Many moons ago the binfmts were doing some very questionable things
with file descriptors and an unsharing of the file descriptor table
was added to make things better[1][2]. The helper steal_lockss was
added to avoid breaking the userspace programs[3][4][6].
Unfortunately it turned out that steal_locks did not work for network
file systems[5], so it was removed to see if anyone would
complain[7][8]. It was thought at the time that NPTL would not be
affected as the unshare_files happened after the other threads were
killed[8]. Unfortunately because there was an unshare_files in
binfmt_elf.c before the threads were killed this analysis was
incorrect.
This unshare_files in binfmt_elf.c resulted in the unshares_files
happening whenever threads were present. Which led to unshare_files
being moved to the start of do_execve[9].
Later the problems were rediscovered and the suggested approach was to
readd steal_locks under a different name[10]. I happened to be
reviewing patches and I noticed that this approach was a step
backwards[11].
I proposed simply moving unshare_files[12] and it was pointed
out that moving unshare_files without auditing the code was
also unsafe[13].
There were then several attempts to solve this[14][15][16] and I even
posted this set of changes[17]. Unfortunately because auditing all of
execve is time consuming this change did not make it in at the time.
Well now that I am cleaning up exec I have made the time to read
through all of the binfmts and the only playing with file descriptors
is either the security modules closing them in
security_bprm_committing_creds or is in the generic code in fs/exec.c.
None of it happens before begin_new_exec is called.
So move unshare_files into begin_new_exec, after the point of no
return. If memory is very very very low and the application calling
exec is sharing file descriptor tables between processes we might fail
past the point of no return. Which is unfortunate but no different
than any of the other places where we allocate memory after the point
of no return.
This movement allows another process that shares the file table, or
another thread of the same process and that closes files or changes
their close on exec behavior and races with execve to cause some
unexpected things to happen. There is only one time of check to time
of use race and it is just there so that execve fails instead of
an interpreter failing when it tries to open the file it is supposed
to be interpreting. Failing later if userspace is being silly is
not a problem.
With this change it the following discription from the removal
of steal_locks[8] finally becomes true.
Apps using NPTL are not affected, since all other threads are killed before
execve.
Apps using LinuxThreads are only affected if they
- have multiple threads during exec (LinuxThreads doesn't kill other
threads, the app may do it with pthread_kill_other_threads_np())
- rely on POSIX locks being inherited across exec
Both conditions are documented, but not their interaction.
Apps using clone() natively are affected if they
- use clone(CLONE_FILES)
- rely on POSIX locks being inherited across exec
I have investigated some paths to make it possible to solve this
without moving unshare_files but they all look more complicated[18].
Reported-by: Daniel P. Berrangé <berrange@redhat.com>
Reported-by: Jeff Layton <jlayton@redhat.com>
History-tree: git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
[1] 02cda956de0b ("[PATCH] unshare_files"
[2] 04e9bcb4d106 ("[PATCH] use new unshare_files helper")
[3] 088f5d7244de ("[PATCH] add steal_locks helper")
[4] 02c541ec8ffa ("[PATCH] use new steal_locks helper")
[5] https://lkml.kernel.org/r/E1FLIlF-0007zR-00@dorka.pomaz.szeredi.hu
[6] https://lkml.kernel.org/r/0060321191605.GB15997@sorel.sous-sol.org
[7] https://lkml.kernel.org/r/E1FLwjC-0000kJ-00@dorka.pomaz.szeredi.hu
[8] c89681ed7d ("[PATCH] remove steal_locks()")
[9] fd8328be87 ("[PATCH] sanitize handling of shared descriptor tables in failing execve()")
[10] https://lkml.kernel.org/r/20180317142520.30520-1-jlayton@kernel.org
[11] https://lkml.kernel.org/r/87r2nwqk73.fsf@xmission.com
[12] https://lkml.kernel.org/r/87bmfgvg8w.fsf@xmission.com
[13] https://lkml.kernel.org/r/20180322111424.GE30522@ZenIV.linux.org.uk
[14] https://lkml.kernel.org/r/20180827174722.3723-1-jlayton@kernel.org
[15] https://lkml.kernel.org/r/20180830172423.21964-1-jlayton@kernel.org
[16] https://lkml.kernel.org/r/20180914105310.6454-1-jlayton@kernel.org
[17] https://lkml.kernel.org/r/87a7ohs5ow.fsf@xmission.com
[18] https://lkml.kernel.org/r/87pn8c1uj6.fsf_-_@x220.int.ebiederm.org
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-1-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-1-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Commit 66f57b871e ("RDMA/restrack: Support all QP types") extends
ib_create_qp() to a named ib_create_named_qp(), which takes the caller's
name as argument, but it did not add the new argument description to the
function's kerneldoc.
