If we attempt to write to prealloc extent located after eof using a
RWF_NOWAIT write, we always fail with -EAGAIN.
We do actually check if we have an allocated extent for the write at
the start of btrfs_file_write_iter() through a call to check_can_nocow(),
but later when we go into the actual direct IO write path we simply
return -EAGAIN if the write starts at or beyond EOF.
Trivial to reproduce:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ touch /mnt/foo
$ chattr +C /mnt/foo
$ xfs_io -d -c "pwrite -S 0xab 0 64K" /mnt/foo
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0004 sec (135.575 MiB/sec and 34707.1584 ops/sec)
$ xfs_io -c "falloc -k 64K 1M" /mnt/foo
$ xfs_io -d -c "pwrite -N -V 1 -S 0xfe -b 64K 64K 64K" /mnt/foo
pwrite: Resource temporarily unavailable
On xfs and ext4 the write succeeds, as expected.
Fix this by removing the wrong check at btrfs_direct_IO().
Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we do a successful RWF_NOWAIT write we end up locking the snapshot lock
of the inode, through a call to check_can_nocow(), but we never unlock it.
This means the next attempt to create a snapshot on the subvolume will
hang forever.
Trivial reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ touch /mnt/foobar
$ chattr +C /mnt/foobar
$ xfs_io -d -c "pwrite -S 0xab 0 64K" /mnt/foobar
$ xfs_io -d -c "pwrite -N -V 1 -S 0xfe 0 64K" /mnt/foobar
$ btrfs subvolume snapshot -r /mnt /mnt/snap
--> hangs
Fix this by unlocking the snapshot lock if check_can_nocow() returned
success.
Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This brings back an optimization that commit e678934cbe ("btrfs:
Remove unnecessary check from join_running_log_trans") removed, but in
a different form. So it's almost equivalent to a revert.
That commit removed an optimization where we avoid locking a root's
log_mutex when there is no log tree created in the current transaction.
The affected code path is triggered through unlink operations.
That commit was based on the assumption that the optimization was not
necessary because we used to have the following checks when the patch
was authored:
int btrfs_del_dir_entries_in_log(...)
{
(...)
if (dir->logged_trans < trans->transid)
return 0;
ret = join_running_log_trans(root);
(...)
}
int btrfs_del_inode_ref_in_log(...)
{
(...)
if (inode->logged_trans < trans->transid)
return 0;
ret = join_running_log_trans(root);
(...)
}
However before that patch was merged, another patch was merged first which
replaced those checks because they were buggy.
That other patch corresponds to commit 803f0f64d1 ("Btrfs: fix fsync
not persisting dentry deletions due to inode evictions"). The assumption
that if the logged_trans field of an inode had a smaller value then the
current transaction's generation (transid) meant that the inode was not
logged in the current transaction was only correct if the inode was not
evicted and reloaded in the current transaction. So the corresponding bug
fix changed those checks and replaced them with the following helper
function:
static bool inode_logged(struct btrfs_trans_handle *trans,
struct btrfs_inode *inode)
{
if (inode->logged_trans == trans->transid)
return true;
if (inode->last_trans == trans->transid &&
test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
!test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
return true;
return false;
}
So if we have a subvolume without a log tree in the current transaction
(because we had no fsyncs), every time we unlink an inode we can end up
trying to lock the log_mutex of the root through join_running_log_trans()
twice, once for the inode being unlinked (by btrfs_del_inode_ref_in_log())
and once for the parent directory (with btrfs_del_dir_entries_in_log()).
This means if we have several unlink operations happening in parallel for
inodes in the same subvolume, and the those inodes and/or their parent
inode were changed in the current transaction, we end up having a lot of
contention on the log_mutex.
The test robots from intel reported a -30.7% performance regression for
a REAIM test after commit e678934cbe ("btrfs: Remove unnecessary check
from join_running_log_trans").
So just bring back the optimization to join_running_log_trans() where we
check first if a log root exists before trying to lock the log_mutex. This
is done by checking for a bit that is set on the root when a log tree is
created and removed when a log tree is freed (at transaction commit time).
Commit e678934cbe ("btrfs: Remove unnecessary check from
join_running_log_trans") was merged in the 5.4 merge window while commit
803f0f64d1 ("Btrfs: fix fsync not persisting dentry deletions due to
inode evictions") was merged in the 5.3 merge window. But the first
commit was actually authored before the second commit (May 23 2019 vs
June 19 2019).
Reported-by: kernel test robot <rong.a.chen@intel.com>
Link: https://lore.kernel.org/lkml/20200611090233.GL12456@shao2-debian/
Fixes: e678934cbe ("btrfs: Remove unnecessary check from join_running_log_trans")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When balance and scrub are running in parallel it is possible to end up
with an underflow of the bytes_may_use counter of the data space_info
object, which triggers a warning like the following:
[134243.793196] BTRFS info (device sdc): relocating block group 1104150528 flags data
[134243.806891] ------------[ cut here ]------------
[134243.807561] WARNING: CPU: 1 PID: 26884 at fs/btrfs/space-info.h:125 btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
[134243.808819] Modules linked in: btrfs blake2b_generic xor (...)
[134243.815779] CPU: 1 PID: 26884 Comm: kworker/u8:8 Tainted: G W 5.6.0-rc7-btrfs-next-58 #5
[134243.816944] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[134243.818389] Workqueue: writeback wb_workfn (flush-btrfs-108483)
[134243.819186] RIP: 0010:btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
[134243.819963] Code: 0b f2 85 (...)
