__noinline is pretty frequently used, especially with BPF subprograms, so add
them along the __always_inline, for user convenience and completeness.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200820231250.1293069-4-andriin@fb.com
Factor out common ELF operations done throughout the libbpf. This simplifies
usage across multiple places in libbpf, as well as hide error reporting from
higher-level functions and make error logging more consistent.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200820231250.1293069-3-andriin@fb.com
There is no need to re-build BPF object files if any of the sources of libbpf
change. So record more precise dependency only on libbpf/bpf_*.h headers. This
eliminates unnecessary re-builds.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200820231250.1293069-2-andriin@fb.com
Lorenz Bauer says:
====================
We're currently building a control plane for our BPF socket dispatch
work. As part of that, we have a need to create a copy of an existing
sockhash, to allow us to change the keys. I previously proposed allowing
privileged userspace to look up sockets, which doesn't work due to
security concerns (see [1]).
In follow up discussions during BPF office hours we identified bpf_iter
as a possible solution: instead of accessing sockets from user space
we can iterate the source sockhash, and insert the values into a new
map. Enabling this requires two pieces: the ability to iterate
sockmap and sockhash, as well as being able to call map_update_elem
from BPF.
This patch set implements the latter: it's now possible to update
sockmap from BPF context. As a next step, we can implement bpf_iter
for sockmap.
===
I've done some more fixups, and audited the safe contexts more
thoroughly. As a result I'm removing CGROUP_SKB, SK_MSG and SK_SKB
for now.
Changes in v3:
- Use CHECK as much as possible (Yonghong)
- Reject ARG_PTR_TO_MAP_VALUE_OR_NULL for sockmap (Yonghong)
- Remove CGROUP_SKB, SK_MSG, SK_SKB from safe contexts
- Test that the verifier rejects update from unsafe context
Changes in v2:
- Fix warning in patch #2 (Jakub K)
- Renamed override_map_arg_type (John)
- Only allow updating sockmap from known safe contexts (John)
- Use __s64 for sockmap updates from user space (Yonghong)
- Various small test fixes around test macros and such (Yonghong)
Thank your for your reviews!
1: https://lore.kernel.org/bpf/20200310174711.7490-1-lmb@cloudflare.com/
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a test which copies a socket from a sockmap into another sockmap
or sockhash. This excercises bpf_map_update_elem support from BPF
context. Compare the socket cookies from source and destination to
ensure that the copy succeeded.
Also check that the verifier rejects map_update from unsafe contexts.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-7-lmb@cloudflare.com
Allow calling bpf_map_update_elem on sockmap and sockhash from a BPF
context. The synchronization required for this is a bit fiddly: we
need to prevent the socket from changing its state while we add it
to the sockmap, since we rely on getting a callback via
sk_prot->unhash. However, we can't just lock_sock like in
sock_map_sk_acquire because that might sleep. So instead we disable
softirq processing and use bh_lock_sock to prevent further
modification.
Yet, this is still not enough. BPF can be called in contexts where
the current CPU might have locked a socket. If the BPF can get
a hold of such a socket, inserting it into a sockmap would lead to
a deadlock. One straight forward example are sock_ops programs that
have ctx->sk, but the same problem exists for kprobes, etc.
We deal with this by allowing sockmap updates only from known safe
contexts. Improper usage is rejected by the verifier.
I've audited the enabled contexts to make sure they can't run in
a locked context. It's possible that CGROUP_SKB and others are
safe as well, but the auditing here is much more difficult. In
any case, we can extend the safe contexts when the need arises.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-6-lmb@cloudflare.com
The verifier assumes that map values are simple blobs of memory, and
therefore treats ARG_PTR_TO_MAP_VALUE, etc. as such. However, there are
map types where this isn't true. For example, sockmap and sockhash store
sockets. In general this isn't a big problem: we can just
write helpers that explicitly requests PTR_TO_SOCKET instead of
ARG_PTR_TO_MAP_VALUE.
The one exception are the standard map helpers like map_update_elem,
map_lookup_elem, etc. Here it would be nice we could overload the
function prototype for different kinds of maps. Unfortunately, this
isn't entirely straight forward:
We only know the type of the map once we have resolved meta->map_ptr
in check_func_arg. This means we can't swap out the prototype
in check_helper_call until we're half way through the function.
