The tty buffers (and any line discipline buffers) must be flushed after
the UART hardware has shutdown; otherwise, a racing open on the same
tty may receive data from the previous session, which is a security
hazard. However, holding the port mutex while flushing the line
discipline buffers creates a lock inversion if the set_termios()
handler takes the port mutex (as it does in the followup patch,
'serial: Fix locking for uart driver set_termios method'.
Flush the ldisc buffers after dropping the port mutex; the tty lock
is still held which prevents a concurrent open() from advancing while
flushing. Since no new rx data is possible after uart_shutdown() until
a new open reinitializes the port, the later flush has no impact on
what data is being discarded.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In the context of the final tty & port close, flushing the tx
ring buffer after the hardware has already been shutdown and
the ring buffer freed is neither required nor desirable.
uart_flush_buffer() performs 3 operations:
1. Resets tx ring buffer indices, but the tx ring buffer has
already been freed and the indices are reset if the port is
re-opened.
2. Calls uart driver's flush_buffer() method
5 in-tree uart drivers define flush_buffer() methods:
amba-pl011, atmel-serial, imx, serial-tegra, timbuart
These have been refactored into the shutdown() method, if
required.
3. Kicks the ldisc for more writing, but this is undesirable.
The file handle is being released; any waiting writer will
will be kicked out by tty_release() with a warning. Further,
the N_TTY ldisc may generate SIGIO for a file handle which
is no longer valid.
Cc: Nicolas Ferre <nicolas.ferre@atmel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Laxman Dewangan <ldewangan@nvidia.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
tty_ldisc_flush() first clears the line discipline input buffer,
then clears the tty flip buffers. However, this allows for existing
data in the tty flip buffers to be added after the ldisc input
buffer has been cleared, but before the flip buffers have been cleared.
Add an optional ldisc parameter to tty_buffer_flush() to allow
tty_ldisc_flush() to pass the ldisc to clear.
NB: Initially, the plan was to do this automatically in
tty_buffer_flush(). However, an audit of the behavior of existing
line disciplines showed that performing a ldisc buffer flush on
ioctl(TCFLSH) was not always the outcome. For example, some line
disciplines have flush_buffer() methods but not ioctl() methods,
so a ->flush_buffer() command would be unexpected.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When changing the ldisc on one end of a pty pair, there may be
waiting readers/writers on the other end which may not exit from
the ldisc i/o loop, preventing tty_ldisc_lock_pair_timeout() from
acquiring the other side's ldisc lock.
Only acquire this side's ldisc lock; although this will no longer
prevent the other side from writing new input, that input will not
be processed until after the ldisc change completes. This has no
effect on normal ttys; new input from the driver was never disabled.
Remove tty_ldisc_enable_pair().
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When hanging up one end of a pty pair, there may be waiting
readers/writers on the other end which may not exit, preventing
tty_ldisc_lock_pair() from acquiring the other side's ldisc lock.
Only acquire this side's ldisc lock; although this will no longer
prevent the other side from writing new input, that input will not
be processing until after the ldisc hangup is complete.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
tty_ldisc_lock(), tty_ldisc_unlock(), and tty_ldisc_lock_nested()
are low-level aliases for the underlying lock mechanism. Rename
with double underscore to allow for new, higher level functions
with those names.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When releasing one end of a pty pair, that end may just have written
to the other, which the input processing worker, flush_to_ldisc(), is
still working on but has not completed the copy to the other end's
read buffer. So input may not appear to be available to a waiting
reader but yet TTY_OTHER_CLOSED is now observed. The n_tty line
discipline has worked around this by waiting for input processing
to complete and then re-checking if input is available before
exiting with -EIO.
Since the tty/ldisc lock reordering, the wait for input processing
to complete can now occur during final close before setting
TTY_OTHER_CLOSED. In this way, a waiting reader is guaranteed to
see input available (if any) before observing TTY_OTHER_CLOSED.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With the revised tty lock order and lockdep annotation, claiming
the pty slave lock is now safe while still holding the pty master lock.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The tty_unhangup() function is not defined.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Eliminate the requirement of specifying the tty lock nesting at
lock time; instead, set the lock subclass for slave ptys at pty
install (normal ttys and master ptys use subclass 0).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When releasing the master pty, the slave pty also needs to be locked
to prevent concurrent tty count changes for the slave pty and to
ensure that only one parallel master and slave release observe the
final close, and proceed to destruct the pty pair. Conversely, when
releasing the slave pty, locking the master pty is not necessary
(since the master's state can be inferred by the slave tty count).