[134243.822271] RSP: 0018:ffffa4160aae7510 EFLAGS: 00010287
[134243.822929] RAX: 000000000000c000 RBX: ffff96159a8c1000 RCX: 0000000000000000
[134243.823816] RDX: 0000000000008000 RSI: 0000000000000000 RDI: ffff96158067a810
[134243.824742] RBP: ffff96158067a800 R08: 0000000000000001 R09: 0000000000000000
[134243.825636] R10: ffff961501432a40 R11: 0000000000000000 R12: 000000000000c000
[134243.826532] R13: 0000000000000001 R14: ffffffffffff4000 R15: ffff96158067a810
[134243.827432] FS: 0000000000000000(0000) GS:ffff9615baa00000(0000) knlGS:0000000000000000
[134243.828451] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[134243.829184] CR2: 000055bd7e414000 CR3: 00000001077be004 CR4: 00000000003606e0
[134243.830083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[134243.830975] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[134243.831867] Call Trace:
[134243.832211] find_free_extent+0x4a0/0x16c0 [btrfs]
[134243.832846] btrfs_reserve_extent+0x91/0x180 [btrfs]
[134243.833487] cow_file_range+0x12d/0x490 [btrfs]
[134243.834080] fallback_to_cow+0x82/0x1b0 [btrfs]
[134243.834689] ? release_extent_buffer+0x121/0x170 [btrfs]
[134243.835370] run_delalloc_nocow+0x33f/0xa30 [btrfs]
[134243.836032] btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
[134243.836725] ? find_lock_delalloc_range+0x221/0x250 [btrfs]
[134243.837450] writepage_delalloc+0xe8/0x150 [btrfs]
[134243.838059] __extent_writepage+0xe8/0x4c0 [btrfs]
[134243.838674] extent_write_cache_pages+0x237/0x530 [btrfs]
[134243.839364] extent_writepages+0x44/0xa0 [btrfs]
[134243.839946] do_writepages+0x23/0x80
[134243.840401] __writeback_single_inode+0x59/0x700
[134243.841006] writeback_sb_inodes+0x267/0x5f0
[134243.841548] __writeback_inodes_wb+0x87/0xe0
[134243.842091] wb_writeback+0x382/0x590
[134243.842574] ? wb_workfn+0x4a2/0x6c0
[134243.843030] wb_workfn+0x4a2/0x6c0
[134243.843468] process_one_work+0x26d/0x6a0
[134243.843978] worker_thread+0x4f/0x3e0
[134243.844452] ? process_one_work+0x6a0/0x6a0
[134243.844981] kthread+0x103/0x140
[134243.845400] ? kthread_create_worker_on_cpu+0x70/0x70
[134243.846030] ret_from_fork+0x3a/0x50
[134243.846494] irq event stamp: 0
[134243.846892] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[134243.847682] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134243.848687] softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134243.849913] softirqs last disabled at (0): [<0000000000000000>] 0x0
[134243.850698] ---[ end trace bd7c03622e0b0a96 ]---
[134243.851335] ------------[ cut here ]------------
When relocating a data block group, for each extent allocated in the
block group we preallocate another extent with the same size for the
data relocation inode (we do it at prealloc_file_extent_cluster()).
We reserve space by calling btrfs_check_data_free_space(), which ends
up incrementing the data space_info's bytes_may_use counter, and
then call btrfs_prealloc_file_range() to allocate the extent, which
always decrements the bytes_may_use counter by the same amount.
The expectation is that writeback of the data relocation inode always
follows a NOCOW path, by writing into the preallocated extents. However,
when starting writeback we might end up falling back into the COW path,
because the block group that contains the preallocated extent was turned
into RO mode by a scrub running in parallel. The COW path then calls the
extent allocator which ends up calling btrfs_add_reserved_bytes(), and
this function decrements the bytes_may_use counter of the data space_info
object by an amount corresponding to the size of the allocated extent,
despite we haven't previously incremented it. When the counter currently
has a value smaller then the allocated extent we reset the counter to 0
and emit a warning, otherwise we just decrement it and slowly mess up
with this counter which is crucial for space reservation, the end result
can be granting reserved space to tasks when there isn't really enough
free space, and having the tasks fail later in critical places where
error handling consists of a transaction abort or hitting a BUG_ON().
Fix this by making sure that if we fallback to the COW path for a data
relocation inode, we increment the bytes_may_use counter of the data
space_info object. The COW path will then decrement it at
btrfs_add_reserved_bytes() on success or through its error handling part
by a call to extent_clear_unlock_delalloc() (which ends up calling
btrfs_clear_delalloc_extent() that does the decrement operation) in case
of an error.
Test case btrfs/061 from fstests could sporadically trigger this.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When running relocation of a data block group while scrub is running in
parallel, it is possible that the relocation will fail and abort the
current transaction with an -EINVAL error:
[134243.988595] BTRFS info (device sdc): found 14 extents, stage: move data extents
[134243.999871] ------------[ cut here ]------------
[134244.000741] BTRFS: Transaction aborted (error -22)
[134244.001692] WARNING: CPU: 0 PID: 26954 at fs/btrfs/ctree.c:1071 __btrfs_cow_block+0x6a7/0x790 [btrfs]
[134244.003380] Modules linked in: btrfs blake2b_generic xor raid6_pq (...)
[134244.012577] CPU: 0 PID: 26954 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #5
[134244.014162] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[134244.016184] RIP: 0010:__btrfs_cow_block+0x6a7/0x790 [btrfs]
[134244.017151] Code: 48 c7 c7 (...)
[134244.020549] RSP: 0018:ffffa41607863888 EFLAGS: 00010286
[134244.021515] RAX: 0000000000000000 RBX: ffff9614bdfe09c8 RCX: 0000000000000000
[134244.022822] RDX: 0000000000000001 RSI: ffffffffb3d63980 RDI: 0000000000000001
[134244.024124] RBP: ffff961589e8c000 R08: 0000000000000000 R09: 0000000000000001
[134244.025424] R10: ffffffffc0ae5955 R11: 0000000000000000 R12: ffff9614bd530d08
[134244.026725] R13: ffff9614ced41b88 R14: ffff9614bdfe2a48 R15: 0000000000000000
[134244.028024] FS: 00007f29b63c08c0(0000) GS:ffff9615ba600000(0000) knlGS:0000000000000000
[134244.029491] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[134244.030560] CR2: 00007f4eb339b000 CR3: 0000000130d6e006 CR4: 00000000003606f0
[134244.031997] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[134244.033153] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[134244.034484] Call Trace:
[134244.034984] btrfs_cow_block+0x12b/0x2b0 [btrfs]
[134244.035859] do_relocation+0x30b/0x790 [btrfs]
[134244.036681] ? do_raw_spin_unlock+0x49/0xc0
[134244.037460] ? _raw_spin_unlock+0x29/0x40
[134244.038235] relocate_tree_blocks+0x37b/0x730 [btrfs]
[134244.039245] relocate_block_group+0x388/0x770 [btrfs]
[134244.040228] btrfs_relocate_block_group+0x161/0x2e0 [btrfs]
[134244.041323] btrfs_relocate_chunk+0x36/0x110 [btrfs]
[134244.041345] btrfs_balance+0xc06/0x1860 [btrfs]
[134244.043382] ? btrfs_ioctl_balance+0x27c/0x310 [btrfs]
[134244.045586] btrfs_ioctl_balance+0x1ed/0x310 [btrfs]
[134244.045611] btrfs_ioctl+0x1880/0x3760 [btrfs]
[134244.049043] ? do_raw_spin_unlock+0x49/0xc0
[134244.049838] ? _raw_spin_unlock+0x29/0x40
[134244.050587] ? __handle_mm_fault+0x11b3/0x14b0
[134244.051417] ? ksys_ioctl+0x92/0xb0
[134244.052070] ksys_ioctl+0x92/0xb0
[134244.052701] ? trace_hardirqs_off_thunk+0x1a/0x1c
[134244.053511] __x64_sys_ioctl+0x16/0x20
[134244.054206] do_syscall_64+0x5c/0x280
[134244.054891] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[134244.055819] RIP: 0033:0x7f29b51c9dd7
[134244.056491] Code: 00 00 00 (...)