Instead, modify check_func_arg to treat ARG_PTR_TO_MAP_VALUE to
mean "the native type for the map" instead of "pointer to memory"
for sockmap and sockhash. This means we don't have to modify the
function prototype at all
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-5-lmb@cloudflare.com
Don't go via map->ops to call sock_map_update_elem, since we know
what function to call in bpf_map_update_value. Since we currently
don't allow calling map_update_elem from BPF context, we can remove
ops->map_update_elem and rename the function to sock_map_update_elem_sys.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-4-lmb@cloudflare.com
Merge the two very similar functions sock_map_update_elem and
sock_hash_update_elem into one.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-3-lmb@cloudflare.com
Initializing psock->sk_proto and other saved callbacks is only
done in sk_psock_update_proto, after sk_psock_init has returned.
The logic for this is difficult to follow, and needlessly complex.
Instead, initialize psock->sk_proto whenever we allocate a new
psock. Additionally, assert the following invariants:
* The SK has no ULP: ULP does it's own finagling of sk->sk_prot
* sk_user_data is unused: we need it to store sk_psock
Protect our access to sk_user_data with sk_callback_lock, which
is what other users like reuseport arrays, etc. do.
The result is that an sk_psock is always fully initialized, and
that psock->sk_proto is always the "original" struct proto.
The latter allows us to use psock->sk_proto when initializing
IPv6 TCP / UDP callbacks for sockmap.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-2-lmb@cloudflare.com
Add a set of APIs to perf_buffer manage to allow applications to integrate
perf buffer polling into existing epoll-based infrastructure. One example is
applications using libevent already and wanting to plug perf_buffer polling,
instead of relying on perf_buffer__poll() and waste an extra thread to do it.
But perf_buffer is still extremely useful to set up and consume perf buffer
rings even for such use cases.
So to accomodate such new use cases, add three new APIs:
- perf_buffer__buffer_cnt() returns number of per-CPU buffers maintained by
given instance of perf_buffer manager;
- perf_buffer__buffer_fd() returns FD of perf_event corresponding to
a specified per-CPU buffer; this FD is then polled independently;
- perf_buffer__consume_buffer() consumes data from single per-CPU buffer,
identified by its slot index.
To support a simpler, but less efficient, way to integrate perf_buffer into
external polling logic, also expose underlying epoll FD through
perf_buffer__epoll_fd() API. It will need to be followed by
perf_buffer__poll(), wasting extra syscall, or perf_buffer__consume(), wasting
CPU to iterate buffers with no data. But could be simpler and more convenient
for some cases.
These APIs allow for great flexiblity, but do not sacrifice general usability
of perf_buffer.
Also exercise and check new APIs in perf_buffer selftest.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/20200821165927.849538-1-andriin@fb.com
Yonghong Song says:
====================
"link" has been an important concept for bpf ecosystem to connect
bpf program with other properties. Currently, the information related
information can be queried from userspace through bpf command
BPF_LINK_GET_NEXT_ID, BPF_LINK_GET_FD_BY_ID and BPF_OBJ_GET_INFO_BY_FD.
The information is also available by "cating" /proc/<pid>/fdinfo/<link_fd>.
Raw_tracepoint, tracing, cgroup, netns and xdp links are already
supported in the kernel and bpftool.
This patch added support for bpf iterator. Patch #1 added generic support
for link querying interface. Patch #2 implemented callback functions
for map element bpf iterators. Patch #3 added bpftool support.
Changelogs:
v3 -> v4:
. return target specific link_info even if target_name buffer
is empty. (Andrii)
v2 -> v3:
. remove extra '\t' when fdinfo prints map_id to make parsing
consistent. (Andrii)
v1 -> v2:
. fix checkpatch.pl warnings. (Jakub)
====================
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The link query for bpf iterators is implemented.
Besides being shown to the user what bpf iterator
the link represents, the target_name is also used
to filter out what additional information should be
printed out, e.g., whether map_id should be shown or not.
The following is an example of bpf_iter link dump,
plain output or pretty output.
