Similar to what kvm-intel.ko is doing, provide a single callback that
merges svm_set_cr3, set_tdp_cr3 and nested_svm_set_tdp_cr3.
This lets us unify the set_cr3 and set_tdp_cr3 entries in kvm_x86_ops.
I'm doing that in this same patch because splitting it adds quite a bit
of churn due to the need for forward declarations. For the same reason
the assignment to vcpu->arch.mmu->set_cr3 is moved to kvm_init_shadow_mmu
from init_kvm_softmmu and nested_svm_init_mmu_context.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current CPUID 0xd enumeration code does not support supervisor
states, because KVM only supports setting IA32_XSS to zero.
Change it instead to use a new variable supported_xss, to be
set from the hardware_setup callback which is in charge of CPU
capabilities.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle CPUID 0x8000000A in the main switch in __do_cpuid_func() and drop
->set_supported_cpuid() now that both VMX and SVM implementations are
empty. Like leaf 0x14 (Intel PT) and leaf 0x8000001F (SEV), leaf
0x8000000A is is (obviously) vendor specific but can be queried in
common code while respecting SVM's wishes by querying kvm_cpu_cap_has().
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move host_efer to common x86 code and use it for CPUID's is_efer_nx() to
avoid constantly re-reading the MSR.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop propagating MMU large page support into a memslot's disallow_lpage
now that the MMU's max_page_level handles the scenario where VMX's EPT is
enabled and EPT doesn't support 2M pages.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Configure the max page level during hardware setup to avoid a retpoline
in the page fault handler. Drop ->get_lpage_level() as the page fault
handler was the last user.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Combine kvm_enable_tdp() and kvm_disable_tdp() into a single function,
kvm_configure_mmu(), in preparation for doing additional configuration
during hardware setup. And because having separate helpers is silly.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmx_pt_mode_is_host_guest() in intel_pmu_refresh() instead of
bouncing through kvm_x86_ops->pt_supported, and remove ->pt_supported()
as the PMU code was the last remaining user.
Opportunistically clean up the wording of a comment that referenced
kvm_x86_ops->pt_supported().
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use cpu_has_vmx_rdtscp() directly when computing secondary exec controls
and drop the now defunct vmx_rdtscp_supported().
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for MSR_TSC_AUX virtualization via kvm_cpu_cap_has() and drop
->rdtscp_supported().
Note, vmx_rdtscp_supported() needs to hang around a tiny bit longer due
other usage in VMX code.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set emulated and transmuted (set based on other features) feature bits
via kvm_cpu_caps now that the CPUID output for KVM_GET_SUPPORTED_CPUID
is direcly overidden with kvm_cpu_caps.
Note, VMX emulation of UMIP already sets kvm_cpu_caps.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Override CPUID entries with kvm_cpu_caps during KVM_GET_SUPPORTED_CPUID
instead of masking the host CPUID result, which is redundant now that
the host CPUID is incorporated into kvm_cpu_caps at runtime.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set UMIP in kvm_cpu_caps when it is emulated by VMX, even though the
bit will effectively be dropped by do_host_cpuid(). This allows
checking for UMIP emulation via kvm_cpu_caps instead of a dedicated
kvm_x86_ops callback.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper, kvm_cpu_cap_check_and_set(), to query boot_cpu_has() as
part of setting a KVM cpu capability. VMX in particular has a number of
features that are dependent on both a VMCS capability and kernel
support.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the clearing of the XSAVES CPUID bit into VMX, which has a separate
VMCS control to enable XSAVES in non-root, to eliminate the last ugly
renmant of the undesirable "unsigned f_* = *_supported ? F(*) : 0"
pattern in the common CPUID handling code.
Drop ->xsaves_supported(), CPUID adjustment was the only user.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the recently introduced KVM CPU caps to propagate VMX-only (kernel)
settings to supported CPUID flags.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate the CPUID masks for KVM_GET_SUPPORTED_CPUID at load time using
what is effectively a KVM-adjusted copy of boot_cpu_data, or more
precisely, the x86_capability array in boot_cpu_data.
