We need to create a new ioend if the current writepage call isn't
logically contiguous with the range contained in the previous ioend.
Hopefully writepage gets called in order of increasing file offset.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS uses CRC verification over a sub-range of the head of the log to
detect and handle torn writes. This torn log write detection currently
runs unconditionally at mount time, regardless of whether the log is
dirty or clean. This is problematic in cases where a filesystem might
end up being moved across different, incompatible (i.e., opposite
byte-endianness) architectures.
The problem lies in the fact that log data is not necessarily written in
an architecture independent format. For example, certain bits of data
are written in native endian format. Further, the size of certain log
data structures differs (i.e., struct xlog_rec_header) depending on the
word size of the cpu. This leads to false positive crc verification
errors and ultimately failed mounts when a cleanly unmounted filesystem
is mounted on a system with an incompatible architecture from data that
was written near the head of the log.
Update the log head/tail discovery code to run torn write detection only
when the log is not clean. This means something other than an unmount
record resides at the head of the log and log recovery is imminent. It
is a requirement to run log recovery on the same type of host that had
written the content of the dirty log and therefore CRC failures are
legitimate corruptions in that scenario.
Reported-by: Jan Beulich <JBeulich@suse.com>
Tested-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Once the record at the head of the log is identified and verified, the
in-core log state is updated based on the record. This includes
information such as the current head block and cycle, the start block of
the last record written to the log, the tail lsn, etc.
Once torn write detection is conditional, this logic will need to be
reused. Factor the code to update the in-core log data structures into a
new helper function. This patch does not change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Once the mount sequence has identified the head and tail blocks of the
physical log, the record at the head of the log is located and examined
for an unmount record to determine if the log is clean. This currently
occurs after torn write verification of the head region of the log.
This must ultimately be separated from torn write verification and may
need to be called again if the log head is walked back due to a torn
write (to determine whether the new head record is an unmount record).
Separate this logic into a new helper function. This patch does not
change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The code that locates the log record at the head of the log is buried in
the log head verification function. This is fine when torn write
verification occurs unconditionally, but this behavior is problematic
for filesystems that might be moved across systems with different
architectures.
In preparation for separating examination of the log head for unmount
records from torn write detection, lift the record location logic out of
the log verification function and into the caller. This patch does not
change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just use the t_blk_res field directly instead of obsfucating the reference
by a macro.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
inode32/inode64 allocator behavior with respect to mount, remount
and growfs is a little tricky.
The inode32 mount option should only enable the inode32 allocator
heuristics if the filesystem is large enough for 64-bit inodes to
exist. Today, it has this behavior on the initial mount, but a
remount with inode32 unconditionally changes the allocation
heuristics, even for a small fs.
Also, an inode32 mounted small filesystem should transition to the
inode32 allocator if the filesystem is subsequently grown to a
sufficient size. Today that does not happen.
This patch consolidates xfs_set_inode32 and xfs_set_inode64 into a
single new function, and moves the "is the maximum inode number big
enough to matter" test into that function, so it doesn't rely on the
caller to get it right - which remount did not do, previously.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
busyp->bno is printed with a %llu format specifier when the
intention is to print a hexadecimal value. Trivial fix to
use %llx instead. Found with smatch static analysis:
fs/xfs/xfs_discard.c:229 xfs_discard_extents() warn: '0x'
prefix is confusing together with '%llu' specifier
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Perform basic sanitization of remount options by
passing the option string and a dummy mount structure
through xfs_parseargs and returning the result.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This should be a no-op change, just switch to token parsing
like every other respectable filesystem does.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This plugs 2 trivial leaks in xfs_attr_shortform_list and
xfs_attr3_leaf_list_int.
Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the block size of a filesystem is not at least PAGE_SIZEd, then
at this point in time DAX cannot be used due to the fact we can't
guarantee extents are page sized or aligned without further work.
Hence disallow setting the DAX flag on an inode if the block size is
too small. Also, be defensive and check the block size when reading
an inode in off disk.
