Pull ARM64 updates from Catalin Marinas:
- CPU suspend support on top of PSCI (firmware Power State Coordination
Interface)
- jump label support
- CMA can now be enabled on arm64
- HWCAP bits for crypto and CRC32 extensions
- optimised percpu using tpidr_el1 register
- code cleanup
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (42 commits)
arm64: fix typo in entry.S
arm64: kernel: restore HW breakpoint registers in cpu_suspend
jump_label: use defined macros instead of hard-coding for better readability
arm64, jump label: optimize jump label implementation
arm64, jump label: detect %c support for ARM64
arm64: introduce aarch64_insn_gen_{nop|branch_imm}() helper functions
arm64: move encode_insn_immediate() from module.c to insn.c
arm64: introduce interfaces to hotpatch kernel and module code
arm64: introduce basic aarch64 instruction decoding helpers
arm64: dts: Reduce size of virtio block device for foundation model
arm64: Remove unused __data_loc variable
arm64: Enable CMA
arm64: Warn on NULL device structure for dma APIs
arm64: Add hwcaps for crypto and CRC32 extensions.
arm64: drop redundant macros from read_cpuid()
arm64: Remove outdated comment
arm64: cmpxchg: update macros to prevent warnings
arm64: support single-step and breakpoint handler hooks
ARM64: fix framepointer check in unwind_frame
ARM64: check stack pointer in get_wchan
...
Pull core locking changes from Ingo Molnar:
- futex performance increases: larger hashes, smarter wakeups
- mutex debugging improvements
- lots of SMP ordering documentation updates
- introduce the smp_load_acquire(), smp_store_release() primitives.
(There are WIP patches that make use of them - not yet merged)
- lockdep micro-optimizations
- lockdep improvement: better cover IRQ contexts
- liblockdep at last. We'll continue to monitor how useful this is
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
futexes: Fix futex_hashsize initialization
arch: Re-sort some Kbuild files to hopefully help avoid some conflicts
futexes: Avoid taking the hb->lock if there's nothing to wake up
futexes: Document multiprocessor ordering guarantees
futexes: Increase hash table size for better performance
futexes: Clean up various details
arch: Introduce smp_load_acquire(), smp_store_release()
arch: Clean up asm/barrier.h implementations using asm-generic/barrier.h
arch: Move smp_mb__{before,after}_atomic_{inc,dec}.h into asm/atomic.h
locking/doc: Rename LOCK/UNLOCK to ACQUIRE/RELEASE
mutexes: Give more informative mutex warning in the !lock->owner case
powerpc: Full barrier for smp_mb__after_unlock_lock()
rcu: Apply smp_mb__after_unlock_lock() to preserve grace periods
Documentation/memory-barriers.txt: Downgrade UNLOCK+BLOCK
locking: Add an smp_mb__after_unlock_lock() for UNLOCK+BLOCK barrier
Documentation/memory-barriers.txt: Document ACCESS_ONCE()
Documentation/memory-barriers.txt: Prohibit speculative writes
Documentation/memory-barriers.txt: Add long atomic examples to memory-barriers.txt
Documentation/memory-barriers.txt: Add needed ACCESS_ONCE() calls to memory-barriers.txt
Revert "smp/cpumask: Make CONFIG_CPUMASK_OFFSTACK=y usable without debug dependency"
...
Pull arm64 fix from Catalin Marinas:
"Revert "arm64: Fix memory shareability attribute for ioremap_wc/cache"
We noticed that it breaks ioremap (and earlyprintk) with 64K page
configuration"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
Revert "arm64: Fix memory shareability attribute for ioremap_wc/cache"
This reverts commit 2f7dc60275.
The above commit breaks the mapping type for Device memory because
pgprot_default already contains a Normal memory type. pgprot_default is
also not initialised early enough for earlyprintk resulting in an
inconsistent memory mapping with 64K PAGE_SIZE configuration.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Will Deacon <will.deacon@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
A number of situations currently require the heavyweight smp_mb(),
even though there is no need to order prior stores against later
loads. Many architectures have much cheaper ways to handle these
situations, but the Linux kernel currently has no portable way
to make use of them.