$ bpftool link show
11: iter prog 59 target_name task
pids test_progs(1749)
34: iter prog 173 target_name bpf_map_elem map_id 127
pids test_progs_1(1753)
$ bpftool -p link show
[{
"id": 11,
"type": "iter",
"prog_id": 59,
"target_name": "task",
"pids": [{
"pid": 1749,
"comm": "test_progs"
}
]
},{
"id": 34,
"type": "iter",
"prog_id": 173,
"target_name": "bpf_map_elem",
"map_id": 127,
"pids": [{
"pid": 1753,
"comm": "test_progs_1"
}
]
}
]
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200821184420.574430-1-yhs@fb.com
For bpf_map_elem and bpf_sk_local_storage bpf iterators,
additional map_id should be shown for fdinfo and
userspace query. For example, the following is for
a bpf_map_elem iterator.
$ cat /proc/1753/fdinfo/9
pos: 0
flags: 02000000
mnt_id: 14
link_type: iter
link_id: 34
prog_tag: 104be6d3fe45e6aa
prog_id: 173
target_name: bpf_map_elem
map_id: 127
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200821184419.574240-1-yhs@fb.com
This patch implemented bpf_link callback functions
show_fdinfo and fill_link_info to support link_query
interface.
The general interface for show_fdinfo and fill_link_info
will print/fill the target_name. Each targets can
register show_fdinfo and fill_link_info callbacks
to print/fill more target specific information.
For example, the below is a fdinfo result for a bpf
task iterator.
$ cat /proc/1749/fdinfo/7
pos: 0
flags: 02000000
mnt_id: 14
link_type: iter
link_id: 11
prog_tag: 990e1f8152f7e54f
prog_id: 59
target_name: task
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200821184418.574122-1-yhs@fb.com
Record which built-ins are optional and needed for some of recent BPF CO-RE
subtests. Document Clang diff that fixed corner-case issue with
__builtin_btf_type_id().
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200820061411.1755905-4-andriin@fb.com
GCC 4.9 seems to be more strict in some regards. Fix two minor issue it
reported.
Fixes: 1c1052e014 ("tools/testing/selftests/bpf: Add self-tests for new helper bpf_get_ns_current_pid_tgid.")
Fixes: 2d7824ffd2 ("selftests: bpf: Add test for sk_assign")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200820061411.1755905-3-andriin@fb.com
GCC compilers older than version 5 don't support __builtin_mul_overflow yet.
Given GCC 4.9 is the minimal supported compiler for building kernel and the
fact that libbpf is a dependency of resolve_btfids, which is dependency of
CONFIG_DEBUG_INFO_BTF=y, this needs to be handled. This patch fixes the issue
by falling back to slower detection of integer overflow in such cases.
Fixes: 029258d7b2 ("libbpf: Remove any use of reallocarray() in libbpf")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200820061411.1755905-2-andriin@fb.com
BPF_CALL | BPF_JMP32 is explicitly not allowed by verifier for BPF helper
calls, so don't detect it as a valid call. Also drop the check on func_id
pointer, as it's currently always non-null.
Fixes: 109cea5a59 ("libbpf: Sanitize BPF program code for bpf_probe_read_{kernel, user}[_str]")
Reported-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200820061411.1755905-1-andriin@fb.com
Alexei Starovoitov says:
====================
This patch set is the first real user of user mode driver facility. The
general use case for user mode driver is to ship vmlinux with preloaded BPF
programs. In this particular case the user mode driver populates bpffs instance
with two BPF iterators. In several months BPF_LSM project would need to preload
the kernel with its own set of BPF programs and attach to LSM hooks instead of
bpffs. BPF iterators and BPF_LSM are unstable from uapi perspective. They are
tracing based and peek into arbitrary kernel data structures. One can question
why a kernel module cannot embed BPF programs inside. The reason is that libbpf
is necessary to load them. First libbpf loads BPF Type Format, then creates BPF
maps, populates them. Then it relocates code sections inside BPF programs,
loads BPF programs, and finally attaches them to events. Theoretically libbpf
can be rewritten to work in the kernel, but that is massive undertaking. The
maintenance of in-kernel libbpf and user space libbpf would be another
challenge. Another obstacle to embedding BPF programs into kernel module is
sys_bpf api. Loading of programs, BTF, maps goes through the verifier. It
validates and optimizes the code. It's possible to provide in-kernel api to all
of sys_bpf commands (load progs, create maps, update maps, load BTF, etc), but
that is huge amount of work and forever maintenance headache.