Introduce tty_lock_slave()/tty_unlock_slave() which acquires/releases
the tty lock of the slave pty. Remove tty_lock_pair()/tty_unlock_pair().
Dropping the tty_lock is no longer required to re-establish a stable
lock order.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The local o_tty variable in tty_release() is now accessed only
when closing the pty master.
Set o_tty to slave pty when closing pty master, otherwise NULL;
use o_tty != NULL as replacement for pty_master.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Passing the 'other' tty to tty_release_checks() only makes sense
for a pty pair; make o_tty scope local instead.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Passing the 'other' tty to tty_ldisc_release() only makes sense
for a pty pair; make o_tty function local instead.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Perform work flush for both ends of a pty pair within tty_flush_works(),
rather than calling twice.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the slave side closes and its tty count is 0, the pty
pair can be destroyed; the master side must have already
closed for the slave side tty count to be 0. Thus, only the
pty master close must check if the slave side has closed by
checking the slave tty count.
Remove the pre-computed closing flags and check the actual count(s).
Regular ttys are unaffected by this change.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Holding the tty_lock() is necessary to prevent concurrent changes
to the tty count that may cause it to differ from the open file
list count. The tty_lock() is already held at all call sites.
NB: Note that the check for the pty master tty count is safe because
the slave's tty_lock() is held while decrementing the pty master
tty count.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Releasing the tty locks while waiting for the tty wait queues to
be empty is no longer necessary nor desirable. Prior to
"tty: Don't take tty_mutex for tty count changes", dropping the
tty locks was necessary to reestablish the correct lock order between
tty_mutex and the tty locks. Dropping the global tty_mutex was necessary;
otherwise new ttys could not have been opened while waiting.
However, without needing the global tty_mutex held, the tty locks for
the releasing tty can now be held through the sleep. The sanity check
is for abnormal conditions caused by kernel bugs, not for recoverable
errors caused by misbehaving userspace; dropping the tty locks only
allows the tty state to get more sideways.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Holding tty_mutex is no longer required to serialize changes to
the tty_count or to prevent concurrent opens of closing ttys;
tty_lock() is sufficient.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that re-open is not permitted for a legacy BSD pty master,
using TTY_CLOSING to indicate when a tty can be torn-down is
no longer necessary.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Holding tty_mutex for a tty re-open is no longer necessary since
"tty: Clarify re-open behavior of master ptys". Because the
slave tty count is no longer accessed by tty_reopen(), holding
tty_mutex to prevent concurrent final tty_release() of the slave
pty is not required.
As with "tty: Re-open /dev/tty without tty_mutex", holding a
tty kref until the tty_lock is acquired is sufficient to ensure
the tty has not been freed, which, in turn, is sufficient to
ensure the tty_lock can be safely acquired and the tty count
can be safely retrieved. A non-zero tty count with the tty lock
held guarantees that release_tty() has not run and cannot
run concurrently with tty_reopen().
Change tty_driver_lookup_tty() to acquire the tty kref, which
allows the tty_mutex to be dropped before acquiring the tty lock.
Dropping the tty_mutex before attempting the tty_lock allows
other ttys to be opened and released, without needing this
tty_reopen() to complete.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Opening /dev/tty (ie., the controlling tty for the current task)
is always a re-open of the underlying tty. Because holding the
tty_lock is sufficient for safely re-opening a tty, and because
having a tty kref is sufficient for safely acquiring the tty_lock [1],
tty_open_current_tty() does not require holding tty_mutex.
Repurpose tty_open_current_tty() to perform the re-open itself and
refactor tty_open().
[1] Analysis of safely re-opening the current tty w/o tty_mutex
get_current_tty() gets a tty kref from the already kref'ed tty value of
current->signal->tty while holding the sighand lock for the current
task. This guarantees that the tty pointer returned from
get_current_tty() points to a tty which remains referenceable
while holding the kref.
Although release_tty() may run concurrently, and thus the driver
reference may be removed, release_one_tty() cannot have run, and
won't while holding the tty kref.
This, in turn, guarantees the tty_lock() can safely be acquired
(since tty->magic and tty->legacy_mutex are still a valid dereferences).