[134244.059767] RSP: 002b:00007ffcccc1dd08 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[134244.061168] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f29b51c9dd7
[134244.062474] RDX: 00007ffcccc1dda0 RSI: 00000000c4009420 RDI: 0000000000000003
[134244.063771] RBP: 0000000000000003 R08: 00005565cea4b000 R09: 0000000000000000
[134244.065032] R10: 0000000000000541 R11: 0000000000000202 R12: 00007ffcccc2060a
[134244.066327] R13: 00007ffcccc1dda0 R14: 0000000000000002 R15: 00007ffcccc1dec0
[134244.067626] irq event stamp: 0
[134244.068202] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[134244.069351] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134244.070909] softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
[134244.072392] softirqs last disabled at (0): [<0000000000000000>] 0x0
[134244.073432] ---[ end trace bd7c03622e0b0a99 ]---
The -EINVAL error comes from the following chain of function calls:
__btrfs_cow_block() <-- aborts the transaction
btrfs_reloc_cow_block()
replace_file_extents()
get_new_location() <-- returns -EINVAL
When relocating a data block group, for each allocated extent of the block
group, we preallocate another extent (at prealloc_file_extent_cluster()),
associated with the data relocation inode, and then dirty all its pages.
These preallocated extents have, and must have, the same size that extents
from the data block group being relocated have.
Later before we start the relocation stage that updates pointers (bytenr
field of file extent items) to point to the the new extents, we trigger
writeback for the data relocation inode. The expectation is that writeback
will write the pages to the previously preallocated extents, that it
follows the NOCOW path. That is generally the case, however, if a scrub
is running it may have turned the block group that contains those extents
into RO mode, in which case writeback falls back to the COW path.
However in the COW path instead of allocating exactly one extent with the
expected size, the allocator may end up allocating several smaller extents
due to free space fragmentation - because we tell it at cow_file_range()
that the minimum allocation size can match the filesystem's sector size.
This later breaks the relocation's expectation that an extent associated
to a file extent item in the data relocation inode has the same size as
the respective extent pointed by a file extent item in another tree - in
this case the extent to which the relocation inode poins to is smaller,
causing relocation.c:get_new_location() to return -EINVAL.
For example, if we are relocating a data block group X that has a logical
address of X and the block group has an extent allocated at the logical
address X + 128KiB with a size of 64KiB:
1) At prealloc_file_extent_cluster() we allocate an extent for the data
relocation inode with a size of 64KiB and associate it to the file
offset 128KiB (X + 128KiB - X) of the data relocation inode. This
preallocated extent was allocated at block group Z;
2) A scrub running in parallel turns block group Z into RO mode and
starts scrubing its extents;
3) Relocation triggers writeback for the data relocation inode;
4) When running delalloc (btrfs_run_delalloc_range()), we try first the
NOCOW path because the data relocation inode has BTRFS_INODE_PREALLOC
set in its flags. However, because block group Z is in RO mode, the
NOCOW path (run_delalloc_nocow()) falls back into the COW path, by
calling cow_file_range();
5) At cow_file_range(), in the first iteration of the while loop we call
btrfs_reserve_extent() to allocate a 64KiB extent and pass it a minimum
allocation size of 4KiB (fs_info->sectorsize). Due to free space
fragmentation, btrfs_reserve_extent() ends up allocating two extents
of 32KiB each, each one on a different iteration of that while loop;
6) Writeback of the data relocation inode completes;
7) Relocation proceeds and ends up at relocation.c:replace_file_extents(),
with a leaf which has a file extent item that points to the data extent
from block group X, that has a logical address (bytenr) of X + 128KiB
and a size of 64KiB. Then it calls get_new_location(), which does a
lookup in the data relocation tree for a file extent item starting at
offset 128KiB (X + 128KiB - X) and belonging to the data relocation
inode. It finds a corresponding file extent item, however that item
points to an extent that has a size of 32KiB, which doesn't match the
expected size of 64KiB, resuling in -EINVAL being returned from this
function and propagated up to __btrfs_cow_block(), which aborts the
current transaction.
To fix this make sure that at cow_file_range() when we call the allocator
we pass it a minimum allocation size corresponding the desired extent size
if the inode belongs to the data relocation tree, otherwise pass it the
filesystem's sector size as the minimum allocation size.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a race between block group removal and block group creation
when the removal is completed by a task running fitrim or scrub. When
this happens we end up failing the block group creation with an error
-EEXIST since we attempt to insert a duplicate block group item key
in the extent tree. That results in a transaction abort.
The race happens like this:
1) Task A is doing a fitrim, and at btrfs_trim_block_group() it freezes
block group X with btrfs_freeze_block_group() (until very recently
that was named btrfs_get_block_group_trimming());
2) Task B starts removing block group X, either because it's now unused
or due to relocation for example. So at btrfs_remove_block_group(),
while holding the chunk mutex and the block group's lock, it sets
the 'removed' flag of the block group and it sets the local variable
'remove_em' to false, because the block group is currently frozen
(its 'frozen' counter is > 0, until very recently this counter was
named 'trimming');
3) Task B unlocks the block group and the chunk mutex;
4) Task A is done trimming the block group and unfreezes the block group
by calling btrfs_unfreeze_block_group() (until very recently this was
named btrfs_put_block_group_trimming()). In this function we lock the
block group and set the local variable 'cleanup' to true because we
were able to decrement the block group's 'frozen' counter down to 0 and
the flag 'removed' is set in the block group.
Since 'cleanup' is set to true, it locks the chunk mutex and removes
the extent mapping representing the block group from the mapping tree;
5) Task C allocates a new block group Y and it picks up the logical address
that block group X had as the logical address for Y, because X was the
block group with the highest logical address and now the second block
group with the highest logical address, the last in the fs mapping tree,
ends at an offset corresponding to block group X's logical address (this
logical address selection is done at volumes.c:find_next_chunk()).
At this point the new block group Y does not have yet its item added
to the extent tree (nor the corresponding device extent items and
chunk item in the device and chunk trees). The new group Y is added to
the list of pending block groups in the transaction handle;
6) Before task B proceeds to removing the block group item for block
group X from the extent tree, which has a key matching:
(X logical offset, BTRFS_BLOCK_GROUP_ITEM_KEY, length)
task C while ending its transaction handle calls
btrfs_create_pending_block_groups(), which finds block group Y and
tries to insert the block group item for Y into the exten tree, which
fails with -EEXIST since logical offset is the same that X had and
task B hasn't yet deleted the key from the extent tree.
This failure results in a transaction abort, producing a stack like
the following:
------------[ cut here ]------------
BTRFS: Transaction aborted (error -17)
WARNING: CPU: 2 PID: 19736 at fs/btrfs/block-group.c:2074 btrfs_create_pending_block_groups+0x1eb/0x260 [btrfs]
Modules linked in: btrfs blake2b_generic xor raid6_pq (...)
CPU: 2 PID: 19736 Comm: fsstress Tainted: G W 5.6.0-rc7-btrfs-next-58 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_create_pending_block_groups+0x1eb/0x260 [btrfs]
Code: ff ff ff 48 8b 55 50 f0 48 (...)