Hence the decision is to ship vmlinux with user mode drivers that load
BPF programs. Just like kernel modules extend vmlinux BPF programs
are safe extensions of the kernel and some of them need to ship with vmlinux.
This patch set adds a kernel module with user mode driver that populates bpffs
with two BPF iterators.
$ mount bpffs /my/bpffs/ -t bpf
$ ls -la /my/bpffs/
total 4
drwxrwxrwt 2 root root 0 Jul 2 00:27 .
drwxr-xr-x 19 root root 4096 Jul 2 00:09 ..
-rw------- 1 root root 0 Jul 2 00:27 maps.debug
-rw------- 1 root root 0 Jul 2 00:27 progs.debug
The user mode driver will load BPF Type Formats, create BPF maps, populate BPF
maps, load two BPF programs, attach them to BPF iterators, and finally send two
bpf_link IDs back to the kernel.
The kernel will pin two bpf_links into newly mounted bpffs instance under
names "progs.debug" and "maps.debug". These two files become human readable.
$ cat /my/bpffs/progs.debug
id name attached
11 dump_bpf_map bpf_iter_bpf_map
12 dump_bpf_prog bpf_iter_bpf_prog
27 test_pkt_access
32 test_main test_pkt_access test_pkt_access
33 test_subprog1 test_pkt_access_subprog1 test_pkt_access
34 test_subprog2 test_pkt_access_subprog2 test_pkt_access
35 test_subprog3 test_pkt_access_subprog3 test_pkt_access
36 new_get_skb_len get_skb_len test_pkt_access
37 new_get_skb_ifindex get_skb_ifindex test_pkt_access
38 new_get_constant get_constant test_pkt_access
The BPF program dump_bpf_prog() in iterators.bpf.c is printing this data about
all BPF programs currently loaded in the system. This information is unstable
and will change from kernel to kernel.
In some sence this output is similar to 'bpftool prog show' that is using
stable api to retreive information about BPF programs. The BPF subsytems grows
quickly and there is always demand to show as much info about BPF things as
possible. But we cannot expose all that info via stable uapi of bpf syscall,
since the details change so much. Right now a BPF program can be attached to
only one other BPF program. Folks are working on patches to enable
multi-attach, but for debugging it's necessary to see the current state. There
is no uapi for that, but above output shows it:
37 new_get_skb_ifindex get_skb_ifindex test_pkt_access
38 new_get_constant get_constant test_pkt_access
[1] [2] [3]
[1] is the full name of BPF prog from BTF.
[2] is the name of function inside target BPF prog.
[3] is the name of target BPF prog.
[2] and [3] are not exposed via uapi, since they will change from single to
multi soon. There are many other cases where bpf internals are useful for
debugging, but shouldn't be exposed via uapi due to high rate of changes.
systemd mounts /sys/fs/bpf at the start, so this kernel module with user mode
driver needs to be available early. BPF_LSM most likely would need to preload
BPF programs even earlier.
Few interesting observations:
- though bpffs comes with two human readble files "progs.debug" and
"maps.debug" they can be removed. 'rm -f /sys/fs/bpf/progs.debug' will remove
bpf_link and kernel will automatically unload corresponding BPF progs, maps,
BTFs. In the future '-o remount' will be able to restore them. This is not
implemented yet.
- 'ps aux|grep bpf_preload' shows nothing. User mode driver loaded BPF
iterators and exited. Nothing is lingering in user space at this point.
- We can consider giving 0644 permissions to "progs.debug" and "maps.debug"
to allow unprivileged users see BPF things loaded in the system.
We cannot do so with "bpftool prog show", since it's using cap_sys_admin
parts of bpf syscall.
- The functionality split between core kernel, bpf_preload kernel module and
user mode driver is very similar to bpfilter style of interaction.
- Similar BPF iterators can be used as unstable extensions to /proc.
Like mounting /proc can prepopolate some subdirectory in there with
a BPF iterator that will print QUIC sockets instead of tcp and udp.