This commit therefore supplies smp_load_acquire() and
smp_store_release() to remedy this situation. The new
smp_load_acquire() primitive orders the specified load against
any subsequent reads or writes, while the new smp_store_release()
primitive orders the specifed store against any prior reads or
writes. These primitives allow array-based circular FIFOs to be
implemented without an smp_mb(), and also allow a theoretical
hole in rcu_assign_pointer() to be closed at no additional
expense on most architectures.
In addition, the RCU experience transitioning from explicit
smp_read_barrier_depends() and smp_wmb() to rcu_dereference()
and rcu_assign_pointer(), respectively resulted in substantial
improvements in readability. It therefore seems likely that
replacing other explicit barriers with smp_load_acquire() and
smp_store_release() will provide similar benefits. It appears
that roughly half of the explicit barriers in core kernel code
might be so replaced.
[Changelog by PaulMck]
Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Michael Ellerman <michael@ellerman.id.au>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Victor Kaplansky <VICTORK@il.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce aarch64_insn_gen_{nop|branch_imm}() helper functions, which
will be used to implement jump label on ARM64.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Function encode_insn_immediate() will be used by other instruction
manipulate related functions, so move it into insn.c and rename it
as aarch64_insn_encode_immediate().
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Introduce three interfaces to patch kernel and module code:
aarch64_insn_patch_text_nosync():
patch code without synchronization, it's caller's responsibility
to synchronize all CPUs if needed.
aarch64_insn_patch_text_sync():
patch code and always synchronize with stop_machine()
aarch64_insn_patch_text():
patch code and synchronize with stop_machine() if needed
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull Xen bugfixes from Konrad Rzeszutek Wilk:
- Fix balloon driver for auto-translate guests (PVHVM, ARM) to not use
scratch pages.
- Fix block API header for ARM32 and ARM64 to have proper layout
- On ARM when mapping guests, stick on PTE_SPECIAL
- When using SWIOTLB under ARM, don't call swiotlb functions twice
- When unmapping guests memory and if we fail, don't return pages which
failed to be unmapped.
- Grant driver was using the wrong address on ARM.
* tag 'stable/for-linus-3.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/balloon: Seperate the auto-translate logic properly (v2)
xen/block: Correctly define structures in public headers on ARM32 and ARM64
arm: xen: foreign mapping PTEs are special.
xen/arm64: do not call the swiotlb functions twice
xen: privcmd: do not return pages which we have failed to unmap
XEN: Grant table address, xen_hvm_resume_frames, is a phys_addr not a pfn
Advertise the optional cryptographic and CRC32 instructions to
user space where present. Several hwcap bits [3-7] are allocated.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
[bit 2 is taken now so use bits 3-7 instead]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
asm/cputype.h contains a bunch of #defines for CPU id registers
that essentially map to themselves. Remove the #defines and pass
the tokens directly to the inline asm() that reads the registers.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make sure the value we are going to return is referenced in order to
avoid warnings from newer GCCs such as:
arch/arm64/include/asm/cmpxchg.h:162:3: warning: value computed is not used [-Wunused-value]
((__typeof__(*(ptr)))__cmpxchg_mb((ptr), \
^
net/netfilter/nf_conntrack_core.c:674:2: note: in expansion of macro ‘cmpxchg’
cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
[Modified to use the current underlying implementation as current
mainline for both cmpxchg() and cmpxchg_local() does -- broonie]
Signed-off-by: Mark Hambleton <mahamble@broadcom.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
AArch64 Single Steping and Breakpoint debug exceptions will be
used by multiple debug framworks like kprobes & kgdb.
This patch implements the hooks for those frameworks to register
their own handlers for handling breakpoint and single step events.