In terms of KVM support, the vast majority of CPUID feature bits are
constant, and *all* feature support is known at KVM load time. Rather
than apply boot_cpu_data, which is effectively read-only after init,
at runtime, copy it into a KVM-specific array and use *that* to mask
CPUID registers.
In additional to consolidating the masking, kvm_cpu_caps can be adjusted
by SVM/VMX at load time and thus eliminate all feature bit manipulation
in ->set_supported_cpuid().
Opportunistically clean up a few warts:
- Replace bare "unsigned" with "unsigned int" when a feature flag is
captured in a local variable, e.g. f_nx.
- Sort the CPUID masks by function, index and register (alphabetically
for registers, i.e. EBX comes before ECX/EDX).
- Remove the superfluous /* cpuid 7.0.ecx */ comments.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Call kvm_set_cpu_caps from kvm_x86_ops->hardware_setup due to fixed
GBPAGES patch. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the Processor Trace CPUID adjustment into VMX code to eliminate
an instance of the undesirable "unsigned f_* = *_supported ? F(*) : 0"
pattern in the common CPUID handling code, and to pave the way toward
eventually removing ->pt_supported().
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the clearing of the RDTSCP CPUID bit into VMX, which has a separate
VMCS control to enable RDTSCP in non-root, to eliminate an instance of
the undesirable "unsigned f_* = *_supported ? F(*) : 0" pattern in the
common CPUID handling code. Drop ->rdtscp_supported() since CPUID
adjustment was the last remaining user.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the setting of the PKU CPUID bit into VMX to eliminate an instance
of the undesirable "unsigned f_* = *_supported ? F(*) : 0" pattern in
the common CPUID handling code. Drop ->pku_supported(), CPUID
adjustment was the only user.
Note, some AMD CPUs now support PKU, but SVM doesn't yet support
exposing it to a guest.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the CPUID adjustment for UMIP emulation into VMX code to eliminate
an instance of the undesirable "unsigned f_* = *_supported ? F(*) : 0"
pattern in the common CPUID handling code.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the INVPCID CPUID adjustments into VMX to eliminate an instance of
the undesirable "unsigned f_* = *_supported ? F(*) : 0" pattern in the
common CPUID handling code. Drop ->invpcid_supported(), CPUID
adjustment was the only user.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the MPX CPUID adjustments into VMX to eliminate an instance of the
undesirable "unsigned f_* = *_supported ? F(*) : 0" pattern in the
common CPUID handling code.
Note, to maintain existing behavior, VMX must manually check for kernel
support for MPX by querying boot_cpu_has(X86_FEATURE_MPX). Previously,
do_cpuid_7_mask() masked MPX based on boot_cpu_data by invoking
cpuid_mask() on the associated cpufeatures word, but cpuid_mask() runs
prior to executing vmx_set_supported_cpuid().
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the explicit @func param from ->set_supported_cpuid() and instead
pull the CPUID function from the relevant entry. This sets the stage
for hardening guest CPUID updates in future patches, e.g. allows adding
run-time assertions that the CPUID feature being changed is actually
a bit in the referenced CPUID entry.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Query supported_xcr0 when checking for MPX support instead of invoking
->mpx_supported() and drop ->mpx_supported() as kvm_mpx_supported() was
its last user. Rename vmx_mpx_supported() to cpu_has_vmx_mpx() to
better align with VMX/VMCS nomenclature.
Modify VMX's adjustment of xcr0 to call cpus_has_vmx_mpx() (renamed from
vmx_mpx_supported()) directly to avoid reading supported_xcr0 before
it's fully configured.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Test that *all* bits are set. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new global variable, supported_xcr0, to track which xcr0 bits can
be exposed to the guest instead of calculating the mask on every call.
The supported bits are constant for a given instance of KVM.
This paves the way toward eliminating the ->mpx_supported() call in
kvm_mpx_supported(), e.g. eliminates multiple retpolines in VMX's nested
VM-Enter path, and eventually toward eliminating ->mpx_supported()
altogether.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add helpers to query which of the (two) supported PT modes is active.