Changelog:
v5->v6:
- refactored Makefiles with Andrii's help
- switched to explicit $(MAKE) style
- switched to userldlibs instead of userldflags
- fixed build issue with libbpf Makefile due to invocation from kbuild
- fixed menuconfig order as spotted by Daniel
- introduced CONFIG_USERMODE_DRIVER bool that is selected by bpfilter and bpf_preload
v4->v5:
- addressed Song and Andrii feedback. s/pages/max_entries/
v3->v4:
- took THIS_MODULE in patch 3 as suggested by Daniel to simplify the code.
- converted BPF iterator to use BTF (when available) to print full BPF program name
instead of 16-byte truncated version.
This is something I've been using drgn scripts for.
Take a look at get_name() in iterators.bpf.c to see how short it is comparing
to what user space bpftool would have to do to print the same full name:
. get prog info via obj_info_by_fd
. do get_fd_by_id from info->btf_id
. fetch potentially large BTF of the program from the kernel
. parse that BTF in user space to figure out all type boundaries and string section
. read info->func_info to get btf_id of func_proto from there
. find that btf_id in the parsed BTF
That's quite a bit work for bpftool comparing to few lines in get_name().
I guess would be good to make bpftool do this info extraction anyway.
While doing this BTF reading in the kernel realized that the verifier is not smart
enough to follow double pointers (added to my todo list), otherwise get_name()
would have been even shorter.
v2->v3:
- fixed module unload race (Daniel)
- added selftest (Daniel)
- fixed build bot warning
v1->v2:
- changed names to 'progs.debug' and 'maps.debug' to hopefully better indicate
instability of the text output. Having dot in the name also guarantees
that these special files will not conflict with normal bpf objects pinned
in bpffs, since dot is disallowed for normal pins.
- instead of hard coding link_name in the core bpf moved into UMD.
- cleanedup error handling.
- addressed review comments from Yonghong and Andrii.
====================
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add kernel module with user mode driver that populates bpffs with
BPF iterators.
$ mount bpffs /my/bpffs/ -t bpf
$ ls -la /my/bpffs/
total 4
drwxrwxrwt 2 root root 0 Jul 2 00:27 .
drwxr-xr-x 19 root root 4096 Jul 2 00:09 ..
-rw------- 1 root root 0 Jul 2 00:27 maps.debug
-rw------- 1 root root 0 Jul 2 00:27 progs.debug
The user mode driver will load BPF Type Formats, create BPF maps, populate BPF
maps, load two BPF programs, attach them to BPF iterators, and finally send two
bpf_link IDs back to the kernel.
The kernel will pin two bpf_links into newly mounted bpffs instance under
names "progs.debug" and "maps.debug". These two files become human readable.
$ cat /my/bpffs/progs.debug
id name attached
11 dump_bpf_map bpf_iter_bpf_map
12 dump_bpf_prog bpf_iter_bpf_prog
27 test_pkt_access
32 test_main test_pkt_access test_pkt_access
33 test_subprog1 test_pkt_access_subprog1 test_pkt_access
34 test_subprog2 test_pkt_access_subprog2 test_pkt_access
35 test_subprog3 test_pkt_access_subprog3 test_pkt_access
36 new_get_skb_len get_skb_len test_pkt_access
37 new_get_skb_ifindex get_skb_ifindex test_pkt_access
38 new_get_constant get_constant test_pkt_access
The BPF program dump_bpf_prog() in iterators.bpf.c is printing this data about
all BPF programs currently loaded in the system. This information is unstable
and will change from kernel to kernel as ".debug" suffix conveys.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200819042759.51280-4-alexei.starovoitov@gmail.com
The program and map iterators work similar to seq_file-s.
Once the program is pinned in bpffs it can be read with "cat" tool
to print human readable output. In this case about BPF programs and maps.
For example:
$ cat /sys/fs/bpf/progs.debug
id name attached
5 dump_bpf_map bpf_iter_bpf_map
6 dump_bpf_prog bpf_iter_bpf_prog
$ cat /sys/fs/bpf/maps.debug
id name max_entries
3 iterator.rodata 1
To avoid kernel build dependency on clang 10 separate bpf skeleton generation
into manual "make" step and instead check-in generated .skel.h into git.