The tty_lock() also gets a tty kref to prevent the tty_unlock() from
dereferencing a released tty. Thus, the kref returned from
get_current_tty() can be released.
Lastly, the first operation of tty_reopen() is to check the tty count.
If non-zero, this ensures release_tty() is not running concurrently,
and the driver references have not been removed.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Opening the slave BSD pty first already returns -EIO from the slave
pty_open(), which in turn causes the newly installed tty pair to be
released before returning from tty_open(). However, this can also
cause a parallel master BSD pty open to fail because the pty pair
destruction may already been taking place in tty_release().
Failing at driver->install() if the slave pty is opened first ensures
that a pty master open cannot fail, because the driver tables will
not have been updated so tty_driver_lookup_tty() won't find the
master pty (and attempt to "re-open" it).
In turn, this guarantees that any tty with a tty->count == 0 is
in final close (rather than never opened).
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Although perhaps not obvious, the TTY_CLOSING bit is set when the
tty count has been decremented to 0 (which occurs while holding
tty_lock). The only other case when tty count is 0 during a re-open
is when a legacy BSD pty master has been opened in parallel but
after the pty slave, which is unsupported and returns an error.
Thus !tty->count contains the complete set of degenerate conditions
under which a tty open fails.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Re-opening master ptys is not allowed. Once opened and for the remaining
lifetime of the master pty, its tty count is 1. If its tty count has
dropped to 0, then the master pty was closed and TTY_CLOSING was set,
and destruction may begin imminently.
Besides the normal case of a legacy BSD pty master being re-opened
(which always returns -EIO), this code is only reachable in 2 degenerate
cases:
1. The pty master is the controlling terminal (this is possible through
the TIOCSCTTY ioctl). pty masters are not designed to be controlling
terminals and it's an oversight that tiocsctty() ever let that happen.
The attempted open of /dev/tty will always fail. No known program does
this.
2. The legacy BSD pty slave was opened first. The slave open will fail
in pty_open() and tty_release() will commence. But before tty_release()
claims the tty_mutex, there is a very small window where a parallel
master open might succeed. In a test of racing legacy BSD slave and
master parallel opens, where:
slave open attempts: 10000 success:4527 failure:5473
master open attempts: 11728 success:5789 failure:5939
only 8 master open attempts would have succeeded reaching this code and
successfully opened the master pty. This case is not possible with
SysV ptys.
Always return -EIO if a master pty is re-opened or the slave is opened
first and the master opened in parallel (for legacy BSD ptys).
Furthermore, now that changing the slave's count is not required,
the tty_lock is sufficient for preventing concurrent changes to the
tty being re-opened (or failing re-opening).
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that tty_ldisc_hangup() does not drop the tty lock, it is no
longer possible to observe TTY_HUPPING while holding the tty lock
on another cpu.
Remove TTY_HUPPING bit definition.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Dropping the tty lock to acquire the tty->ldisc_sem allows several
race conditions (such as hangup while changing the ldisc) which requires
extra states and testing. The ldisc_sem->tty_lock lock order has
not been required since tty buffer ownership was moved to tty_port.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The tty->ldisc_sem write lock is sufficient for serializing changes
to tty->ldisc; holding the tty lock is not required.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Added recognition of EndRun Technologies PCIe PTP slave card
and setup two ttySx ports for communication with the card for
retrieval of PTP based time and to communicate with the card's
Linux OS.
Signed-off-by: Mike Skoog <mskoog@endruntechnologies.com>
Signed-off-by: Mike Korreng <mkorreng@endruntechnologies.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The stale comment refers to lock behavior which was eliminated in
commit 6d76bd2618,
n_tty: Make N_TTY ldisc receive path lockless.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Packet mode can only be set for a pty master, and a pty master is
always in raw mode since its termios cannot be changed.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The pty master read() can miss the wake up for a packet mode
status change. For example,
CPU 0 | CPU 1
n_tty_read() | n_tty_packet_mode_flush()
... | .
if (packet & link->ctrl_status) { | .
/* no new ctrl_status ATM */ | .
| spin_lock
| ctrl_status |= TIOCPKT_FLUSHREAD
| spin_unlock
| wake_up(link->read_wait)
} |
set_current_state(TASK_INTERRUPTIBLE) |
... |
The pty master read() will now sleep (assuming there is no input) having
missed the read_wait wakeup.
