Since trace_clock is in a different file and already marked with notrace,
enable tracing in time.c by removing it from the disabled list in Makefile.
Also annotate clocksource read functions and sched_clock with notrace.
Testing: Timer and ftrace selftests run with different trace clocks.
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Santosh Sivaraj <santosh@fossix.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As for slb_miss_realmode(), rename slb_allocate_realmode() to avoid
confusion over whether it runs in real or virtual mode - it runs in
both.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
slb_miss_realmode() doesn't always runs in real mode, which is what the
name implies. So rename it to avoid confusing people.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
All the callers of slb_miss_realmode currently open code the #ifndef
CONFIG_RELOCATABLE check and the branch via CTR in the RELOCATABLE case.
We have a macro to do this, BRANCH_TO_COMMON(), so use it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
EX_R3 is used only for a small section of the bad stack handler.
Merge it with EX_DAR.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
EX_LR is used only for a small section of the SLB miss handler.
Merge it with EX_DAR.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rather than open-coding it 4 times.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Move __ASSEMBLY__ guards into head-64.h where they're really needed]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The SLB miss handler uses r3 for the faulting address but r12 is
mostly able to be freed up to save r3 in. It just requires SRR1
be reloaded again on error.
It would be more conventional to use r12 for SRR1 (and use r11 to
save r3), but slb_allocate_realmode clobbers r11 and not r12.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The EXCEPTION_PROLOG_1 used by SLB miss already saves CTR when the
kernel is built with CONFIG_RELOCATABLE. So it does not have to be
saved and reloaded when branching to slb_miss_realmode. It can be
restored from the PACA as usual.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The EX_DAR save area is only used in exceptional cases. With r3 no
longer clobbered by slb_allocate_realmode, saving faulting address to
EX_DAR can be deferred to those cases.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
One fewer registers clobbered by this function means the SLB miss
handler can save one fewer.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In the idle sleep/wake code we know that MSR[EE] is clear, so we can
avoid 2 x mfmsr and 2 x mtmsr by calling the double-underscore
versions of the run latch routines which assume interrupts are already
disabled.
Acked-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In a busy system, idle wakeups can be expected from IPIs and device
interrupts.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Idle code now always runs at the 0xc... effective address whether
in real or virtual mode. This means rfid can be ditched, along
with a lot of SRR manipulations.
In the wakeup path, carry SRR1 around in r12. Use mtmsrd to change
MSR states as required.
This also balances the return prediction for the idle call, by
doing blr rather than rfid to return to the idle caller.
On POWER9, 2-process context switch on different cores, with snooze
disabled, increases performance by 2%.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Incorporate v2 fixes from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Have the system reset idle wakeup handlers branched to in real mode
with the 0xc... kernel address applied. This allows simplifications of
avoiding rfid when switching to virtual mode in the wakeup handler.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The __replay_interrupt() code is branched to with bl, but the caller is
returned to directly with rfid from the interrupt.
Instead, rfid to a stub that returns to the caller with blr, which
should keep the return branch predictor balanced.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
msgsnd doorbell exceptions are cleared when the doorbell interrupt is
taken. However if a doorbell exception causes a system reset interrupt
wake from power saving state, the message is not cleared. Processing
the doorbell from the system reset interrupt requires msgclr to avoid
taking the exception again.
Testing this plus the previous wakup direct patch gives:
original wakeup direct msgclr
Different threads, same core: 315k/s 264k/s 345k/s
Different cores: 235k/s 242k/s 242k/s
Net speedup is +10% for same core, and +3% for different core.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When the CPU wakes from low power state, it begins at the system reset
interrupt with the exception that caused the wakeup encoded in SRR1.
Today, powernv idle wakeup ignores the wakeup reason (except a special
case for HMI), and the regular interrupt corresponding to the
exception will fire after the idle wakeup exits.
Change this to replay the interrupt from the idle wakeup before
interrupts are hard-enabled.
Test on POWER8 of context_switch selftests benchmark with polling idle
disabled (e.g., always nap, giving cross-CPU IPIs) gives the following
results:
original wakeup direct
Different threads, same core: 315k/s 264k/s
Different cores: 235k/s 242k/s
There is a slowdown for doorbell IPI (same core) case because system
reset wakeup does not clear the message and the doorbell interrupt
fires again needlessly.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rather than concern ourselves with any soft-mask logic in the CPU
hotplug handler, just hard disable interrupts. This ensures there
are no lazy-irqs pending, which means we can call directly to idle
instruction in order to sleep.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This simplifies the asm and fixes irq-off tracing over sleep
instructions.