Unlike 'bpftool prog show' in-kernel BTF name is used (when available)
to print full name of BPF program instead of 16-byte truncated name.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200819042759.51280-3-alexei.starovoitov@gmail.com
Refactor the code a bit to extract bpf_link_by_id() helper.
It's similar to existing bpf_prog_by_id().
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200819042759.51280-2-alexei.starovoitov@gmail.com
Andrii Nakryiko says:
====================
This patch set adds libbpf support for two new classes of CO-RE relocations:
type-based (TYPE_EXISTS/TYPE_SIZE/TYPE_ID_LOCAL/TYPE_ID_TARGET) and enum
value-vased (ENUMVAL_EXISTS/ENUMVAL_VALUE):
- TYPE_EXISTS allows to detect presence in kernel BTF of a locally-recorded
BTF type. Useful for feature detection (new functionality often comes with
new internal kernel types), as well as handling type renames and bigger
refactorings.
- TYPE_SIZE allows to get the real size (in bytes) of a specified kernel
type. Useful for dumping internal structure as-is through perfbuf or
ringbuf.
- TYPE_ID_LOCAL/TYPE_ID_TARGET allow to capture BTF type ID of a BTF type in
program's BTF or kernel BTF, respectively. These could be used for
high-performance and space-efficient generic data dumping/logging by
relying on small and cheap BTF type ID as a data layout descriptor, for
post-processing on user-space side.
- ENUMVAL_EXISTS can be used for detecting the presence of enumerator value
in kernel's enum type. Most direct application is to detect BPF helper
support in kernel.
- ENUMVAL_VALUE allows to relocate real integer value of kernel enumerator
value, which is subject to change (e.g., always a potential issue for
internal, non-UAPI, kernel enums).
I've indicated potential applications for these relocations, but relocations
themselves are generic and unassuming and are designed to work correctly even
in unintended applications. Furthermore, relocated values become constants,
known to the verifier and could and would be used for dead branch code
detection and elimination. This makes them ideal to do all sorts of feature
detection and guarding functionality that's not available on some older (but
still supported by BPF program) kernels, while having to compile and maintain
one unified source code.
Selftests are added for all the new features. Selftests utilizing new Clang
built-ins are designed such that they will compile with older Clangs and will
be skipped during test runs. So this shouldn't cause any build and test
failures on systems with slightly outdated Clang compiler.
LLVM patches adding these relocation in Clang:
- __builtin_btf_type_id() ([0], [1], [2]);
- __builtin_preserve_type_info(), __builtin_preserve_enum_value() ([3], [4]).
[0] https://reviews.llvm.org/D74572
[1] https://reviews.llvm.org/D74668
[2] https://reviews.llvm.org/D85174
[3] https://reviews.llvm.org/D83878
[4] https://reviews.llvm.org/D83242
v2->v3:
- fix feature detection for __builtin_btf_type_id() test (Yonghong);
- fix extra empty lines at the end of files (Yonghong);
v1->v2:
- selftests detect built-in support and are skipped if not found (Alexei).
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add tests validating existence and value relocations for enum value-based
relocations. If __builtin_preserve_enum_value() built-in is not supported,
skip tests.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200819194519.3375898-6-andriin@fb.com
Implement two relocations of a new enumerator value-based CO-RE relocation
kind: ENUMVAL_EXISTS and ENUMVAL_VALUE.
First, ENUMVAL_EXISTS, allows to detect the presence of a named enumerator
value in the target (kernel) BTF. This is useful to do BPF helper/map/program
type support detection from BPF program side. bpf_core_enum_value_exists()
macro helper is provided to simplify built-in usage.
Second, ENUMVAL_VALUE, allows to capture enumerator integer value and relocate
it according to the target BTF, if it changes. This is useful to have
a guarantee against intentional or accidental re-ordering/re-numbering of some
of the internal (non-UAPI) enumerations, where kernel developers don't care
about UAPI backwards compatiblity concerns. bpf_core_enum_value() allows to
capture this succinctly and use correct enum values in code.
LLVM uses ldimm64 instruction to capture enumerator value-based relocations,
so add support for ldimm64 instruction patching as well.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200819194519.3375898-5-andriin@fb.com
Add tests for BTF type ID relocations. To allow testing this, enhance
core_relo.c test runner to allow dynamic initialization of test inputs.