RSP: 0018:ffffa4160a1c7d58 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff961581909d98 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffffb3d63990 RDI: 0000000000000001
RBP: ffff9614f3356a58 R08: 0000000000000000 R09: 0000000000000001
R10: ffff9615b65b0040 R11: 0000000000000000 R12: ffff961581909c10
R13: ffff9615b0c32000 R14: ffff9614f3356ab0 R15: ffff9614be779000
FS: 00007f2ce2841e80(0000) GS:ffff9615bae00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555f18780000 CR3: 0000000131d34005 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_start_dirty_block_groups+0x398/0x4e0 [btrfs]
btrfs_commit_transaction+0xd0/0xc50 [btrfs]
? btrfs_attach_transaction_barrier+0x1e/0x50 [btrfs]
? __ia32_sys_fdatasync+0x20/0x20
iterate_supers+0xdb/0x180
ksys_sync+0x60/0xb0
__ia32_sys_sync+0xa/0x10
do_syscall_64+0x5c/0x280
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f2ce1d4d5b7
Code: 83 c4 08 48 3d 01 (...)
RSP: 002b:00007ffd8b558c58 EFLAGS: 00000202 ORIG_RAX: 00000000000000a2
RAX: ffffffffffffffda RBX: 000000000000002c RCX: 00007f2ce1d4d5b7
RDX: 00000000ffffffff RSI: 00000000186ba07b RDI: 000000000000002c
RBP: 0000555f17b9e520 R08: 0000000000000012 R09: 000000000000ce00
R10: 0000000000000078 R11: 0000000000000202 R12: 0000000000000032
R13: 0000000051eb851f R14: 00007ffd8b558cd0 R15: 0000555f1798ec20
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace bd7c03622e0b0a9c ]---
Fix this simply by making btrfs_remove_block_group() remove the block
group's item from the extent tree before it flags the block group as
removed. Also make the free space deletion from the free space tree
before flagging the block group as removed, to avoid a similar race
with adding and removing free space entries for the free space tree.
Fixes: 04216820fe ("Btrfs: fix race between fs trimming and block group remove/allocation")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When removing a block group, if we fail to delete the block group's item
from the extent tree, we jump to the 'out' label and end up decrementing
the block group's reference count once only (by 1), resulting in a counter
leak because the block group at that point was already removed from the
block group cache rbtree - so we have to decrement the reference count
twice, once for the rbtree and once for our lookup at the start of the
function.
There is a second bug where if removing the free space tree entries (the
call to remove_block_group_free_space()) fails we end up jumping to the
'out_put_group' label but end up decrementing the reference count only
once, when we should have done it twice, since we have already removed
the block group from the block group cache rbtree. This happens because
the reference count decrement for the rbtree reference happens after
attempting to remove the free space tree entries, which is far away from
the place where we remove the block group from the rbtree.
To make things less error prone, decrement the reference count for the
rbtree immediately after removing the block group from it. This also
eleminates the need for two different exit labels on error, renaming
'out_put_label' to just 'out' and removing the old 'out'.
Fixes: f6033c5e33 ("btrfs: fix block group leak when removing fails")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit a43a67a2d7.
This patch reverts the main part of switching direct io implementation
to iomap infrastructure. There's a problem in invalidate page that
couldn't be solved as regression in this development cycle.
The problem occurs when buffered and direct io are mixed, and the ranges
overlap. Although this is not recommended, filesystems implement
measures or fallbacks to make it somehow work. In this case, fallback to
buffered IO would be an option for btrfs (this already happens when
direct io is done on compressed data), but the change would be needed in
the iomap code, bringing new semantics to other filesystems.
Another problem arises when again the buffered and direct ios are mixed,
invalidation fails, then -EIO is set on the mapping and fsync will fail,
though there's no real error.
There have been discussions how to fix that, but revert seems to be the
least intrusive option.
Link: https://lore.kernel.org/linux-btrfs/20200528192103.xm45qoxqmkw7i5yl@fiona/
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit b75b7ca7c2.
The patch restores a helper that was not necessary after direct IO port
to iomap infrastructure, which gets reverted.
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit 5f008163a5.
The patch is a simplification after direct IO port to iomap
infrastructure, which gets reverted.
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit d8f3e73587.
The patch is a cleanup of direct IO port to iomap infrastructure,
which gets reverted.
Signed-off-by: David Sterba <dsterba@suse.com>
We always preallocate a data extent for writing a free space cache, which
causes writeback to always try the nocow path first, since the free space
inode has the prealloc bit set in its flags.
However if the block group that contains the data extent for the space
cache has been turned to RO mode due to a running scrub or balance for
example, we have to fallback to the cow path. In that case once a new data
extent is allocated we end up calling btrfs_add_reserved_bytes(), which
decrements the counter named bytes_may_use from the data space_info object
with the expection that this counter was previously incremented with the
same amount (the size of the data extent).
However when we started writeout of the space cache at cache_save_setup(),
we incremented the value of the bytes_may_use counter through a call to
btrfs_check_data_free_space() and then decremented it through a call to
btrfs_prealloc_file_range_trans() immediately after. So when starting the
writeback if we fallback to cow mode we have to increment the counter
bytes_may_use of the data space_info again to compensate for the extent
allocation done by the cow path.
When this issue happens we are incorrectly decrementing the bytes_may_use
counter and when its current value is smaller then the amount we try to
subtract we end up with the following warning:
------------[ cut here ]------------
WARNING: CPU: 3 PID: 657 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
CPU: 3 PID: 657 Comm: kworker/u8:7 Tainted: G W 5.6.0-rc7-btrfs-next-58 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Workqueue: writeback wb_workfn (flush-btrfs-1591)
RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Code: ff ff 48 (...)
RSP: 0000:ffffa41608f13660 EFLAGS: 00010287
RAX: 0000000000001000 RBX: ffff9615b93ae400 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9615b96ab410
RBP: fffffffffffee000 R08: 0000000000000001 R09: 0000000000000000
R10: ffff961585e62a40 R11: 0000000000000000 R12: ffff9615b96ab400
R13: ffff9615a1a2a000 R14: 0000000000012000 R15: ffff9615b93ae400
FS: 0000000000000000(0000) GS:ffff9615bb200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055cbbc2ae178 CR3: 0000000115794006 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
find_free_extent+0x4a0/0x16c0 [btrfs]
btrfs_reserve_extent+0x91/0x180 [btrfs]
cow_file_range+0x12d/0x490 [btrfs]
btrfs_run_delalloc_range+0x9f/0x6d0 [btrfs]
? find_lock_delalloc_range+0x221/0x250 [btrfs]
writepage_delalloc+0xe8/0x150 [btrfs]
__extent_writepage+0xe8/0x4c0 [btrfs]
extent_write_cache_pages+0x237/0x530 [btrfs]
extent_writepages+0x44/0xa0 [btrfs]
do_writepages+0x23/0x80
__writeback_single_inode+0x59/0x700
writeback_sb_inodes+0x267/0x5f0
__writeback_inodes_wb+0x87/0xe0
wb_writeback+0x382/0x590
? wb_workfn+0x4a2/0x6c0
wb_workfn+0x4a2/0x6c0
process_one_work+0x26d/0x6a0
worker_thread+0x4f/0x3e0
? process_one_work+0x6a0/0x6a0
kthread+0x103/0x140
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x3a/0x50
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace bd7c03622e0b0a52 ]---
------------[ cut here ]------------
So fix this by incrementing the bytes_may_use counter of the data
space_info when we fallback to the cow path. If the cow path is successful
the counter is decremented after extent allocation (by
btrfs_add_reserved_bytes()), if it fails it ends up being decremented as
well when clearing the delalloc range (extent_clear_unlock_delalloc()).