Also move powersave_nap check for POWER8 into C code, and move
PSSCR register value calculation for POWER9 into C.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
drivers/watchdog/wdrtas.c uses symbols defined in arch/powerpc/kernel/rtas.c,
which are exported iff CONFIG_PPC_RTAS is selected. Building wdrtas.c without
setting CONFIG_PPC_RTAS throws the following errors:
ERROR: ".rtas_token" [drivers/watchdog/wdrtas.ko] undefined!
ERROR: "rtas_data_buf" [drivers/watchdog/wdrtas.ko] undefined!
ERROR: "rtas_data_buf_lock" [drivers/watchdog/wdrtas.ko] undefined!
ERROR: ".rtas_get_sensor" [drivers/watchdog/wdrtas.ko] undefined!
ERROR: ".rtas_call" [drivers/watchdog/wdrtas.ko] undefined!
This was identified during a randconfig build where CONFIG_WATCHDOG_RTAS=m and
CONFIG_PPC_RTAS was not set. Logs are here:
http://kisskb.ellerman.id.au/kisskb/buildresult/12982152/
This patch fixes the issue by updating CONFIG_WATCHDOG_RTAS to depend on just
CONFIG_PPC_RTAS, removing COMPILE_TEST entirely.
Signed-off-by: Murilo Opsfelder Araujo <mopsfelder@gmail.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The ISA v3.0B copy-paste facility only requires cpabort when switching
to a process that has foreign real addresses mapped (direct access to
accelerators), to clear a potential copy buffer filled by a previous
thread. There is no accelerator driver implemented yet, so cpabort can
be removed. It can be be re-added when a driver is implemented.
POWER9 DD1 requires the copy buffer to always be cleared on context
switch, but if accelerators are not in use, then an unpaired copy from
a dummy region is sufficient to clear data out of the copy buffer.
This increases context switch performance by about 5% on POWER9.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The sync (aka. hwsync, aka. heavyweight sync) in the context switch
code to prevent MMIO access being reordered from the point of view of
a single process if it gets migrated to a different CPU is not
required because there is an hwsync performed earlier in the context
switch path.
Comment this so it's clear enough if anything changes on the scheduler
or the powerpc sides. Remove the hwsync from _switch.
This improves context switch performance by 2-3% on POWER8.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There is no need to explicitly break the reservation in _switch,
because we are guaranteed that the context switch path will include a
larx/stcx.
Comment the guarantee and remove the reservation clear from _switch.
This is worth 1-2% in context switch performance.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 4387e9ff25 ("[POWERPC] Fix PMU + soft interrupt disable bug")
hard disabled interrupts over the low level context switch, because
the SLB management can't cope with a PMU interrupt accesing the stack
in that window.
Radix based kernel mapping does not use the SLB so it does not require
interrupts hard disabled here.
This is worth 1-2% in context switch performance on POWER9.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The syscall exit code that branches to restore_math is quite heavy on
Book3S, consisting of 2 mtmsr instructions. Threads that don't use both
FP and vector can get caught here if the kernel ever uses FP or vector.
Lazy-FP/vec context switching also trips this case.
So check for lazy FP and vector before switching RI for restore_math.
Move most of this case out of line.
For threads that do want to restore math registers, the MSR switches are
still suboptimal. Future direction may be to use a soft-RI bit to avoid
MSR switches in kernel (similar to soft-EE), but for now at least the
no-restore
POWER9 context switch rate increases by about 5% due to sched_yield(2)
return performance. I haven't constructed a test to measure the syscall
cost.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
After bc3551257a ("powerpc/64: Allow for relocation-on interrupts from
guest to host"), a getppid() system call goes from 307 cycles to 358
cycles (+17%) on POWER8. This is due significantly to the scratch SPR
used by the hypercall check.
It turns out there are a some volatile registers common to both system
call and hypercall (in particular, r12, cr0, ctr), which can be used to
avoid the SPR and some other overheads. This brings getppid to 320 cycles
(+4%).
Testing hcall entry performance by running "sc 1" in guest userspace
before this patch is 854 cycles, afterwards is 826. Also a small win
there.
POWER9 syscall is improved by about the same amount, hcall not tested.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently we map the whole linear mapping with PAGE_KERNEL_X. Instead we
should check if the page overlaps the kernel text and only then add
PAGE_KERNEL_X.
Note that we still use 1G pages if they're available, so this will
typically still result in a 1G executable page at KERNELBASE. So this fix is
primarily useful for catching stray branches to high linear mapping addresses.