Reworked the debug exception handler in entry.S: do_dbg to route
software breakpoint (BRK64) exception to do_debug_exception()
Signed-off-by: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
Signed-off-by: Deepak Saxena <dsaxena@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
DCACHE_WORD_ACCESS uses the word-at-a-time API for optimised string
comparisons in the vfs layer.
This patch implements support for load_unaligned_zeropad in much the
same way as has been done for ARM, although big-endian systems are also
supported.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
AArch64 instructions must be 4-byte aligned, so make sure this is true
for the futex .fixup section.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch implements the word-at-a-time interface for arm64 using the
same algorithm as ARM. We use the fls64 macro, which expands to a clz
instruction via a compiler builtin. Big-endian configurations make use
of the implementation from asm-generic.
With this implemented, we can replace our byte-at-a-time strnlen_user
and strncpy_from_user functions with the optimised generic versions.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch implements optimised percpu variable accesses using the
el1 r/w thread register (tpidr_el1) along the same lines as arch/arm/.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The definition of virt_addr_valid is that virt_addr_valid should
return true if and only if virt_to_page returns a valid pointer.
The current definition of virt_addr_valid only checks against the
virtual address range. There's no guarantee that just because a
virtual address falls bewteen PAGE_OFFSET and high_memory the
associated physical memory has a valid backing struct page. Follow
the example of other architectures and convert to pfn_valid to
verify that the virtual address is actually valid.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On platforms with power management capabilities, timers that are shut
down when a CPU enters deep C-states must be emulated using an always-on
timer and a timer IPI to relay the timer IRQ to target CPUs on an SMP
system.
This patch enables the generic clockevents broadcast infrastructure for
arm64, by providing the required Kconfig entries and adding the timer
IPI infrastructure.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Power management software requires the kernel to save and restore
CPU registers while going through suspend and resume operations
triggered by kernel subsystems like CPU idle and suspend to RAM.
This patch implements code that provides save and restore mechanism
for the arm v8 implementation. Memory for the context is passed as
parameter to both cpu_do_suspend and cpu_do_resume functions, and allows
the callers to implement context allocation as they deem fit.
The registers that are saved and restored correspond to the registers set
actually required by the kernel to be up and running which represents a
subset of v8 ISA.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
On ARM64 SMP systems, cores are identified by their MPIDR_EL1 register.
The MPIDR_EL1 guidelines in the ARM ARM do not provide strict enforcement of
MPIDR_EL1 layout, only recommendations that, if followed, split the MPIDR_EL1
on ARM 64 bit platforms in four affinity levels. In multi-cluster
systems like big.LITTLE, if the affinity guidelines are followed, the
MPIDR_EL1 can not be considered a linear index. This means that the
association between logical CPU in the kernel and the HW CPU identifier
becomes somewhat more complicated requiring methods like hashing to
associate a given MPIDR_EL1 to a CPU logical index, in order for the look-up
to be carried out in an efficient and scalable way.
This patch provides a function in the kernel that starting from the
cpu_logical_map, implement collision-free hashing of MPIDR_EL1 values by
checking all significative bits of MPIDR_EL1 affinity level bitfields.
The hashing can then be carried out through bits shifting and ORing; the
resulting hash algorithm is a collision-free though not minimal hash that can
be executed with few assembly instructions. The mpidr_el1 is filtered through a
mpidr mask that is built by checking all bits that toggle in the set of
MPIDR_EL1s corresponding to possible CPUs. Bits that do not toggle do not
carry information so they do not contribute to the resulting hash.