This could be triggered sporadically by the test case btrfs/061 from
fstests.
Fixes: 82d5902d9c ("Btrfs: Support reading/writing on disk free ino cache")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a buffered write we always try to reserve data space for it,
even when the file has the NOCOW bit set or the write falls into a file
range covered by a prealloc extent. This is done both because it is
expensive to check if we can do a nocow write (checking if an extent is
shared through reflinks or if there's a hole in the range for example),
and because when writeback starts we might actually need to fallback to
COW mode (for example the block group containing the target extents was
turned into RO mode due to a scrub or balance).
When we are unable to reserve data space we check if we can do a nocow
write, and if we can, we proceed with dirtying the pages and setting up
the range for delalloc. In this case the bytes_may_use counter of the
data space_info object is not incremented, unlike in the case where we
are able to reserve data space (done through btrfs_check_data_free_space()
which calls btrfs_alloc_data_chunk_ondemand()).
Later when running delalloc we attempt to start writeback in nocow mode
but we might revert back to cow mode, for example because in the meanwhile
a block group was turned into RO mode by a scrub or relocation. The cow
path after successfully allocating an extent ends up calling
btrfs_add_reserved_bytes(), which expects the bytes_may_use counter of
the data space_info object to have been incremented before - but we did
not do it when the buffered write started, since there was not enough
available data space. So btrfs_add_reserved_bytes() ends up decrementing
the bytes_may_use counter anyway, and when the counter's current value
is smaller then the size of the allocated extent we get a stack trace
like the following:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 20138 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
CPU: 0 PID: 20138 Comm: kworker/u8:15 Not tainted 5.6.0-rc7-btrfs-next-58 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Workqueue: writeback wb_workfn (flush-btrfs-1754)
RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
Code: ff ff 48 (...)
RSP: 0018:ffffbda18a4b3568 EFLAGS: 00010287
RAX: 0000000000000000 RBX: ffff9ca076f5d800 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9ca068470410
RBP: fffffffffffff000 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ca079d58040 R11: 0000000000000000 R12: ffff9ca068470400
R13: ffff9ca0408b2000 R14: 0000000000001000 R15: ffff9ca076f5d800
FS: 0000000000000000(0000) GS:ffff9ca07a600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005605dbfe7048 CR3: 0000000138570006 CR4: 00000000003606f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
find_free_extent+0x4a0/0x16c0 [btrfs]
btrfs_reserve_extent+0x91/0x180 [btrfs]
cow_file_range+0x12d/0x490 [btrfs]
run_delalloc_nocow+0x341/0xa40 [btrfs]
btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
? find_lock_delalloc_range+0x221/0x250 [btrfs]
writepage_delalloc+0xe8/0x150 [btrfs]
__extent_writepage+0xe8/0x4c0 [btrfs]
extent_write_cache_pages+0x237/0x530 [btrfs]
? btrfs_wq_submit_bio+0x9f/0xc0 [btrfs]
extent_writepages+0x44/0xa0 [btrfs]
do_writepages+0x23/0x80
__writeback_single_inode+0x59/0x700
writeback_sb_inodes+0x267/0x5f0
__writeback_inodes_wb+0x87/0xe0
wb_writeback+0x382/0x590
? wb_workfn+0x4a2/0x6c0
wb_workfn+0x4a2/0x6c0
process_one_work+0x26d/0x6a0
worker_thread+0x4f/0x3e0
? process_one_work+0x6a0/0x6a0
kthread+0x103/0x140
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x3a/0x50
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
softirqs last enabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace f9f6ef8ec4cd8ec9 ]---
So to fix this, when falling back into cow mode check if space was not
reserved, by testing for the bit EXTENT_NORESERVE in the respective file
range, and if not, increment the bytes_may_use counter for the data
space_info object. Also clear the EXTENT_NORESERVE bit from the range, so
that if the cow path fails it decrements the bytes_may_use counter when
clearing the delalloc range (through the btrfs_clear_delalloc_extent()
callback).
Fixes: 7ee9e4405f ("Btrfs: check if we can nocow if we don't have data space")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If an error happens while running dellaloc in COW mode for a range, we can
end up calling extent_clear_unlock_delalloc() for a range that goes beyond
our range's end offset by 1 byte, which affects 1 extra page. This results
in clearing bits and doing page operations (such as a page unlock) outside
our target range.
Fix that by calling extent_clear_unlock_delalloc() with an inclusive end
offset, instead of an exclusive end offset, at cow_file_range().
Fixes: a315e68f6e ("Btrfs: fix invalid attempt to free reserved space on failure to cow range")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The local 'b' variable is only used to directly read values from passed
extent buffer. So eliminate it and directly use the input parameter.
Furthermore this shrinks the size of the following functions:
./scripts/bloat-o-meter ctree.orig fs/btrfs/ctree.o
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-73 (-73)
Function old new delta
read_block_for_search.isra 876 871 -5
push_node_left 1112 1044 -68
Total: Before=50348, After=50275, chg -0.14%
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function wraps the optimisation implemented by d7396f0735
("Btrfs: optimize key searches in btrfs_search_slot") however this
optimisation is really used in only one place - btrfs_search_slot.
Just open code the optimisation and also add a comment explaining how it
works since it's not clear just by looking at the code - the key point
here is it depends on an internal invariant that BTRFS' btree provides,
namely intermediate pointers always contain the key at slot0 at the
child node. So in the case of exact match we can safely assume that the
given key will always be in slot 0 on lower levels.
Furthermore this results in a reduction of btrfs_search_slot's size:
./scripts/bloat-o-meter ctree.orig fs/btrfs/ctree.o
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-75 (-75)
Function old new delta
btrfs_search_slot 2783 2708 -75
Total: Before=50423, After=50348, chg -0.15%
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The read and write versions don't have anything in common except for the
call to iomap_dio_rw. So split this function, and merge each half into
its only caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we now perform direct reads using i_rwsem, we can remove this
inode flag used to co-ordinate unlocked reads.
The truncate call takes i_rwsem. This means it is correctly synchronized
with concurrent direct reads.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jth@kernel.org>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we removed the last user of dio_end_io(), remove the helper
function dio_end_io().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Switch from __blockdev_direct_IO() to iomap_dio_rw().
Rename btrfs_get_blocks_direct() to btrfs_dio_iomap_begin() and use it
as iomap_begin() for iomap direct I/O functions. This function
allocates and locks all the blocks required for the I/O.
btrfs_submit_direct() is used as the submit_io() hook for direct I/O
ops.
Since we need direct I/O reads to go through iomap_dio_rw(), we change
file_operations.read_iter() to a btrfs_file_read_iter() which calls
btrfs_direct_IO() for direct reads and falls back to
generic_file_buffered_read() for incomplete reads and buffered reads.