In future, we want to allow DAX to work on any filesystem, so this
is temporary while we sort of the correct conbination of extent size
hints and allocation alignment configurations needed to guarantee
page sized and aligned extent allocation for DAX enabled files.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we set or clear the XFS_DIFLAG2_DAX flag, we should also
set/clear the S_DAX flag in the VFS inode. To do this, we need to
ensure that we first flush and remove any cached entries in the
radix tree to ensure the correct data access method is used when we
next try to read or write data. We ahve to be especially careful
here to lock out page faults so they don't race with the flush and
invalidation before we change the access mode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Only regular files can use DAX for data operations, so we should
restrict setting it on the VFS inode to regular files. Setting it on
metadata inodes may cause the VFS to do the wrong thing for such
inodes, so avoid potential problems by restricting the scope of the
flag to what we know is supported.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Only file data can use DAX, so we should onyl be able to set this
flag on regular files. However, the flag also serves as an "inherit"
flag at file create time when set on directories, so limit the
FS_IOC_FSSETXATTR ioctl to only set this flag on regular files and
directories.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When AIO DIO fails e.g. due to IO error, we must not convert unwritten
extents as that will expose uninitialized data. Handle this case
by clearing unwritten flag from io_end in case of error and thus
preventing extent conversion.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently we can build a long ioend chain during ->writepages that
gets attached to the writepage context. IO submission only then
occurs when we finish all the writepage processing. This means we
can have many ioends allocated and pending, and this violates the
mempool guarantees that we need to give about forwards progress.
i.e. we really should only have one ioend being built at a time,
otherwise we may drain the mempool trying to allocate a new ioend
and that blocks submission, completion and freeing of ioends that
are already in progress.
To prevent this situation from happening, we need to submit ioends
for IO as soon as they are ready for dispatch rather than queuing
them for later submission. This means the ioends have bios built
immediately and they get queued on any plug that is current active.
Hence if we schedule away from writeback, the ioends that have been
built will make forwards progress due to the plug flushing on
context switch. This will also prevent context switches from
creating unnecessary IO submission latency.
We can't completely avoid having nested IO allocation - when we have
a block size smaller than a page size, we still need to hold the
ioend submission until after we have marked the current page dirty.
Hence we may need multiple ioends to be held while the current page
is completely mapped and made ready for IO dispatch. We cannot avoid
this problem - the current code already has this ioend chaining
within a page so we can mostly ignore that it occurs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Separate out the bufferhead based mapping from the writepage code so
that we have a clear separation of the page operations and the
bufferhead state.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_cluster_write() is not necessary now that xfs_vm_writepages()
aggregates writepage calls across a single mapping. This means we no
longer need to do page lookups in xfs_cluster_write, so writeback
only needs to look up th epage cache once per page being written.
This also removes a large amount of mostly duplicate code between
xfs_do_writepage() and xfs_convert_page().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_vm_writepages() calls generic_writepages to writeback a range of
a file, but then xfs_vm_writepage() clusters pages itself as it does
not have any context it can pass between->writepage calls from
__write_cache_pages().
Introduce a writeback context for xfs_vm_writepages() and call
__write_cache_pages directly with our own writepage callback so that
we can pass that context to each writepage invocation. This
encapsulates the current mapping, whether it is valid or not, the
current ioend and it's IO type and the ioend chain being built.
This requires us to move the ioend submission up to the level where
the writepage context is declared. This does mean we do not submit
IO until we packaged the entire writeback range, but with the block
plugging in the writepages call this is the way IO is submitted,
anyway.
It also means that we need to handle discontiguous page ranges. If
the pages sent down by write_cache_pages to the writepage callback
are discontiguous, we need to detect this and put each discontiguous
page range into individual ioends. This is needed to ensure that the
ioend accurately represents the range of the file that it covers so
that file size updates during IO completion set the size correctly.
Failure to take into account the discontiguous ranges results in
files being too small when writeback patterns are non-sequential.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently have code to cancel ioends being built because we
change bufferhead state as we build the ioend. On error, this needs
to be unwound and so we have cancelling code that walks the buffers
on the ioend chain and undoes these state changes.
However, the IO submission path already handles state changes for
buffers when a submission error occurs, so we don't really need a
separate cancel function to do this - we can simply submit the
ioend chain with the specific error and it will be cancelled rather
than submitted.
Hence we can remove the explicit cancel code and just rely on
submission to deal with the error correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove the nonblocking optimisation done for mapping lookups during
writeback. It's not clear that leaving a hole in the writeback range
just because we couldn't get a lock is really a win, as it makes us
do another small random IO later on rather than a large sequential
IO now.