Pseudo code:
/* check all bits that toggle, so they are required */
for (i = 1, mpidr_el1_mask = 0; i < num_possible_cpus(); i++)
mpidr_el1_mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
/*
* Build shifts to be applied to aff0, aff1, aff2, aff3 values to hash the
* mpidr_el1
* fls() returns the last bit set in a word, 0 if none
* ffs() returns the first bit set in a word, 0 if none
*/
fs0 = mpidr_el1_mask[7:0] ? ffs(mpidr_el1_mask[7:0]) - 1 : 0;
fs1 = mpidr_el1_mask[15:8] ? ffs(mpidr_el1_mask[15:8]) - 1 : 0;
fs2 = mpidr_el1_mask[23:16] ? ffs(mpidr_el1_mask[23:16]) - 1 : 0;
fs3 = mpidr_el1_mask[39:32] ? ffs(mpidr_el1_mask[39:32]) - 1 : 0;
ls0 = fls(mpidr_el1_mask[7:0]);
ls1 = fls(mpidr_el1_mask[15:8]);
ls2 = fls(mpidr_el1_mask[23:16]);
ls3 = fls(mpidr_el1_mask[39:32]);
bits0 = ls0 - fs0;
bits1 = ls1 - fs1;
bits2 = ls2 - fs2;
bits3 = ls3 - fs3;
aff0_shift = fs0;
aff1_shift = 8 + fs1 - bits0;
aff2_shift = 16 + fs2 - (bits0 + bits1);
aff3_shift = 32 + fs3 - (bits0 + bits1 + bits2);
u32 hash(u64 mpidr_el1) {
u32 l[4];
u64 mpidr_el1_masked = mpidr_el1 & mpidr_el1_mask;
l[0] = mpidr_el1_masked & 0xff;
l[1] = mpidr_el1_masked & 0xff00;
l[2] = mpidr_el1_masked & 0xff0000;
l[3] = mpidr_el1_masked & 0xff00000000;
return (l[0] >> aff0_shift | l[1] >> aff1_shift | l[2] >> aff2_shift |
l[3] >> aff3_shift);
}
The hashing algorithm relies on the inherent properties set in the ARM ARM
recommendations for the MPIDR_EL1. Exotic configurations, where for instance
the MPIDR_EL1 values at a given affinity level have large holes, can end up
requiring big hash tables since the compression of values that can be achieved
through shifting is somewhat crippled when holes are present. Kernel warns if
the number of buckets of the resulting hash table exceeds the number of
possible CPUs by a factor of 4, which is a symptom of a very sparse HW
MPIDR_EL1 configuration.
The hash algorithm is quite simple and can easily be implemented in assembly
code, to be used in code paths where the kernel virtual address space is
not set-up (ie cpu_resume) and instruction and data fetches are strongly
ordered so code must be compact and must carry out few data accesses.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
In order to simplify access to different affinity levels within the
MPIDR_EL1 register values, this patch implements some preprocessor
macros that allow to retrieve the MPIDR_EL1 affinity level value according
to the level passed as input parameter.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
On arm64 the dma_map_ops implementation is based on the swiotlb.
swiotlb-xen, used by default in dom0 on Xen, is also based on the
swiotlb.
Avoid calling into the default arm64 dma_map_ops functions from
xen_dma_map_page, xen_dma_unmap_page, xen_dma_sync_single_for_cpu, and
xen_dma_sync_single_for_device otherwise we end up calling into the
swiotlb twice.
When arm64 gets a non-swiotlb based implementation of dma_map_ops, we'll
probably have to reintroduce dma_map_ops calls in page-coherent.h.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
CC: catalin.marinas@arm.com
CC: Will.Deacon@arm.com
CC: Ian.Campbell@citrix.com
Write-combine and cacheable mappings use Normal memory on arm64. On SMP
systems, the pte needs the shareability bit which is set in
pgprot_default. Use this for defining PROT_DEFAULT used by ioremap_wc
and ioremap_cache (Device memory is shareable by default, does not need
additional attributes).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
PTE_PROT_NONE means that a pte is present but does not have any
read/write attributes. However, setting the memory type like
pgprot_writecombine() is allowed and such bits overlap with
PTE_PROT_NONE. This causes mmap/munmap issues in drivers that change the
vma->vm_pg_prot on PROT_NONE mappings.