We don't need address_space.direct_IO() anymore so set it to noop.
Similarly, we don't need flags used in __blockdev_direct_IO(). iomap is
capable of direct I/O reads from a hole, so we don't need to return
-ENOENT.
BTRFS direct I/O is now done under i_rwsem, shared in case of reads and
exclusive in case of writes. This guards against simultaneous truncates.
Use iomap->iomap_end() to check for failed or incomplete direct I/O:
- for writes, call __endio_write_update_ordered()
- for reads, unlock extents
btrfs_dio_data is now hooked in iomap->private and not
current->journal_info. It carries the reservation variable and the
amount of data submitted, so we can calculate the amount of data to call
__endio_write_update_ordered in case of an error.
This patch removes last use of struct buffer_head from btrfs.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Filesystems such as btrfs can perform direct I/O without holding the
inode->i_rwsem in some of the cases like writing within i_size. So,
remove the check for lockdep_assert_held() in iomap_dio_rw().
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This helps filesystems to perform tasks on the bio while submitting for
I/O. This could be post-write operations such as data CRC or data
replication for fs-handled RAID.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Export generic_file_buffered_read() to be used to supplement incomplete
direct reads.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 1afb648e94 ("btrfs: use standard debug config option to
enable free-space-cache debug prints"), we started to log error messages
that were never logged before since there was no DEBUG macro defined
anywhere. This started to make test case btrfs/187 to fail very often,
as it greps for any btrfs error messages in dmesg/syslog and fails if
any is found:
(...)
btrfs/186 1s ... 2s
btrfs/187 - output mismatch (see .../results//btrfs/187.out.bad)
\--- tests/btrfs/187.out 2019-05-17 12:48:32.537340749 +0100
\+++ /home/fdmanana/git/hub/xfstests/results//btrfs/187.out.bad ...
\@@ -1,3 +1,8 @@
QA output created by 187
Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/snap1'
Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/snap2'
+[268364.139958] BTRFS error (device sdc): failed to write free space cache for block group 30408704
+[268380.156503] BTRFS error (device sdc): failed to write free space cache for block group 30408704
+[268380.161703] BTRFS error (device sdc): failed to write free space cache for block group 30408704
+[268380.253180] BTRFS error (device sdc): failed to write free space cache for block group 30408704
...
(Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/187.out ...
btrfs/188 4s ... 2s
(...)
The space cache write failures happen due to ENOSPC when attempting to
update the free space cache items in the root tree. This happens because
when starting or joining a transaction we don't know how many block
groups we will end up changing (due to extent allocation or release) and
therefore never reserve space for updating free space cache items.
More often than not, the free space cache writeout succeeds since the
metadata space info is not yet full nor very close to being full, but
when it is, the space cache writeout fails with ENOSPC.
Occasional failures to write space caches are not considered critical
since they can be rebuilt when mounting the filesystem or the next
attempt to write a free space cache in the next transaction commit might
succeed, so we used to hide those error messages with a preprocessor
check for the existence of the DEBUG macro that was never enabled
anywhere.
A few other generic test cases also trigger the error messages due to
ENOSPC failure when writing free space caches as well, however they don't
fail since they don't grep dmesg/syslog for any btrfs specific error
messages.
So change the messages from 'error' level to 'debug' level, as it doesn't
make much sense to have error messages triggered only if the debug macro
is enabled plus, more importantly, the error is not serious nor highly
unexpected.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the error messages logged when we fail to write a free space
cache or an inode cache are not very useful as they don't mention what
was the error. So include the error number in the messages.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The label 'fail_unlock' is pointless, all it does is to jump to the label
'out', so just remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are currently treating any non-zero return value from btrfs_next_leaf()
the same way, by going to the code that inserts a new checksum item in the
tree. However if btrfs_next_leaf() returns an error (a value < 0), we
should just stop and return the error, and not behave as if nothing has
happened, since in that case we do not have a way to know if there is a
next leaf or we are currently at the last leaf already.
So fix that by returning the error from btrfs_next_leaf().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we want to add checksums into the checksums tree, or a log tree, we
try whenever possible to extend existing checksum items, as this helps
reduce amount of metadata space used, since adding a new item uses extra
metadata space for a btrfs_item structure (25 bytes).
However we have two inefficiencies in the current approach:
1) After finding a checksum item that covers a range with an end offset
that matches the start offset of the checksum range we want to insert,
we release the search path populated by btrfs_lookup_csum() and then
do another COW search on tree with the goal of getting additional
space for at least one checksum. Doing this path release and then
searching again is a waste of time because very often the leaf already
has enough free space for at least one more checksum;
2) After the COW search that guarantees we get free space in the leaf for
at least one more checksum, we end up not doing the extension of the
previous checksum item, and fallback to insertion of a new checksum
item, if the leaf doesn't have an amount of free space larger then the
space required for 2 checksums plus one btrfs_item structure - this is
pointless for two reasons:
a) We want to extend an existing item, so we don't need to account for
a btrfs_item structure (25 bytes);
b) We made the COW search with an insertion size for 1 single checksum,
so if the leaf ends up with a free space amount smaller then 2
checksums plus the size of a btrfs_item structure, we give up on the
extension of the existing item and jump to the 'insert' label, where
we end up releasing the path and then doing yet another search to
insert a new checksum item for a single checksum.
Fix these inefficiencies by doing the following:
- For case 1), before releasing the path just check if the leaf already
has enough space for at least 1 more checksum, and if it does, jump
directly to the item extension code, with releasing our current path,
which was already COWed by btrfs_lookup_csum();
- For case 2), fix the logic so that for item extension we require only
that the leaf has enough free space for 1 checksum, and not a minimum
of 2 checksums plus space for a btrfs_item structure.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we have extents shared amongst different inodes in the same subvolume,
if we fsync them in parallel we can end up with checksum items in the log
tree that represent ranges which overlap.
For example, consider we have inodes A and B, both sharing an extent that
covers the logical range from X to X + 64KiB:
1) Task A starts an fsync on inode A;
2) Task B starts an fsync on inode B;
3) Task A calls btrfs_csum_file_blocks(), and the first search in the
log tree, through btrfs_lookup_csum(), returns -EFBIG because it
finds an existing checksum item that covers the range from X - 64KiB
to X;
4) Task A checks that the checksum item has not reached the maximum
possible size (MAX_CSUM_ITEMS) and then releases the search path
before it does another path search for insertion (through a direct
call to btrfs_search_slot());
5) As soon as task A releases the path and before it does the search
for insertion, task B calls btrfs_csum_file_blocks() and gets -EFBIG
too, because there is an existing checksum item that has an end
offset that matches the start offset (X) of the checksum range we want
to log;
6) Task B releases the path;
7) Task A does the path search for insertion (through btrfs_search_slot())
and then verifies that the checksum item that ends at offset X still
exists and extends its size to insert the checksums for the range from
X to X + 64KiB;
8) Task A releases the path and returns from btrfs_csum_file_blocks(),
having inserted the checksums into an existing checksum item that got
its size extended. At this point we have one checksum item in the log
tree that covers the logical range from X - 64KiB to X + 64KiB;
9) Task B now does a search for insertion using btrfs_search_slot() too,
but it finds that the previous checksum item no longer ends at the
offset X, it now ends at an of offset X + 64KiB, so it leaves that item
untouched.