make htmldocs warns:
./drivers/infiniband/core/verbs.c:1206: warning: Function parameter or member 'caller' not described in 'ib_create_named_qp'
Add a description for this new argument based on the description of the
same argument in other related functions.
Fixes: 66f57b871e ("RDMA/restrack: Support all QP types")
Link: https://lore.kernel.org/r/20201207173255.13355-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
This patch addresses minor issues in compression chksum.
Fixes: b28f047b28 ("f2fs: compress: support chksum")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
The K3 J721E family of SoCs have a revised version of the AM65x ICSSG IP
and contains two instances of this newer ICSSG IP. Each ICSSG processor
subsystem contains 2 primary PRU cores, 2 auxiliary PRU cores called RTUs,
and 2 new auxiliary cores called Transmit PRUs (Tx_PRUs).
Enhance the existing PRU remoteproc driver to support these new PRU
and RTU cores by using specific compatibles. The cores have the same
memory copying limitations as on AM65x, so reuses the custom memcpy
function within the driver's ELF loader implementation. The initial
names for the firmware images for each PRU core are retrieved from
DT nodes, and can be adjusted through sysfs if required.
Signed-off-by: Suman Anna <s-anna@ti.com>
Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Link: https://lore.kernel.org/r/20201208141002.17777-7-grzegorz.jaszczyk@linaro.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
The K3 AM65x family of SoCs have the next generation of the PRU-ICSS
processor subsystem, commonly referred to as ICSSG. Each ICSSG processor
subsystem on AM65x SR1.0 contains two primary PRU cores and two new
auxiliary PRU cores called RTUs. The AM65x SR2.0 SoCs have a revised
ICSSG IP that is based off the subsequent IP revision used on J721E
SoCs. This IP instance has two new custom auxiliary PRU cores called
Transmit PRUs (Tx_PRUs) in addition to the existing PRUs and RTUs.
Each RTU and Tx_PRU cores have their own dedicated IRAM (smaller than
a PRU), Control and debug feature sets, but is different in terms of
sub-modules integrated around it and does not have the full capabilities
associated with a PRU core. The RTU core is typically used to aid a
PRU core in accelerating data transfers, while the Tx_PRU cores is
normally used to control the TX L2 FIFO if enabled in Ethernet
applications. Both can also be used to run independent applications.
The RTU and Tx_PRU cores though share the same Data RAMs as the PRU
cores, so the memories have to be partitioned carefully between different
applications. The new cores also support a new sub-module called Task
Manager to support two different context thread executions.
Enhance the existing PRU remoteproc driver to support these new PRU, RTU
and Tx PRU cores by using specific compatibles. The initial names for the
firmware images for each PRU core are retrieved from DT nodes, and can
be adjusted through sysfs if required.
The PRU remoteproc driver has to be specifically modified to use a
custom memcpy function within its ELF loader implementation for these
new cores in order to overcome a limitation with copying data into each
of the core's IRAM memories. These memory ports support only 4-byte
writes, and any sub-word order byte writes clear out the remaining
bytes other than the bytes being written within the containing word.
The default ARM64 memcpy also cannot be used as it throws an exception
when the preferred 8-byte copy operation is attempted. This choice is
made by using a state flag that is set only on K3 SoCs.
Signed-off-by: Suman Anna <s-anna@ti.com>
Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Link: https://lore.kernel.org/r/20201208141002.17777-6-grzegorz.jaszczyk@linaro.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
The remoteproc core creates certain standard debugfs entries,
that does not give a whole lot of useful information for the
PRUs. The PRU remoteproc driver is enhanced to add additional
debugfs entries for PRU. These will be auto-cleaned up when
the parent rproc debug directory is removed.