This patch reverts the PTE_FILE/PTE_PROT_NONE shift in commit
59911ca432 (ARM64: mm: Move PTE_PROT_NONE bit) and moves PTE_PROT_NONE
together with the other software bits.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> # 3.11+
This provides better performance compared to Device GRE and also allows
unaligned accesses. Such memory is intended to be used with standard RAM
(e.g. framebuffers) and not I/O.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The asynchronous aborts are generally fatal for the kernel but they can
be masked via the pstate A bit. If a system error happens while in
kernel mode, it won't be visible until returning to user space. This
patch enables this kind of abort early to help identifying the cause.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull irq cleanups from Ingo Molnar:
"This is a multi-arch cleanup series from Thomas Gleixner, which we
kept to near the end of the merge window, to not interfere with
architecture updates.
This series (motivated by the -rt kernel) unifies more aspects of IRQ
handling and generalizes PREEMPT_ACTIVE"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
preempt: Make PREEMPT_ACTIVE generic
sparc: Use preempt_schedule_irq
ia64: Use preempt_schedule_irq
m32r: Use preempt_schedule_irq
hardirq: Make hardirq bits generic
m68k: Simplify low level interrupt handling code
genirq: Prevent spurious detection for unconditionally polled interrupts
Pull KVM changes from Paolo Bonzini:
"Here are the 3.13 KVM changes. There was a lot of work on the PPC
side: the HV and emulation flavors can now coexist in a single kernel
is probably the most interesting change from a user point of view.
On the x86 side there are nested virtualization improvements and a few
bugfixes.
ARM got transparent huge page support, improved overcommit, and
support for big endian guests.
Finally, there is a new interface to connect KVM with VFIO. This
helps with devices that use NoSnoop PCI transactions, letting the
driver in the guest execute WBINVD instructions. This includes some
nVidia cards on Windows, that fail to start without these patches and
the corresponding userspace changes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits)
kvm, vmx: Fix lazy FPU on nested guest
arm/arm64: KVM: PSCI: propagate caller endianness to the incoming vcpu
arm/arm64: KVM: MMIO support for BE guest
kvm, cpuid: Fix sparse warning
kvm: Delete prototype for non-existent function kvm_check_iopl
kvm: Delete prototype for non-existent function complete_pio
hung_task: add method to reset detector
pvclock: detect watchdog reset at pvclock read
kvm: optimize out smp_mb after srcu_read_unlock
srcu: API for barrier after srcu read unlock
KVM: remove vm mmap method
KVM: IOMMU: hva align mapping page size
KVM: x86: trace cpuid emulation when called from emulator
KVM: emulator: cleanup decode_register_operand() a bit
KVM: emulator: check rex prefix inside decode_register()
KVM: x86: fix emulation of "movzbl %bpl, %eax"
kvm_host: typo fix
KVM: x86: emulate SAHF instruction
MAINTAINERS: add tree for kvm.git
Documentation/kvm: add a 00-INDEX file
...
Pull Xen updates from Konrad Rzeszutek Wilk:
"This has tons of fixes and two major features which are concentrated
around the Xen SWIOTLB library.
The short <blurb> is that the tracing facility (just one function) has
been added to SWIOTLB to make it easier to track I/O progress.
Additionally under Xen and ARM (32 & 64) the Xen-SWIOTLB driver
"is used to translate physical to machine and machine to physical
addresses of foreign[guest] pages for DMA operations" (Stefano) when
booting under hardware without proper IOMMU.
There are also bug-fixes, cleanups, compile warning fixes, etc.
The commit times for some of the commits is a bit fresh - that is b/c
we wanted to make sure we have the Ack's from the ARM folks - which
with the string of back-to-back conferences took a bit of time. Rest
assured - the code has been stewing in #linux-next for some time.
Features:
- SWIOTLB has tracing added when doing bounce buffer.
- Xen ARM/ARM64 can use Xen-SWIOTLB. This work allows Linux to
safely program real devices for DMA operations when running as a
guest on Xen on ARM, without IOMMU support. [*1]
- xen_raw_printk works with PVHVM guests if needed.