The primary motivation is to help document that there is a third PT mode
(host-only) that's currently not supported by KVM. As is, it's not
obvious that PT_MODE_SYSTEM != !PT_MODE_HOST_GUEST and vice versa, e.g.
that "pt_mode == PT_MODE_SYSTEM" and "pt_mode != PT_MODE_HOST_GUEST" are
two distinct checks.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly pass an exception struct when checking for intercept from
the emulator, which eliminates the last reference to arch.emulate_ctxt
in vendor specific code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the call to cpu_has_vmx_ept_execute_only() when calculating which
EPT capabilities will be exposed to L1 for nested EPT. The resulting
configuration is immediately sanitized by the passed in @ept_caps, and
except for the call from vmx_check_processor_compat(), @ept_caps is the
capabilities that are queried by cpu_has_vmx_ept_execute_only(). For
vmx_check_processor_compat(), KVM *wants* to ignore vmx_capability.ept
so that a divergence in EPT capabilities between CPUs is detected.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename kvm_mmu->get_cr3() to call out that it is retrieving a guest
value, as opposed to kvm_mmu->set_cr3(), which sets a host value, and to
note that it will return something other than CR3 when nested EPT is in
use. Hopefully the new name will also make it more obvious that L1's
nested_cr3 is returned in SVM's nested NPT case.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename valid_ept_address() to nested_vmx_check_eptp() to follow the nVMX
nomenclature and to reflect that the function now checks a lot more than
just the address contained in the EPTP. Rename address to new_eptp in
associated code.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the accessor for vmcs12.EPTP to use "eptp" instead of "cr3". The
accessor has no relation to cr3 whatsoever, other than it being assigned
to the also poorly named kvm_mmu->get_cr3() hook.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for 5-level nested EPT, and advertise said support in the
EPT capabilities MSR. KVM's MMU can already handle 5-level legacy page
tables, there's no reason to force an L1 VMM to use shadow paging if it
wants to employ 5-level page tables.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return true for vmx_interrupt_allowed() if the vCPU is in L2 and L1 has
external interrupt exiting enabled. IRQs are never blocked in hardware
if the CPU is in the guest (L2 from L1's perspective) when IRQs trigger
VM-Exit.
The new check percolates up to kvm_vcpu_ready_for_interrupt_injection()
and thus vcpu_run(), and so KVM will exit to userspace if userspace has
requested an interrupt window (to inject an IRQ into L1).
Remove the @external_intr param from vmx_check_nested_events(), which is
actually an indicator that userspace wants an interrupt window, e.g.
it's named @req_int_win further up the stack. Injecting a VM-Exit into
L1 to try and bounce out to L0 userspace is all kinds of broken and is
no longer necessary.
Remove the hack in nested_vmx_vmexit() that attempted to workaround the
breakage in vmx_check_nested_events() by only filling interrupt info if
there's an actual interrupt pending. The hack actually made things
worse because it caused KVM to _never_ fill interrupt info when the
LAPIC resides in userspace (kvm_cpu_has_interrupt() queries
interrupt.injected, which is always cleared by prepare_vmcs12() before
reaching the hack in nested_vmx_vmexit()).
Fixes: 6550c4df7e ("KVM: nVMX: Fix interrupt window request with "Acknowledge interrupt on exit"")
Cc: stable@vger.kernel.org
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove some obsolete comments, fix wrong function name and description.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It could take kvm->mmu_lock for an extended period of time when
enabling dirty log for the first time. The main cost is to clear
all the D-bits of last level SPTEs. This situation can benefit from
manual dirty log protect as well, which can reduce the mmu_lock
time taken. The sequence is like this:
1. Initialize all the bits of the dirty bitmap to 1 when enabling
dirty log for the first time
2. Only write protect the huge pages
3. KVM_GET_DIRTY_LOG returns the dirty bitmap info
4. KVM_CLEAR_DIRTY_LOG will clear D-bit for each of the leaf level
SPTEs gradually in small chunks
Under the Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz environment,
I did some tests with a 128G windows VM and counted the time taken
of memory_global_dirty_log_start, here is the numbers:
VM Size Before After optimization
128G 460ms 10ms
Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the VM allocation and free code to common x86 as the logic is
more or less identical across SVM and VMX.