The enhanced debugfs support adds two new entries: 'regs' and
'single_step'. The 'regs' dumps out the useful CTRL sub-module
registers as well as each of the 32 GPREGs and CT_REGs registers.
The GPREGs and CT_REGs though are printed only when the PRU is
halted and accessible as per the IP design.
The 'single_step' utilizes the single-step execution of the PRU
cores. Writing a non-zero value performs a single step, and a
zero value restores the PRU to execute in the same mode as the
mode before the first single step. (note: if the PRU is halted
because of a halt instruction, then no change occurs).
Logic for setting the PC and jumping over a halt instruction shall
be added in the future.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Link: https://lore.kernel.org/r/20201208141002.17777-5-grzegorz.jaszczyk@linaro.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
The firmware blob can contain optional ELF sections: .resource_table
section and .pru_irq_map one. The second one contains the PRUSS
interrupt mapping description, which needs to be setup before powering
on the PRU core. To avoid RAM wastage this ELF section is not mapped to
any ELF segment (by the firmware linker) and therefore is not loaded to
PRU memory.
The PRU interrupt configuration is handled within the PRUSS INTC irqchip
driver and leverages the system events to interrupt channels and host
interrupts mapping configuration. Relevant irq routing information is
passed through a special .pru_irq_map ELF section (for interrupts routed
to and used by PRU cores) or via the PRU application's device tree node
(for interrupts routed to and used by the main CPU). The mappings are
currently programmed during the booting/shutdown of the PRU.
The interrupt configuration passed through .pru_irq_map ELF section is
optional. It varies on specific firmware functionality and therefore
have to be unwinded during PRU stop and performed again during
PRU start.
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Co-developed-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Link: https://lore.kernel.org/r/20201208141002.17777-4-grzegorz.jaszczyk@linaro.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
The Programmable Real-Time Unit Subsystem (PRUSS) consists of
dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs)
for program execution. This patch adds a remoteproc platform
driver for managing the individual PRU RISC cores life cycle.
The PRUs do not have a unified address space (have an Instruction
RAM and a primary Data RAM at both 0x0). The PRU remoteproc driver
therefore uses a custom remoteproc core ELF loader ops. The added
.da_to_va ops is only used to provide translations for the PRU
Data RAMs. This remoteproc driver does not have support for error
recovery and system suspend/resume features. Different compatibles
are used to allow providing scalability for instance-specific device
data if needed. The driver uses a default firmware-name retrieved
from device-tree for each PRU core, and the firmwares are expected
to be present in the standard Linux firmware search paths. They can
also be adjusted by userspace if required through the sysfs interface
provided by the remoteproc core.
The PRU remoteproc driver uses a client-driven boot methodology: it
does _not_ support auto-boot so that the PRU load and boot is dictated
by the corresponding client drivers for achieving various usecases.
This allows flexibility for the client drivers or applications to set
a firmware name (if needed) based on their desired functionality and
boot the PRU. The sysfs bind and unbind attributes have also been
suppressed so that the PRU devices cannot be unbound and thereby
shutdown a PRU from underneath a PRU client driver.
The driver currently supports the AM335x, AM437x, AM57xx and 66AK2G
SoCs, and support for other TI SoCs will be added in subsequent
patches.
Co-developed-by: Andrew F. Davis <afd@ti.com>
Signed-off-by: Andrew F. Davis <afd@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Link: https://lore.kernel.org/r/20201208141002.17777-3-grzegorz.jaszczyk@linaro.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
The Programmable Real-Time Unit and Industrial Communication Subsystem
(PRU-ICSS or simply PRUSS) on various TI SoCs consists of dual 32-bit
RISC cores (Programmable Real-Time Units, or PRUs) for program execution.
The K3 AM65x amd J721E SoCs have the next generation of the PRU-ICSS IP,
commonly called ICSSG. The ICSSG IP on AM65x SoCs has two PRU cores,
two auxiliary custom PRU cores called Real Time Units (RTUs). The K3
AM65x SR2.0 and J721E SoCs have a revised version of the ICSSG IP, and
include two additional custom auxiliary PRU cores called Transmit PRUs
(Tx_PRUs).