Bug-fixes:
- Make memory ballooning work under HVM with large MMIO region.
- Inform hypervisor of MCFG regions found in ACPI DSDT.
- Remove deprecated IRQF_DISABLED.
- Remove deprecated __cpuinit.
[*1]:
"On arm and arm64 all Xen guests, including dom0, run with second
stage translation enabled. As a consequence when dom0 programs a
device for a DMA operation is going to use (pseudo) physical
addresses instead machine addresses. This work introduces two trees
to track physical to machine and machine to physical mappings of
foreign pages. Local pages are assumed mapped 1:1 (physical address
== machine address). It enables the SWIOTLB-Xen driver on ARM and
ARM64, so that Linux can translate physical addresses to machine
addresses for dma operations when necessary. " (Stefano)"
* tag 'stable/for-linus-3.13-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (32 commits)
xen/arm: pfn_to_mfn and mfn_to_pfn return the argument if nothing is in the p2m
arm,arm64/include/asm/io.h: define struct bio_vec
swiotlb-xen: missing include dma-direction.h
pci-swiotlb-xen: call pci_request_acs only ifdef CONFIG_PCI
arm: make SWIOTLB available
xen: delete new instances of added __cpuinit
xen/balloon: Set balloon's initial state to number of existing RAM pages
xen/mcfg: Call PHYSDEVOP_pci_mmcfg_reserved for MCFG areas.
xen: remove deprecated IRQF_DISABLED
x86/xen: remove deprecated IRQF_DISABLED
swiotlb-xen: fix error code returned by xen_swiotlb_map_sg_attrs
swiotlb-xen: static inline xen_phys_to_bus, xen_bus_to_phys, xen_virt_to_bus and range_straddles_page_boundary
grant-table: call set_phys_to_machine after mapping grant refs
arm,arm64: do not always merge biovec if we are running on Xen
swiotlb: print a warning when the swiotlb is full
swiotlb-xen: use xen_dma_map/unmap_page, xen_dma_sync_single_for_cpu/device
xen: introduce xen_dma_map/unmap_page and xen_dma_sync_single_for_cpu/device
tracing/events: Fix swiotlb tracepoint creation
swiotlb-xen: use xen_alloc/free_coherent_pages
xen: introduce xen_alloc/free_coherent_pages
...
Pull ARM updates from Russell King:
"Included in this series are:
1. BE8 (modern big endian) changes for ARM from Ben Dooks
2. big.Little support from Nicolas Pitre and Dave Martin
3. support for LPAE systems with all system memory above 4GB
4. Perf updates from Will Deacon
5. Additional prefetching and other performance improvements from Will.
6. Neon-optimised AES implementation fro Ard.
7. A number of smaller fixes scattered around the place.
There is a rather horrid merge conflict in tools/perf - I was never
notified of the conflict because it originally occurred between Will's
tree and other stuff. Consequently I have a resolution which Will
forwarded me, which I'll forward on immediately after sending this
mail.
The other notable thing is I'm expecting some build breakage in the
crypto stuff on ARM only with Ard's AES patches. These were merged
into a stable git branch which others had already pulled, so there's
little I can do about this. The problem is caused because these
patches have a dependency on some code in the crypto git tree - I
tried requesting a branch I can pull to resolve these, and all I got
each time from the crypto people was "we'll revert our patches then"
which would only make things worse since I still don't have the
dependent patches. I've no idea what's going on there or how to
resolve that, and since I can't split these patches from the rest of
this pull request, I'm rather stuck with pushing this as-is or
reverting Ard's patches.
Since it should "come out in the wash" I've left them in - the only
build problems they seem to cause at the moment are with randconfigs,
and since it's a new feature anyway. However, if by -rc1 the
dependencies aren't in, I think it'd be best to revert Ard's patches"
I resolved the perf conflict roughly as per the patch sent by Russell,
but there may be some differences. Any errors are likely mine. Let's
see how the crypto issues work out..