Without this patch, we can execute at 1G in xmon using:
0:mon> m c000000040000000
c000000040000000 00 l
c000000040000000 00000000 01006038
c000000040000004 00000000 2000804e
c000000040000008 00000000 x
0:mon> di c000000040000000
c000000040000000 38600001 li r3,1
c000000040000004 4e800020 blr
0:mon> p c000000040000000
return value is 0x1
After we get a 400 as expected:
0:mon> p c000000040000000
*** 400 exception occurred
Fixes: 2bfd65e45e ("powerpc/mm/radix: Add radix callbacks for early init routines")
Cc: stable@vger.kernel.org # v4.7+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
The i-side 0111b machine check, which is "Instruction Fetch to foreign
address space", was missed by 7b9f71f974 ("powerpc/64s: POWER9 machine
check handler").
The POWER9 processor core considers host real addresses with a
nonzero value in RA(8:12) as foreign address space, accessible only
by the copy and paste instructions. The copy and paste instruction
pair can be used to invoke the Nest accelerators via the Virtual
Accelerator Switchboard (VAS).
It is an error for any regular load/store or ifetch to go to a foreign
addresses. When relocation is on, this causes an MMU exception. When
relocation is off, a machine check exception. It is possible to trigger
this machine check by branching to a foreign address with MSR[IR]=0.
Fixes: 7b9f71f974 ("powerpc/64s: POWER9 machine check handler")
Reported-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We should unlock if get_cxl_adapter() fails.
Fixes: 594ff7d067 ("cxl: Support to flash a new image on the adapter from a guest")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
These two functions implement the same semantics, so unify their naming so we
can share code that calls them. The longer name is more descriptive so use it.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add support in pte_alloc_one() and pgd_alloc() by
passing __GFP_ACCOUNT in the flags
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Introduce a helper pgtable_gfp_flags() which
just returns the current gfp flags and adds
__GFP_ACCOUNT to account for page table allocation.
The generic helper is added to include/asm/pgalloc.h
and has two variants - WARNING ugly bits ahead
1. If the header is included from a module, no check
for mm == &init_mm is done, since init_mm is not
exported
2. For kernel includes, the check is done and required
see (3e79ec7 arch: x86: charge page tables to kmemcg)
The fundamental assumption is that no module should be
doing pgd/pud/pmd and pte alloc's on behalf of init_mm
directly.
NOTE: This adds an overhead to pmd/pud/pgd allocations
similar to x86. The other alternative was to implement
pmd_alloc_kernel/pud_alloc_kernel and pgd_alloc_kernel
with their offset variants.
For 4k page size, pte_alloc_one no longer calls
pte_alloc_one_kernel.
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently in hpte_need_flush() if there is no batch pending we always do a
global TLB flush, which is inefficient if the mm has never run on another
thread.
Instead do the same check that __flush_tlb_pending() does and check if a local
flush is sufficient when batch->active is false. Instead of open-coding it we
use mm_is_thread_local().
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
[mpe: Don't use a local, just inline mm_is_thread_local()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add myself as the maintainer for drivers/fsl/soc/ and fix the scope for
device tree bindings.
Signed-off-by: Li Yang <leoyang.li@nxp.com>
Acked-by: Scott Wood <oss@buserror.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This reduces overhead of mutex locking and increases context switch
rate significantly (which helps to measure and profile the context
switch path).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Collation of some spelling fixes from Colin.
Attemping -> Attempting
intialized -> initialized
missmanaged -> mismanaged
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The xor_vmx.c file is used for the RAID5 xor operations. In these functions
altivec is enabled to run the operation and then disabled.
The code uses enable_kernel_altivec() around the core of the algorithm, however
the whole file is built with -maltivec, so the compiler is within its rights to
generate altivec code anywhere. This has been seen at least once in the wild:
0:mon> di $xor_altivec_2
c0000000000b97d0 3c4c01d9 addis r2,r12,473
c0000000000b97d4 3842db30 addi r2,r2,-9424
c0000000000b97d8 7c0802a6 mflr r0
c0000000000b97dc f8010010 std r0,16(r1)
c0000000000b97e0 60000000 nop
c0000000000b97e4 7c0802a6 mflr r0
c0000000000b97e8 faa1ffa8 std r21,-88(r1)
...
c0000000000b981c f821ff41 stdu r1,-192(r1)
c0000000000b9820 7f8101ce stvx v28,r1,r0 <-- POP
c0000000000b9824 38000030 li r0,48
c0000000000b9828 7fa101ce stvx v29,r1,r0
...
c0000000000b984c 4bf6a06d bl c0000000000238b8 # enable_kernel_altivec
This patch splits the non-altivec code into xor_vmx_glue.c which calls the
altivec functions in xor_vmx.c. By compiling xor_vmx_glue.c without
-maltivec we can guarantee that altivec instruction will not be executed
outside of the enable/disable block.
Signed-off-by: Matt Brown <matthew.brown.dev@gmail.com>
[mpe: Rework change log and include disassembly]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
By default, 5% of system RAM is reserved for preserving boot memory.