This patch adds the bindings for these PRU cores. The binding covers the
OMAP architecture SoCs - AM33xx, AM437x and AM57xx; Keystone 2 architecture
based 66AK2G SoC; and the K3 architecture based SoCs - AM65x and J721E. The
Davinci based OMAPL138 SoCs will be covered in a future patch.
Reviewed-by: Rob Herring <robh@kernel.org>
Co-developed-by: Roger Quadros <rogerq@ti.com>
Signed-off-by: Roger Quadros <rogerq@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Link: https://lore.kernel.org/r/20201208141002.17777-2-grzegorz.jaszczyk@linaro.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
The MBA software controller (mba_sc) is a feedback loop which
periodically reads MBM counters and tries to restrict the bandwidth
below a user-specified value. It tags along the MBM counter overflow
handler to do the updates with 1s interval in mbm_update() and
update_mba_bw().
The purpose of mbm_update() is to periodically read the MBM counters to
make sure that the hardware counter doesn't wrap around more than once
between user samplings. mbm_update() calls __mon_event_count() for local
bandwidth updating when mba_sc is not enabled, but calls mbm_bw_count()
instead when mba_sc is enabled. __mon_event_count() will not be called
for local bandwidth updating in MBM counter overflow handler, but it is
still called when reading MBM local bandwidth counter file
'mbm_local_bytes', the call path is as below:
rdtgroup_mondata_show()
mon_event_read()
mon_event_count()
__mon_event_count()
In __mon_event_count(), m->chunks is updated by delta chunks which is
calculated from previous MSR value (m->prev_msr) and current MSR value.
When mba_sc is enabled, m->chunks is also updated in mbm_update() by
mistake by the delta chunks which is calculated from m->prev_bw_msr
instead of m->prev_msr. But m->chunks is not used in update_mba_bw() in
the mba_sc feedback loop.
When reading MBM local bandwidth counter file, m->chunks was changed
unexpectedly by mbm_bw_count(). As a result, the incorrect local
bandwidth counter which calculated from incorrect m->chunks is shown to
the user.
Fix this by removing incorrect m->chunks updating in mbm_bw_count() in
MBM counter overflow handler, and always calling __mon_event_count() in
mbm_update() to make sure that the hardware local bandwidth counter
doesn't wrap around.
Test steps:
# Run workload with aggressive memory bandwidth (e.g., 10 GB/s)
git clone https://github.com/intel/intel-cmt-cat && cd intel-cmt-cat
&& make
./tools/membw/membw -c 0 -b 10000 --read
# Enable MBA software controller
mount -t resctrl resctrl -o mba_MBps /sys/fs/resctrl
# Create control group c1
mkdir /sys/fs/resctrl/c1
# Set MB throttle to 6 GB/s
echo "MB:0=6000;1=6000" > /sys/fs/resctrl/c1/schemata
# Write PID of the workload to tasks file
echo `pidof membw` > /sys/fs/resctrl/c1/tasks
# Read local bytes counters twice with 1s interval, the calculated
# local bandwidth is not as expected (approaching to 6 GB/s):
local_1=`cat /sys/fs/resctrl/c1/mon_data/mon_L3_00/mbm_local_bytes`
sleep 1
local_2=`cat /sys/fs/resctrl/c1/mon_data/mon_L3_00/mbm_local_bytes`
echo "local b/w (bytes/s):" `expr $local_2 - $local_1`
Before fix:
local b/w (bytes/s): 11076796416
After fix:
local b/w (bytes/s): 5465014272
Fixes: ba0f26d852 (x86/intel_rdt/mba_sc: Prepare for feedback loop)
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/1607063279-19437-1-git-send-email-xiaochen.shen@intel.com
kvm/arm64 fixes for 5.10, take #5
- Don't leak page tables on PTE update
- Correctly invalidate TLBs on table to block transition
- Only update permissions if the fault level matches the
expected mapping size
We can't compile test_core_reloc_module.c selftest with clang 11, compile
fails with:
CLNG-LLC [test_maps] test_core_reloc_module.o
progs/test_core_reloc_module.c:57:21: error: use of unknown builtin \
'__builtin_preserve_type_info' [-Wimplicit-function-declaration]
out->read_ctx_sz = bpf_core_type_size(struct bpf_testmod_test_read_ctx);
Skipping these tests if __builtin_preserve_type_info() is not supported
by compiler.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201209142912.99145-1-jolsa@kernel.org
It has been observed that once per 300-1300 port openings the first
transmitted byte is being corrupted on AM3352 ("v" written to FIFO appeared
as "e" on the wire). It only happened if single byte has been transmitted
right after port open, which means, DMA is not used for this transfer and
the corruption never happened afterwards.