Then it releases the path and calls btrfs_insert_empty_item()
that inserts a checksum item with a key offset corresponding to X and
a size for inserting a single checksum (4 bytes in case of crc32c).
Subsequent iterations end up extending this new checksum item so that
it contains the checksums for the range from X to X + 64KiB.
So after task B returns from btrfs_csum_file_blocks() we end up with
two checksum items in the log tree that have overlapping ranges, one
for the range from X - 64KiB to X + 64KiB, and another for the range
from X to X + 64KiB.
Having checksum items that represent ranges which overlap, regardless of
being in the log tree or in the chekcsums tree, can lead to problems where
checksums for a file range end up not being found. This type of problem
has happened a few times in the past and the following commits fixed them
and explain in detail why having checksum items with overlapping ranges is
problematic:
27b9a8122f "Btrfs: fix csum tree corruption, duplicate and outdated checksums"
b84b8390d6 "Btrfs: fix file read corruption after extent cloning and fsync"
40e046acbd "Btrfs: fix missing data checksums after replaying a log tree"
Since this specific instance of the problem can only happen when logging
inodes, because it is the only case where concurrent attempts to insert
checksums for the same range can happen, fix the issue by using an extent
io tree as a range lock to serialize checksum insertion during inode
logging.
This issue could often be reproduced by the test case generic/457 from
fstests. When it happens it produces the following trace:
BTRFS critical (device dm-0): corrupt leaf: root=18446744073709551610 block=30625792 slot=42, csum end range (15020032) goes beyond the start range (15015936) of the next csum item
BTRFS info (device dm-0): leaf 30625792 gen 7 total ptrs 49 free space 2402 owner 18446744073709551610
BTRFS info (device dm-0): refs 1 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 15884
item 0 key (18446744073709551606 128 13979648) itemoff 3991 itemsize 4
item 1 key (18446744073709551606 128 13983744) itemoff 3987 itemsize 4
item 2 key (18446744073709551606 128 13987840) itemoff 3983 itemsize 4
item 3 key (18446744073709551606 128 13991936) itemoff 3979 itemsize 4
item 4 key (18446744073709551606 128 13996032) itemoff 3975 itemsize 4
item 5 key (18446744073709551606 128 14000128) itemoff 3971 itemsize 4
(...)
BTRFS error (device dm-0): block=30625792 write time tree block corruption detected
------------[ cut here ]------------
WARNING: CPU: 1 PID: 15884 at fs/btrfs/disk-io.c:539 btree_csum_one_bio+0x268/0x2d0 [btrfs]
Modules linked in: btrfs dm_thin_pool ...
CPU: 1 PID: 15884 Comm: fsx Tainted: G W 5.6.0-rc7-btrfs-next-58 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:btree_csum_one_bio+0x268/0x2d0 [btrfs]
Code: c7 c7 ...
RSP: 0018:ffffbb0109e6f8e0 EFLAGS: 00010296
RAX: 0000000000000000 RBX: ffffe1c0847b6080 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffaa963988 RDI: 0000000000000001
RBP: ffff956a4f4d2000 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000526 R11: 0000000000000000 R12: ffff956a5cd28bb0
R13: 0000000000000000 R14: ffff956a649c9388 R15: 000000011ed82000
FS: 00007fb419959e80(0000) GS:ffff956a7aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000fe6d54 CR3: 0000000138696005 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btree_submit_bio_hook+0x67/0xc0 [btrfs]
submit_one_bio+0x31/0x50 [btrfs]
btree_write_cache_pages+0x2db/0x4b0 [btrfs]
? __filemap_fdatawrite_range+0xb1/0x110
do_writepages+0x23/0x80
__filemap_fdatawrite_range+0xd2/0x110
btrfs_write_marked_extents+0x15e/0x180 [btrfs]
btrfs_sync_log+0x206/0x10a0 [btrfs]
? kmem_cache_free+0x315/0x3b0
? btrfs_log_inode+0x1e8/0xf90 [btrfs]
? __mutex_unlock_slowpath+0x45/0x2a0
? lockref_put_or_lock+0x9/0x30
? dput+0x2d/0x580
? dput+0xb5/0x580
? btrfs_sync_file+0x464/0x4d0 [btrfs]
btrfs_sync_file+0x464/0x4d0 [btrfs]
do_fsync+0x38/0x60
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x5c/0x280
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7fb41953a6d0
Code: 48 3d ...
RSP: 002b:00007ffcc86bd218 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fb41953a6d0
RDX: 0000000000000009 RSI: 0000000000040000 RDI: 0000000000000003
RBP: 0000000000040000 R08: 0000000000000001 R09: 0000000000000009
R10: 0000000000000064 R11: 0000000000000246 R12: 0000556cf4b2c060
R13: 0000000000000100 R14: 0000000000000000 R15: 0000556cf322b420
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020
softirqs last enabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace d543fc76f5ad7fd8 ]---
In that trace the tree checker detected the overlapping checksum items at
the time when we triggered writeback for the log tree when syncing the
log.
Another trace that can happen is due to BUG_ON() when deleting checksum
items while logging an inode:
BTRFS critical (device dm-0): slot 81 key (18446744073709551606 128 13635584) new key (18446744073709551606 128 13635584)
BTRFS info (device dm-0): leaf 30949376 gen 7 total ptrs 98 free space 8527 owner 18446744073709551610
BTRFS info (device dm-0): refs 4 lock (w:1 r:0 bw:0 br:0 sw:1 sr:0) lock_owner 13473 current 13473
item 0 key (257 1 0) itemoff 16123 itemsize 160
inode generation 7 size 262144 mode 100600
item 1 key (257 12 256) itemoff 16103 itemsize 20
item 2 key (257 108 0) itemoff 16050 itemsize 53
extent data disk bytenr 13631488 nr 4096
extent data offset 0 nr 131072 ram 131072
(...)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:3153!
invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 1 PID: 13473 Comm: fsx Not tainted 5.6.0-rc7-btrfs-next-58 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0x1ea/0x270 [btrfs]
Code: 0f b6 ...
RSP: 0018:ffff95e3889179d0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000051 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffb7763988 RDI: 0000000000000001
RBP: fffffffffffffff6 R08: 0000000000000000 R09: 0000000000000001
R10: 00000000000009ef R11: 0000000000000000 R12: ffff8912a8ba5a08
R13: ffff95e388917a06 R14: ffff89138dcf68c8 R15: ffff95e388917ace
FS: 00007fe587084e80(0000) GS:ffff8913baa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe587091000 CR3: 0000000126dac005 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_del_csums+0x2f4/0x540 [btrfs]
copy_items+0x4b5/0x560 [btrfs]
btrfs_log_inode+0x910/0xf90 [btrfs]
btrfs_log_inode_parent+0x2a0/0xe40 [btrfs]
? dget_parent+0x5/0x370
btrfs_log_dentry_safe+0x4a/0x70 [btrfs]
btrfs_sync_file+0x42b/0x4d0 [btrfs]
__x64_sys_msync+0x199/0x200
do_syscall_64+0x5c/0x280
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7fe586c65760
Code: 00 f7 ...