As this gets in the way of sane error handling later on, just remove
for the moment and we can re-introduce an equivalent optimisation in
future if we see problems due to extent map lock contention.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The places where we use this macro already clear unnecessary IO
flags (e.g. through xfs_bwrite()) or never have unexpected IO flags
set on them in the first place (e.g. iclog buffers). Remove the
macro from these locations, and where necessary clear only the
specific flags that are conditional in the current buffer context.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the di_mode value from the xfs_icdinode to the VFS inode, reducing
the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole
in the structure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can store the di_changecount in the i_version field of the VFS
inode and remove another 8 bytes from the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull another 4 bytes out of the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The VFS tracks the inode nlink just like the xfs_icdinode. We can
remove the variable from the icdinode and use the VFS inode variable
everywhere, reducing the size of the xfs_icdinode by a further 4
bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We are going to keep certain on-disk information in the VFS inode
rather than in a separate XFS specific stucture, so we have to be
careful of the VFS code clearing that information when we
re-initialise reclaimable cached inodes during lookup. If we don't
do this, then we lose critical information from the inode and that
results in corruption being detected.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
So we don't have to carry an di_onlink variable around anymore, move
the inode conversion from v1 inode format to v2 inode format into
xfs_inode_from_disk(). This means we can remove the di_onlink fields
from the struct xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the struct xfs_icdinode is not directly related to the
on-disk format, we can cull things in it we really don't need to
store:
- magic number never changes
- padding is not necessary
- next_unlinked is never used
- inode number is redundant
- uuid is redundant
- lsn is accessed directly from dinode
- inode CRC is only accessed directly from dinode
Hence we can remove these from the struct xfs_icdinode and redirect
the code that uses them to the xfs_dinode appripriately. This
reduces the size of the struct icdinode from 152 bytes to 88 bytes,
and removes a fair chunk of unnecessary code, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The struct xfs_inode has two copies of the current timestamps in it,
one in the vfs inode and one in the struct xfs_icdinode. Now that we
no longer log the struct xfs_icdinode directly, we don't need to
keep the timestamps in this structure. instead we can copy them
straight out of the VFS inode when formatting the inode log item or
the on-disk inode.
This reduces the struct xfs_inode in size by 24 bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently carry around and log an entire inode core in the
struct xfs_inode. A lot of the information in the inode core is
duplicated in the VFS inode, but we cannot remove this duplication
of infomration because the inode core is logged directly in
xfs_inode_item_format().
Add a new function xfs_inode_item_format_core() that copies the
inode core data into a struct xfs_icdinode that is pulled directly
from the log vector buffer. This means we no longer directly
copy the inode core, but copy the structures one member at a time.
This will be slightly less efficient than copying, but will allow us
to remove duplicate and unnecessary items from the struct xfs_inode.
To enable us to do this, call the new structure a xfs_log_dinode,
so that we know it's different to the physical xfs_dinode and the
in-core xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Buffers without verifiers issue runtime warnings on XFS. We don't
have anything we can actually verify in the RT buffers (no CRCs, not
magic numbers, etc), but we still need verifiers to avoid the
warnings.
Add a set of dummy verifier operations for the realtime buffers and
apply them in the appropriate places.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When logging buffers, we attach a type to them that follows the
buffer all the way into the log and is used to identify the buffer
contents in log recovery. Both the realtime summary buffers and the
bitmap buffers do not have types defined or set, so when we try to
log them we see assert failure:
XFS: Assertion failed: (bip->bli_flags & XFS_BLI_STALE) || (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF), file: fs/xfs/xfs_buf_item.c, line: 294
Fix this by adding buffer log format types for these buffers, and
add identification support into log recovery for them. Only build the log
recovery support if CONFIG_XFS_RT=y - we can't get into log recovery for real
time filesystems if support is not built into the kernel, and this avoids
potential build problems.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the filesystem has shut down, xfs_end_io() currently sets an
error on the ioend and proceeds to ioend destruction. The ioend
might contain a truncate transaction if the I/O extended the size of
the file. This transaction is only cleaned up in
xfs_setfilesize_ioend(), however, which is skipped in this case.
This results in an xfs_log_ticket leak message when the associate
cache slab is destroyed (e.g., on rmmod).
This was originally reproduced by xfs/141 on a distro kernel. The
problem is reproducible on an upstream kernel, but not easily
detected in current upstream if the xfs_log_ticket cache happens to
be merged with another cache. This can be reproduced more
deterministically with the 'slab_nomerge' kernel boot option.
Update xfs_end_io() to proceed with normal end I/O processing after
an error is set on an ioend due to fs shutdown. The I/O type-based
processing is already designed to handle an I/O error and ensure
that the ioend is cleaned up correctly.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>