Therefore I've carefully re-read the MDR1 errata (link below), which says
"when accessing the MDR1 registers that causes a dummy under-run condition
that will freeze the UART in IrDA transmission. In UART mode, this may
corrupt the transferred data". Strictly speaking,
omap_8250_mdr1_errataset() performs a read access and if the value is the
same as should be written, exits without errata-recommended FIFO reset.
A brief check of the serial_omap_mdr1_errataset() from the competing
omap-serial driver showed it has no read access of MDR1. After removing the
read access from omap_8250_mdr1_errataset() the data corruption never
happened any more.
Link: https://www.ti.com/lit/er/sprz360i/sprz360i.pdf
Fixes: 61929cf016 ("tty: serial: Add 8250-core based omap driver")
Cc: stable@vger.kernel.org
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@gmail.com>
Link: https://lore.kernel.org/r/20201210055257.1053028-1-alexander.sverdlin@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
platform_get_resource_byname() may fail and in this case a NULL
dereference will occur.
Fix it to use devm_platform_ioremap_resource_byname() instead of calling
platform_get_resource_byname() and devm_ioremap().
This is detected by Coccinelle semantic patch.
@@
expression pdev, res, n, t, e, e1, e2;
@@
res = \(platform_get_resource\|platform_get_resource_byname\)(pdev, t,
n);
+ if (!res)
+ return -EINVAL;
... when != res == NULL
e = devm_ioremap(e1, res->start, e2);
Fixes: ad7fcbc308 ("slimbus: qcom: Add Qualcomm Slimbus controller driver")
Signed-off-by: Zhang Changzhong <zhangchangzhong@huawei.com>
Link: https://lore.kernel.org/r/1607392473-20610-1-git-send-email-zhangchangzhong@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In many cases a function that supports SuperSpeed can very well
operate in SuperSpeedPlus, if a gadget controller supports it,
as the endpoint descriptors (and companion descriptors) are
generally identical and can be re-used. This is true for two
commonly used functions: Android's ADB and MTP. So we can simply
assign the usb_function's ssp_descriptors array to point to its
ss_descriptors, if available. Similarly, we need to allow an
epfile's ioctl for FUNCTIONFS_ENDPOINT_DESC to correctly
return the corresponding SuperSpeed endpoint descriptor in case
the connected speed is SuperSpeedPlus as well.
The only exception is if a function wants to implement an
Isochronous endpoint capable of transferring more than 48KB per
service interval when operating at greater than USB 3.1 Gen1
speed, in which case it would require an additional SuperSpeedPlus
Isochronous Endpoint Companion descriptor to be returned as part
of the Configuration Descriptor. Support for that would need
to be separately added to the userspace-facing FunctionFS API
which may not be a trivial task--likely a new descriptor format
(v3?) may need to be devised to allow for separate SS and SSP
descriptors to be supplied.
Signed-off-by: Jack Pham <jackp@codeaurora.org>
Cc: stable <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20201027230731.9073-1-jackp@codeaurora.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Jan Kara's analysis of the syzbot report (edited):
The reproducer opens a directory on FUSE filesystem, it then attaches
dnotify mark to the open directory. After that a fuse_do_getattr() call
finds that attributes returned by the server are inconsistent, and calls
make_bad_inode() which, among other things does:
inode->i_mode = S_IFREG;
This then confuses dnotify which doesn't tear down its structures
properly and eventually crashes.
Avoid calling make_bad_inode() on a live inode: switch to a private flag on
the fuse inode. Also add the test to ops which the bad_inode_ops would
have caught.
This bug goes back to the initial merge of fuse in 2.6.14...
Reported-by: syzbot+f427adf9324b92652ccc@syzkaller.appspotmail.com
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Tested-by: Jan Kara <jack@suse.cz>
Cc: <stable@vger.kernel.org>