If Clang doesn't have necessary support for new functionality, test is
skipped.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200819194519.3375898-4-andriin@fb.com
Add selftests for TYPE_EXISTS and TYPE_SIZE relocations, testing correctness
of relocations and handling of type compatiblity/incompatibility.
If __builtin_preserve_type_info() is not supported by compiler, skip tests.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200819194519.3375898-3-andriin@fb.com
Implement support for TYPE_EXISTS/TYPE_SIZE/TYPE_ID_LOCAL/TYPE_ID_REMOTE
relocations. These are examples of type-based relocations, as opposed to
field-based relocations supported already. The difference is that they are
calculating relocation values based on the type itself, not a field within
a struct/union.
Type-based relos have slightly different semantics when matching local types
to kernel target types, see comments in bpf_core_types_are_compat() for
details. Their behavior on failure to find target type in kernel BTF also
differs. Instead of "poisoning" relocatable instruction and failing load
subsequently in kernel, they return 0 (which is rarely a valid return result,
so user BPF code can use that to detect success/failure of the relocation and
deal with it without extra "guarding" relocations). Also, it's always possible
to check existence of the type in target kernel with TYPE_EXISTS relocation,
similarly to a field-based FIELD_EXISTS.
TYPE_ID_LOCAL relocation is a bit special in that it always succeeds (barring
any libbpf/Clang bugs) and resolved to BTF ID using **local** BTF info of BPF
program itself. Tests in subsequent patches demonstrate the usage and
semantics of new relocations.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200819194519.3375898-2-andriin@fb.com
This provides a minor performance boost by virtue of inlining
instead of cross module function calls.
Test: builds
Signed-off-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200819010710.3959310-2-zenczykowski@gmail.com
Andrii Nakryiko says:
====================
Get rid of two feature detectors: reallocarray and libelf-mmap. Optional
feature detections complicate libbpf Makefile and cause more troubles for
various applications that want to integrate libbpf as part of their build.
Patch #1 replaces all reallocarray() uses into libbpf-internal reallocarray()
implementation. Patches #2 and #3 makes sure we won't re-introduce
reallocarray() accidentally. Patch #2 also removes last use of
libbpf_internal.h header inside bpftool. There is still nlattr.h that's used
by both libbpf and bpftool, but that's left for a follow up patch to split.
Patch #4 removed libelf-mmap feature detector and all its uses, as it's
trivial to handle missing mmap support in libbpf, the way objtool has been
doing it for a while.
v1->v2 and v2->v3:
- rebase to latest bpf-next (Alexei).
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's trivial to handle missing ELF_C_MMAP_READ support in libelf the way that
objtool has solved it in
("774bec3fddcc objtool: Add fallback from ELF_C_READ_MMAP to ELF_C_READ").
So instead of having an entire feature detector for that, just do what objtool
does for perf and libbpf. And keep their Makefiles a bit simpler.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200819013607.3607269-5-andriin@fb.com
Most of libbpf source files already include libbpf_internal.h, so it's a good
place to centralize identifier poisoning. So move kernel integer type
poisoning there. And also add reallocarray to a poison list to prevent
accidental use of it. libbpf_reallocarray() should be used universally
instead.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200819013607.3607269-4-andriin@fb.com
Most netlink-related functions were unique to bpftool usage, so I moved them
into net.c. Few functions are still used by both bpftool and libbpf itself
internally, so I've copy-pasted them (libbpf_nl_get_link,
libbpf_netlink_open). It's a bit of duplication of code, but better separation
of libbpf as a library with public API and bpftool, relying on unexposed
functions in libbpf.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200819013607.3607269-3-andriin@fb.com
Re-implement glibc's reallocarray() for libbpf internal-only use.
reallocarray(), unfortunately, is not available in all versions of glibc, so
requires extra feature detection and using reallocarray() stub from
<tools/libc_compat.h> and COMPAT_NEED_REALLOCARRAY. All this complicates build
of libbpf unnecessarily and is just a maintenance burden. Instead, it's
trivial to implement libbpf-specific internal version and use it throughout
libbpf.