* 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (110 commits)
ARM: 7868/1: arm/arm64: remove atomic_clear_mask() in "include/asm/atomic.h"
ARM: 7867/1: include: asm: use 'int' instead of 'unsigned long' for 'oldval' in atomic_cmpxchg().
ARM: 7866/1: include: asm: use 'long long' instead of 'u64' within atomic.h
ARM: 7871/1: amba: Extend number of IRQS
ARM: 7887/1: Don't smp_cross_call() on UP devices in arch_irq_work_raise()
ARM: 7872/1: Support arch_irq_work_raise() via self IPIs
ARM: 7880/1: Clear the IT state independent of the Thumb-2 mode
ARM: 7878/1: nommu: Implement dummy early_paging_init()
ARM: 7876/1: clear Thumb-2 IT state on exception handling
ARM: 7874/2: bL_switcher: Remove cpu_hotplug_driver_{lock,unlock}()
ARM: footbridge: fix build warnings for netwinder
ARM: 7873/1: vfp: clear vfp_current_hw_state for dying cpu
ARM: fix misplaced arch_virt_to_idmap()
ARM: 7848/1: mcpm: Implement cpu_kill() to synchronise on powerdown
ARM: 7847/1: mcpm: Factor out logical-to-physical CPU translation
ARM: 7869/1: remove unused XSCALE_PMU Kconfig param
ARM: 7864/1: Handle 64-bit memory in case of 32-bit phys_addr_t
ARM: 7863/1: Let arm_add_memory() always use 64-bit arguments
ARM: 7862/1: pcpu: replace __get_cpu_var_uses
ARM: 7861/1: cacheflush: consolidate single-CPU ARMv7 cache disabling code
...
Pull devicetree updates from Rob Herring:
"DeviceTree updates for 3.13. This is a bit larger pull request than
usual for this cycle with lots of clean-up.
- Cross arch clean-up and consolidation of early DT scanning code.
- Clean-up and removal of arch prom.h headers. Makes arch specific
prom.h optional on all but Sparc.
- Addition of interrupts-extended property for devices connected to
multiple interrupt controllers.
- Refactoring of DT interrupt parsing code in preparation for
deferred probe of interrupts.
- ARM cpu and cpu topology bindings documentation.
- Various DT vendor binding documentation updates"
* tag 'devicetree-for-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (82 commits)
powerpc: add missing explicit OF includes for ppc
dt/irq: add empty of_irq_count for !OF_IRQ
dt: disable self-tests for !OF_IRQ
of: irq: Fix interrupt-map entry matching
MIPS: Netlogic: replace early_init_devtree() call
of: Add Panasonic Corporation vendor prefix
of: Add Chunghwa Picture Tubes Ltd. vendor prefix
of: Add AU Optronics Corporation vendor prefix
of/irq: Fix potential buffer overflow
of/irq: Fix bug in interrupt parsing refactor.
of: set dma_mask to point to coherent_dma_mask
of: add vendor prefix for PHYTEC Messtechnik GmbH
DT: sort vendor-prefixes.txt
of: Add vendor prefix for Cadence
of: Add empty for_each_available_child_of_node() macro definition
arm/versatile: Fix versatile irq specifications.
of/irq: create interrupts-extended property
microblaze/pci: Drop PowerPC-ism from irq parsing
of/irq: Create of_irq_parse_and_map_pci() to consolidate arch code.
of/irq: Use irq_of_parse_and_map()
...
Pull timer changes from Ingo Molnar:
"Main changes in this cycle were:
- Updated full dynticks support.
- Event stream support for architected (ARM) timers.
- ARM clocksource driver updates.
- Move arm64 to using the generic sched_clock framework & resulting
cleanup in the generic sched_clock code.