Note, although hyperv.hv_pa_pg is part of the common kvm->arch, it's
(currently) only allocated by VMX VMs. But, since kfree() plays nice
when passed a NULL pointer, the superfluous call for SVM is harmless
and avoids future churn if SVM gains support for HyperV's direct TLB
flush.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
[Make vm_size a field instead of a function. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Directly return the __vmalloc() result in {svm,vmx}_vm_alloc() to pave
the way for handling VM alloc/free in common x86 code, and to obviate
the need to check the result of __vmalloc() in vendor specific code.
Add a build-time assertion to ensure each structs' "kvm" field stays at
offset 0, which allows interpreting a "struct kvm_{svm,vmx}" as a
"struct kvm".
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check the result of __vmalloc() to avoid dereferencing a NULL pointer in
the event that allocation failres.
Fixes: d1e5b0e98e ("kvm: Make VM ioctl do valloc for some archs")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The sample_period of a counter tracks when that counter will
overflow and set global status/trigger a PMI. However this currently
only gets set when the initial counter is created or when a counter is
resumed; this updates the sample period after a wrmsr so running
counters will accurately reflect their new value.
Signed-off-by: Eric Hankland <ehankland@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Each if branch in handle_external_interrupt_irqoff() is mutually
exclusive. Add 'else' to make it clear and also avoid some unnecessary
check.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use %u to print u32 var and correct some coding style.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Better reflect the structure of the code and metion why we could not
always honor the guest.
Signed-off-by: Chia-I Wu <olvaffe@gmail.com>
Cc: Gurchetan Singh <gurchetansingh@chromium.org>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consult the 'unconditional IO exiting' and 'use IO bitmaps' VM-execution
controls when checking instruction interception. If the 'use IO bitmaps'
VM-execution control is 1, check the instruction access against the IO
bitmaps to determine if the instruction causes a VM-exit.
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Checks against the IO bitmap are useful for both instruction emulation
and VM-exit reflection. Refactor the IO bitmap checks into a helper
function.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_check_intercept is not yet fully implemented. To avoid emulating
instructions disallowed by the L1 hypervisor, refuse to emulate
instructions by default.
Cc: stable@vger.kernel.org
[Made commit, added commit msg - Oliver]
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commit 5f3d45e7f2 ("kvm/x86: add support for
MONITOR_TRAP_FLAG"), KVM has allowed an L1 guest to use the monitor trap
flag processor-based execution control for its L2 guest. KVM simply
forwards any MTF VM-exits to the L1 guest, which works for normal
instruction execution.
However, when KVM needs to emulate an instruction on the behalf of an L2
guest, the monitor trap flag is not emulated. Add the necessary logic to
kvm_skip_emulated_instruction() to synthesize an MTF VM-exit to L1 upon
instruction emulation for L2.
Fixes: 5f3d45e7f2 ("kvm/x86: add support for MONITOR_TRAP_FLAG")
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When apicv is disabled on a vCPU (e.g. by enabling KVM_CAP_HYPERV_SYNIC*),
nothing happens to VMX MSRs on the already existing vCPUs, however, all new
ones are created with PIN_BASED_POSTED_INTR filtered out. This is very
confusing and results in the following picture inside the guest:
$ rdmsr -ax 0x48d
ff00000016
7f00000016
7f00000016
7f00000016
This is observed with QEMU and 4-vCPU guest: QEMU creates vCPU0, does
KVM_CAP_HYPERV_SYNIC2 and then creates the remaining three.
L1 hypervisor may only check CPU0's controls to find out what features
are available and it will be very confused later. Switch to setting
PIN_BASED_POSTED_INTR control based on global 'enable_apicv' setting.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even when APICv is disabled for L1 it can (and, actually, is) still
available for L2, this means we need to always call
vmx_deliver_nested_posted_interrupt() when attempting an interrupt
delivery.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>