's a lurking ABI issue. GCC, when
compiling this in a 32-bit program:
struct user_desc desc = {
.entry_number = idx,
.base_addr = base,
.limit = 0xfffff,
.seg_32bit = 1,
.contents = 0, /* Data, grow-up */
.read_exec_only = 0,
.limit_in_pages = 1,
.seg_not_present = 0,
.useable = 0,
};
will leave .lm uninitialized. This means that anything in the
kernel that reads user_desc.lm for 32-bit tasks is unreliable.
Revert the .lm check in set_thread_area(). The value never did
anything in the first place.
Fixes: 0e58af4e1d ("x86/tls: Disallow unusual TLS segments")
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org # Only if 0e58af4e1d is backported
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/d7875b60e28c512f6a6fc0baf5714d58e7eaadbb.1418856405.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACCESS_ONCE does not work reliably on non-scalar types. For
example gcc 4.6 and 4.7 might remove the volatile tag for such
accesses during the SRA (scalar replacement of aggregates) step
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145)
Change the spinlock code to replace ACCESS_ONCE with READ_ONCE.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>