RSP: 002b:00007ffe250f98b8 EFLAGS: 00000246 ORIG_RAX: 000000000000001a
RAX: ffffffffffffffda RBX: 00000000000040e1 RCX: 00007fe586c65760
RDX: 0000000000000004 RSI: 0000000000006b51 RDI: 00007fe58708b000
RBP: 0000000000006a70 R08: 0000000000000003 R09: 00007fe58700cb61
R10: 0000000000000100 R11: 0000000000000246 R12: 00000000000000e1
R13: 00007fe58708b000 R14: 0000000000006b51 R15: 0000558de021a420
Modules linked in: dm_log_writes ...
---[ end trace c92a7f447a8515f5 ]---
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_compress_set_level() can be static function in the file
compression.c.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode lookup starting at btrfs_iget takes the full location key,
while only the objectid is used to match the inode, because the lookup
happens inside the given root thus the inode number is unique.
The entire location key is properly set up in btrfs_init_locked_inode.
Simplify the helpers and pass only inode number, renaming it to 'ino'
instead of 'objectid'. This allows to remove temporary variables key,
saving some stack space.
Signed-off-by: David Sterba <dsterba@suse.com>
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.
Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are several reported runaway balance, that balance is flooding the
log with "found X extents" where the X never changes.
[CAUSE]
Commit d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after
merge_reloc_roots") introduced BTRFS_ROOT_DEAD_RELOC_TREE bit to
indicate that one subvolume has finished its tree blocks swap with its
reloc tree.
However if balance is canceled or hits ENOSPC halfway, we didn't clear
the BTRFS_ROOT_DEAD_RELOC_TREE bit, leaving that bit hanging forever
until unmount.
Any subvolume root with that bit, would cause backref cache to skip this
tree block, as it has finished its tree block swap. This would cause
all tree blocks of that root be ignored by balance, leading to runaway
balance.
[FIX]
Fix the problem by also clearing the BTRFS_ROOT_DEAD_RELOC_TREE bit for
the original subvolume of orphan reloc root.
Add an umount check for the stale bit still set.
Fixes: d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a snapshot, ordered extents need to be flushed and this
can take a long time.
In create_snapshot there are two locks held when this happens:
1. Destination directory inode lock
2. Global subvolume semaphore
This will unnecessarily block other operations like subvolume destroy,
create, or setflag until the snapshot is created.
We can fix that by moving the flush outside the locked section as this
does not depend on the aforementioned locks. The code factors out the
snapshot related work from create_snapshot to btrfs_mksnapshot.
__btrfs_ioctl_snap_create
btrfs_mksubvol
create_subvol
btrfs_mksnapshot
<flush>
btrfs_mksubvol
create_snapshot
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
SHAREABLE flag is set for subvolumes because users can create snapshot
for subvolumes, thus sharing tree blocks of them.
But data reloc tree is not exposed to user space, as it's only an
internal tree for data relocation, thus it doesn't need the full path
replacement handling at all.
This patch will make data reloc tree a non-shareable tree, and add
btrfs_fs_info::data_reloc_root for data reloc tree, so relocation code
can grab it from fs_info directly.
This would slightly improve tree relocation, as now data reloc tree
can go through regular COW routine to get relocated, without bothering
the complex tree reloc tree routine.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a lot of root owner checks in btrfs_truncate_inode_items()
like:
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
root == fs_info->tree_root)
But considering that, only these trees can have INODE_ITEMs:
- tree root (for v1 space cache)
- subvolume trees
- tree reloc trees
- data reloc tree
- log trees
And since subvolume/tree reloc/data reloc trees all have SHAREABLE bit,
and we're checking tree root manually, so above check is just excluding
log trees.
This patch will replace two of such checks to a simpler one:
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
This would merge btrfs_drop_extent_cache() and lock_extent_bits() call
into the same if branch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.
In fact, that bit can only be set to those trees:
- Subvolume roots
- Data reloc root
- Reloc roots for above roots
All other trees won't get this bit set. So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees. Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).
This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit dccdb07bc9 ("btrfs: kill btrfs_fs_info::volume_mutex") removed
the last use of the volume_mutex, forgetting to update the comment.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fallback path calls helper write_extent_buffer to do write of the
data spanning two extent buffer pages. As the size is known, we can do
the write directly in two steps. This removes one function call and
compiler can optimize memcpy as the sizes are known at compile time. The
cached token address is set to the second page.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper write_extent_buffer is called to do write of the data
spanning two extent buffer pages. As the size is known, we can do the
write directly in two steps. This removes one function call and
compiler can optimize memcpy as the sizes are known at compile time.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fallback path calls helper read_extent_buffer to do read of the data
spanning two extent buffer pages. As the size is known, we can do the
read directly in two steps. This removes one function call and compiler
can optimize memcpy as the sizes are known at compile time. The cached
token address is set to the second page.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper read_extent_buffer is called to do read of the data spanning
two extent buffer pages. As the size is known, we can do the read
directly in two steps. This removes one function call and compiler can
optimize memcpy as the sizes are known at compile time.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Helpers that iterate over extent buffer pages set up several variables,
one of them is finding out offset of the extent buffer start within a
page. Right now we have extent buffers aligned to page sizes so this is
effectively storing zero. This makes the code harder the follow and can
be simplified.
The same change is done in all the helpers:
* remove: size_t start_offset = offset_in_page(eb->start);
* simplify code using start_offset
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many helpers around extent buffers, found in extent_io.h and
ctree.h. Most of them can be converted to take constified eb as there
are no changes to the extent buffer structure itself but rather the
pages.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All uses of map_private_extent_buffer have been replaced by more
effective way. The set/get helpers have their own bounds checker.
The function name was confusing since the non-private helper was removed
in a65917156e ("Btrfs: stop using highmem for extent_buffers") many
years ago.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bin search jumps over the extent buffer item keys, comparing
directly the bytes if the key is in one page, or storing it in a
temporary buffer in case it spans two pages.
The mapping start and length are obtained from map_private_extent_buffer,
which is heavy weight compared to what we need. We know the key size and
can find out the eb page in a simple way. For keys spanning two pages
the fallback read_extent_buffer is used.
The temporary variables are reduced and moved to the scope of use.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The set/get token helpers either use the cached address in the token or
unconditionally call map_private_extent_buffer to get the address of
page containing the requested offset plus the mapping start and length.
Depending on the return value, the fast path uses unaligned put to write
data within a page, or fall back to write_extent_buffer that can handle
writes spanning more pages.
This is all wasteful. We know the number of bytes to write, 1/2/4/8 and
can find out the page. Then simply check if it's contained or the
fallback is needed. The token address is updated to the page, or the on
the next index, expecting that the next write will use that.
This saves one function call to map_private_extent_buffer and several
unnecessary temporary variables.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>