- Misc fixes and cleanups"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
x86/time: Honor ACPI FADT flag indicating absence of a CMOS RTC
clocksource: sun4i: remove IRQF_DISABLED
clocksource: sun4i: Report the minimum tick that we can program
clocksource: sun4i: Select CLKSRC_MMIO
clocksource: Provide timekeeping for efm32 SoCs
clocksource: em_sti: convert to clk_prepare/unprepare
time: Fix signedness bug in sysfs_get_uname() and its callers
timekeeping: Fix some trivial typos in comments
alarmtimer: return EINVAL instead of ENOTSUPP if rtcdev doesn't exist
clocksource: arch_timer: Do not register arch_sys_counter twice
timer stats: Add a 'Collection: active/inactive' line to timer usage statistics
sched_clock: Remove sched_clock_func() hook
arch_timer: Move to generic sched_clock framework
clocksource: tcb_clksrc: Remove IRQF_DISABLED
clocksource: tcb_clksrc: Improve driver robustness
clocksource: tcb_clksrc: Replace clk_enable/disable with clk_prepare_enable/disable_unprepare
clocksource: arm_arch_timer: Use clocksource for suspend timekeeping
clocksource: dw_apb_timer_of: Mark a few more functions as __init
clocksource: Put nodes passed to CLOCKSOURCE_OF_DECLARE callbacks centrally
arm: zynq: Enable arm_global_timer
...
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle are:
- (much) improved CONFIG_NUMA_BALANCING support from Mel Gorman, Rik
van Riel, Peter Zijlstra et al. Yay!
- optimize preemption counter handling: merge the NEED_RESCHED flag
into the preempt_count variable, by Peter Zijlstra.
- wait.h fixes and code reorganization from Peter Zijlstra
- cfs_bandwidth fixes from Ben Segall
- SMP load-balancer cleanups from Peter Zijstra
- idle balancer improvements from Jason Low
- other fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (129 commits)
ftrace, sched: Add TRACE_FLAG_PREEMPT_RESCHED
stop_machine: Fix race between stop_two_cpus() and stop_cpus()
sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus
sched: Fix asymmetric scheduling for POWER7
sched: Move completion code from core.c to completion.c
sched: Move wait code from core.c to wait.c
sched: Move wait.c into kernel/sched/
sched/wait: Fix __wait_event_interruptible_lock_irq_timeout()
sched: Avoid throttle_cfs_rq() racing with period_timer stopping
sched: Guarantee new group-entities always have weight
sched: Fix hrtimer_cancel()/rq->lock deadlock
sched: Fix cfs_bandwidth misuse of hrtimer_expires_remaining
sched: Fix race on toggling cfs_bandwidth_used
sched: Remove extra put_online_cpus() inside sched_setaffinity()
sched/rt: Fix task_tick_rt() comment
sched/wait: Fix build breakage
sched/wait: Introduce prepare_to_wait_event()
sched/wait: Add ___wait_cond_timeout() to wait_event*_timeout() too
sched: Remove get_online_cpus() usage
sched: Fix race in migrate_swap_stop()
...
A handful of fixes for KVM/arm64:
- A couple a basic fixes for running BE guests on a LE host
- A performance improvement for overcommitted VMs (same as the equivalent
patch for ARM)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Conflicts:
arch/arm/include/asm/kvm_emulate.h
arch/arm64/include/asm/kvm_emulate.h
Updates for KVM/ARM, take 3 supporting more than 4 CPUs.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Conflicts:
arch/arm/kvm/reset.c [cpu_reset->reset_regs change; context only]
In current kernel wide source code, except other architectures, only
s390 scsi drivers use atomic_clear_mask(), and arm/arm64 need not
support s390 drivers.
So remove atomic_clear_mask() from "arm[64]/include/asm/atomic.h".
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When booting a vcpu using PSCI, make sure we start it with the
endianness of the caller. Otherwise, secondaries can be pretty
unhappy to execute a BE kernel in LE mode...
This conforms to PSCI spec Rev B, 5.13.3.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Do the necessary byteswap when host and guest have different
views of the universe. Actually, the only case we need to take
care of is when the guest is BE. All the other cases are naturally
handled.
Also be careful about endianness when the data is being memcopy-ed
from/to the run buffer.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>