Set the task state before the condition test.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Updates to the packet mode enable require holding the ctrl_lock;
the serialization prevents corruption of adjacent fields.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Because pty_set_pktmode() does not claim the slave's ctrl_lock
to clear ->ctrl_status (to avoid unnecessary lock nesting),
pty_set_pktmode() may accidentally erase new ->ctrl_status updates.
For example,
CPU 0 | CPU 1
pty_set_pktmode() | pty_start()
spin_lock(master's ctrl_lock) |
tty->packet = 1 |
| if (tty->link->packet)
| spin_lock(slave's ctrl_lock)
| tty->ctrl_status = TIOCPKT_START
tty->link->ctrl_status = 0 |
Ensure the clear of ->ctrl_status occurs before packet mode is set
(and observable on another cpu).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The slave's ctrl_lock serializes updates to the ctrl_status field
only, whereas the master's ctrl_lock serializes updates to the
packet mode enable (ie., the master does not have ctrl_status and
the slave does not have packet mode). Thus, claiming the slave's
ctrl_lock to access ->packet is useless.
Unlocked reads of ->packet are already smp-safe.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Interrupts are enabled in the n_tty_read() loop, ioctl(TIOCPKT)
and pty driver flush_buffer() routine; no need to save and restore
local interrupt state.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The tty driver's set_termios() method is called with interrupts
enabled; there is no need to save and restore the local interrupt state.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Packet mode is unique to the pty driver; move the packet mode state
change code from the generic tty ioctl handler to the pty driver.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The pty master's termios should never be set; currently, all code
paths which call the driver's set_termios() method ensure that the
pty slave's termios is being set.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The session and foreground process group pid references will be
non-NULL if tiocsctty() is stealing the controlling tty from another
session (ie., arg == 1 in tiocsctty()).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Setting the controlling terminal for a session occurs with either
the first open of a non-pty master tty or with ioctl(TIOCSCTTY).
Since only the session leader can set the controlling terminal for
a session (and the session leader cannot change), it is not
necessary to prevent a process from attempting to set different
ttys as the controlling terminal concurrently.
So it's only necessary to prevent the same tty from becoming the
controlling terminal for different session leaders. The tty_lock()
is sufficient to prevent concurrent proc_set_tty() for the same
tty.
Remove the tty_mutex lock region; add tty_lock() to tiocsctty().
While this may appear to allow a race condition between opening
the controlling tty via tty_open_current_tty() and stealing the
controlling tty via ioctl(TIOCSCTTY, 1), that race condition already
existed. Even if the tty_mutex prevented stealing the controlling tty
while tty_open_current_tty() returned the original controlling tty,
it cannot prevent stealing the controlling tty before tty_open() returns.
Thus, tty_open() could already return a no-longer-controlling tty when
opening /dev/tty.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
tiocspgrp() is the lone caller of session_of_pgrp(); relocate and
limit to file scope.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Claim a read lock on the tasklist_lock while setting the controlling
terminal for the session leader. This fixes multiple races:
1. task_pgrp() and task_session() cannot be safely dereferenced, such
as passing to get_pid(), without holding either rcu_read_lock() or
tasklist_lock
2. setsid() unwisely allows any thread in the thread group to
make the thread group leader the session leader; this makes the
unlocked reads of ->signal->leader and signal->tty potentially
unordered, stale or even have spurious values.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The tty parameter to __proc_set_tty() cannot be NULL; all
call sites have already dereferenced tty.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Although the tty core maintains a pid reference for the foreground
process group, if the foreground process group is changed that
pid reference is dropped. Thus, the pid reference used for signalling
could become stale.
Safely obtain a pid reference to the foreground process group and
release the reference after signalling is complete.
cc: Jeff Dike <jdike@addtoit.com>
Acked-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Only the current task itself can set its controlling tty (other
than before the task has been forked). Equivalent to existing usage.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Move the controlling tty-related functions and remove forward
declarations for __proc_set_tty() and proc_set_tty().
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
tty_pair_get_pty() has no in-tree users and tty_pair_get_tty()
has only one file-local user. Remove the external declarations,
the export declarations, and declare tty_pair_get_tty() static.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In ST16650V2 based serial uarts, while initalizing the PM state,
LCR registers are being initialized to 0 in serial8250_set_sleep().
If console port is already initialized and being used, this will
throws garbage in the console.
Signed-off-by: Sudhir Sreedharan <ssreedharan@mvista.com>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Tested-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>