Alternatively, a user can specify the amount of memory to reserve.
See Documentation/powerpc/firmware-assisted-dump.txt for details. In
addition to the memory reserved for preserving boot memory, some more
memory is reserved, to save HPTE region, CPU state data and ELF core
headers.
Memory Reservation during first kernel looks like below:
Low memory Top of memory
0 boot memory size |
| | |<--Reserved dump area -->|
V V | Permanent Reservation V
+-----------+----------/ /----------+---+----+-----------+----+
| | |CPU|HPTE| DUMP |ELF |
+-----------+----------/ /----------+---+----+-----------+----+
| ^
| |
\ /
-------------------------------------------
Boot memory content gets transferred to
reserved area by firmware at the time of
crash
This implicitly means that the sum of the sizes of boot memory, CPU
state data, HPTE region, DUMP preserving area and ELF core headers
can't be greater than the total memory size. But currently, a user is
allowed to specify any value as boot memory size. So, the above rule
is violated when a boot memory size around 50% of the total available
memory is specified. As the kernel is not handling this currently, it
may lead to undefined behavior. Fix it by setting an upper limit for
boot memory size to 25% of the total available memory. Also, instead
of using memblock_end_of_DRAM(), which doesn't take the holes, if any,
in the memory layout into account, use memblock_phys_mem_size() to
calculate the percentage of total available memory.
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With commit f6e6bedb77 ("powerpc/fadump: Reserve memory at an offset
closer to bottom of RAM"), memory for fadump is no longer reserved at
the top of RAM. But there are still a few places which say so. Change
them appropriately.
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With commit 11550dc0a0 ("powerpc/fadump: reuse crashkernel parameter
for fadump memory reservation"), 'fadump_reserve_mem=' parameter is
deprecated in favor of 'crashkernel=' parameter. Add a warning if
'fadump_reserve_mem=' is still used.
Fixes: 11550dc0a0 ("powerpc/fadump: reuse crashkernel parameter for fadump memory reservation")
Suggested-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
[mpe: Unsplit long printk strings]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- log an error message when registration fails and no error code listed
in the switch is returned
- translate the hv error code to posix error code and return it from
fw_register
- return the posix error code from fw_register to the process writing
to sysfs
- return EEXIST on re-registration
- return success on deregistration when fadump is not registered
- return ENODEV when no memory is reserved for fadump
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Tested-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
[mpe: Use pr_err() to shrink the error print]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With the ffz() function as defined in arch/powerpc/include/asm/bitops.h
GCC will not optimise the code in case of constant parameter.
This patch replaces ffz() by the generic function.
The generic ffz(x) expects to never be called with ~x == 0
as written in the comment in include/asm-generic/bitops/ffz.h
The only user of ffz() within arch/powerpc/ is
platforms/512x/mpc5121_ads_cpld.c, which checks if x is not 0xff
For non constant calls, the generated code is doing the same:
unsigned long testffz(unsigned long x)
{
return ffz(x);
}
On PPC32, before the patch:
00000018 <testffz>:
18: 7c 63 18 f9 not. r3,r3
1c: 40 82 00 0c bne 28 <testffz+0x10>
20: 38 60 00 20 li r3,32
24: 4e 80 00 20 blr
28: 7d 23 00 d0 neg r9,r3
2c: 7d 23 18 38 and r3,r9,r3
30: 7c 63 00 34 cntlzw r3,r3
34: 20 63 00 1f subfic r3,r3,31
38: 4e 80 00 20 blr
On PPC32, after the patch:
00000018 <testffz>:
18: 39 23 00 01 addi r9,r3,1
1c: 7d 23 18 78 andc r3,r9,r3
20: 7c 63 00 34 cntlzw r3,r3
24: 20 63 00 1f subfic r3,r3,31
28: 4e 80 00 20 blr
On PPC64, before the patch:
0000000000000030 <.testffz>:
30: 7c 60 18 f9 not. r0,r3
34: 38 60 00 40 li r3,64
38: 4d 82 00 20 beqlr
3c: 7c 60 00 d0 neg r3,r0
40: 7c 63 00 38 and r3,r3,r0
44: 7c 63 00 74 cntlzd r3,r3
48: 20 63 00 3f subfic r3,r3,63
4c: 7c 63 07 b4 extsw r3,r3
50: 4e 80 00 20 blr
On PPC64, after the patch:
0000000000000030 <.testffz>:
30: 38 03 00 01 addi r0,r3,1
34: 7c 03 18 78 andc r3,r0,r3
38: 7c 63 00 74 cntlzd r3,r3
3c: 20 63 00 3f subfic r3,r3,63
40: 4e 80 00 20 blr
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>