Which is what this patch does, along with converting some realloc() uses that
should really have been reallocarray() in the first place.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200819013607.3607269-2-andriin@fb.com
Add test simulating ambiguous field size relocation, while fields themselves
are at the exact same offset.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818223921.2911963-5-andriin@fb.com
Split the instruction patching logic into relocation value calculation and
application of relocation to instruction. Using this, evaluate relocation
against each matching candidate and validate that all candidates agree on
relocated value. If not, report ambiguity and fail load.
This logic is necessary to avoid dangerous (however unlikely) accidental match
against two incompatible candidate types. Without this change, libbpf will
pick a random type as *the* candidate and apply potentially invalid
relocation.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818223921.2911963-4-andriin@fb.com
Add logging of local/target type kind (struct/union/typedef/etc). Preserve
unresolved root type ID (for cases of typedef). Improve the format of CO-RE
reloc spec output format to contain only relevant and succinct info.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818223921.2911963-3-andriin@fb.com
Instead of printing out integer value of BTF kind, print out a string
representation of a kind.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818223921.2911963-2-andriin@fb.com
Andrii Nakryiko says:
====================
This patch set refactors libbpf feature probing to be done lazily on as-needed
basis, instead of proactively testing all possible features libbpf knows
about. This allows to scale such detections and mitigations better, without
issuing unnecessary syscalls on each bpf_object__load() call. It's also now
memoized globally, instead of per-bpf_object.
Building on that, libbpf will now detect availability of
bpf_probe_read_kernel() helper (which means also -user and -str variants), and
will sanitize BPF program code by replacing such references to generic
variants (bpf_probe_read[_str]()). This allows to migrate all BPF programs
into proper -kernel/-user probing helpers, without the fear of breaking them
for old kernels.
With that, update BPF_CORE_READ() and related macros to use
bpf_probe_read_kernel(), as it doesn't make much sense to do CO-RE relocations
against user-space types. And the only class of cases in which BPF program
might read kernel type from user-space are UAPI data structures which by
definition are fixed in their memory layout and don't need relocating. This is
exemplified by test_vmlinux test, which is fixed as part of this patch set as
well. BPF_CORE_READ() is useful for chainingg bpf_probe_read_{kernel,user}()
calls together even without relocation, so we might add user-space variants,
if there is a need.
While at making libbpf more useful for older kernels, also improve handling of
a complete lack of BTF support in kernel by not even attempting to load BTF
info into kernel. This eliminates annoying warning about lack of BTF support
in the kernel and map creation retry without BTF. If user is using features
that require kernel BTF support, it will still fail, of course.
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Detect whether a kernel supports any BTF at all, and if not, don't even
attempt loading BTF to avoid unnecessary log messages like:
libbpf: Error loading BTF: Invalid argument(22)
libbpf: Error loading .BTF into kernel: -22. BTF is optional, ignoring.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818213356.2629020-8-andriin@fb.com
Now that libbpf can automatically fallback to bpf_probe_read() on old kernels
not yet supporting bpf_probe_read_kernel(), switch libbpf BPF-side helper
macros to use appropriate BPF helper for reading kernel data.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/bpf/20200818213356.2629020-7-andriin@fb.com
The test is reading UAPI kernel structure from user-space. So it doesn't need
CO-RE relocations and has to use bpf_probe_read_user().
Fixes: acbd06206b ("selftests/bpf: Add vmlinux.h selftest exercising tracing of syscalls")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818213356.2629020-6-andriin@fb.com
Add BPF program code sanitization pass, replacing calls to BPF
bpf_probe_read_{kernel,user}[_str]() helpers with bpf_probe_read[_str](), if
libbpf detects that kernel doesn't support new variants.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818213356.2629020-5-andriin@fb.com
Factor out common piece of logic that detects support for a feature based on
successfully created FD. Also take care of closing FD, if it was created.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818213356.2629020-4-andriin@fb.com
Turn libbpf's kernel feature probing into lazily-performed checks. This allows
to skip performing unnecessary feature checks, if a given BPF application
doesn't rely on a particular kernel feature. As we grow number of feature
probes, libbpf might perform less unnecessary syscalls and scale better with
number of feature probes long-term.
By decoupling feature checks from bpf_object, it's also possible to perform
feature probing from libbpf static helpers and low-level APIs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200818213356.2629020-3-andriin@fb.com