- Branch Target Identification (BTI)
* Support for ARMv8.5-BTI in both user- and kernel-space. This
allows branch targets to limit the types of branch from which
they can be called and additionally prevents branching to
arbitrary code, although kernel support requires a very recent
toolchain.
* Function annotation via SYM_FUNC_START() so that assembly
functions are wrapped with the relevant "landing pad"
instructions.
* BPF and vDSO updates to use the new instructions.
* Addition of a new HWCAP and exposure of BTI capability to
userspace via ID register emulation, along with ELF loader
support for the BTI feature in .note.gnu.property.
* Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
- Shadow Call Stack (SCS)
* Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each
task that holds only return addresses. This protects function
return control flow from buffer overruns on the main stack.
* Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
* Core support for SCS, should other architectures want to use it
too.
* SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
- CPU feature detection
* Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a
concern for KVM, which disabled support for 32-bit guests on
such a system.
* Addition of new ID registers and fields as the architecture has
been extended.
- Perf and PMU drivers
* Minor fixes and cleanups to system PMU drivers.
- Hardware errata
* Unify KVM workarounds for VHE and nVHE configurations.
* Sort vendor errata entries in Kconfig.
- Secure Monitor Call Calling Convention (SMCCC)
* Update to the latest specification from Arm (v1.2).
* Allow PSCI code to query the SMCCC version.
- Software Delegated Exception Interface (SDEI)
* Unexport a bunch of unused symbols.
* Minor fixes to handling of firmware data.
- Pointer authentication
* Add support for dumping the kernel PAC mask in vmcoreinfo so
that the stack can be unwound by tools such as kdump.
* Simplification of key initialisation during CPU bringup.
- BPF backend
* Improve immediate generation for logical and add/sub
instructions.
- vDSO
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
- ACPI
- Work around for an ambiguity in the IORT specification relating
to the "num_ids" field.
- Support _DMA method for all named components rather than only
PCIe root complexes.
- Minor other IORT-related fixes.
- Miscellaneous
* Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
* Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
* Refactoring and cleanup
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl7U9csQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLBHCACs/YU4SM7Om5f+7QnxIKao5DBr2CnGGvdC
yTfDghFDTLQVv3MufLlfno3yBe5G8sQpcZfcc+hewfcGoMzVZXu8s7LzH6VSn9T9
jmT3KjDMrg0RjSHzyumJp2McyelTk0a4FiKArSIIKsJSXUyb1uPSgm7SvKVDwEwU
JGDzL9IGilmq59GiXfDzGhTZgmC37QdwRoRxDuqtqWQe5CHoRXYexg87HwBKOQxx
HgU9L7ehri4MRZfpyjaDrr6quJo3TVnAAKXNBh3mZAskVS9ZrfKpEH0kYWYuqybv
znKyHRecl/rrGePV8RTMtrwnSdU26zMXE/omsVVauDfG9hqzqm+Q
=w3qi
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A sizeable pile of arm64 updates for 5.8.
Summary below, but the big two features are support for Branch Target
Identification and Clang's Shadow Call stack. The latter is currently
arm64-only, but the high-level parts are all in core code so it could
easily be adopted by other architectures pending toolchain support
Branch Target Identification (BTI):
- Support for ARMv8.5-BTI in both user- and kernel-space. This allows
branch targets to limit the types of branch from which they can be
called and additionally prevents branching to arbitrary code,
although kernel support requires a very recent toolchain.
- Function annotation via SYM_FUNC_START() so that assembly functions
are wrapped with the relevant "landing pad" instructions.
- BPF and vDSO updates to use the new instructions.
- Addition of a new HWCAP and exposure of BTI capability to userspace
via ID register emulation, along with ELF loader support for the
BTI feature in .note.gnu.property.
- Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
Shadow Call Stack (SCS):
- Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each task
that holds only return addresses. This protects function return
control flow from buffer overruns on the main stack.
- Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
- Core support for SCS, should other architectures want to use it
too.
- SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
CPU feature detection:
- Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a concern
for KVM, which disabled support for 32-bit guests on such a system.
- Addition of new ID registers and fields as the architecture has
been extended.
Perf and PMU drivers:
- Minor fixes and cleanups to system PMU drivers.
Hardware errata:
- Unify KVM workarounds for VHE and nVHE configurations.
- Sort vendor errata entries in Kconfig.
Secure Monitor Call Calling Convention (SMCCC):
- Update to the latest specification from Arm (v1.2).
- Allow PSCI code to query the SMCCC version.
Software Delegated Exception Interface (SDEI):
- Unexport a bunch of unused symbols.
- Minor fixes to handling of firmware data.
Pointer authentication:
- Add support for dumping the kernel PAC mask in vmcoreinfo so that
the stack can be unwound by tools such as kdump.
- Simplification of key initialisation during CPU bringup.
BPF backend:
- Improve immediate generation for logical and add/sub instructions.
vDSO:
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
ACPI:
- Work around for an ambiguity in the IORT specification relating to
the "num_ids" field.
- Support _DMA method for all named components rather than only PCIe
root complexes.
- Minor other IORT-related fixes.
Miscellaneous:
- Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
- Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
ACPI/IORT: Remove the unused __get_pci_rid()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64: mm: Add asid_gen_match() helper
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
...
Support for Clang's Shadow Call Stack in the kernel
(Sami Tolvanen and Will Deacon)
* for-next/scs:
arm64: entry-ftrace.S: Update comment to indicate that x18 is live
scs: Move DEFINE_SCS macro into core code
scs: Remove references to asm/scs.h from core code
scs: Move scs_overflow_check() out of architecture code
arm64: scs: Use 'scs_sp' register alias for x18
scs: Move accounting into alloc/free functions
arm64: scs: Store absolute SCS stack pointer value in thread_info
efi/libstub: Disable Shadow Call Stack
arm64: scs: Add shadow stacks for SDEI
arm64: Implement Shadow Call Stack
arm64: Disable SCS for hypervisor code
arm64: vdso: Disable Shadow Call Stack
arm64: efi: Restore register x18 if it was corrupted
arm64: Preserve register x18 when CPU is suspended
arm64: Reserve register x18 from general allocation with SCS
scs: Disable when function graph tracing is enabled
scs: Add support for stack usage debugging
scs: Add page accounting for shadow call stack allocations
scs: Add support for Clang's Shadow Call Stack (SCS)
KVM CPU errata rework
(Andrew Scull and Marc Zyngier)
* for-next/kvm/errata:
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
arm64: Unify WORKAROUND_SPECULATIVE_AT_{NVHE,VHE}
Support for Branch Target Identification (BTI) in user and kernel
(Mark Brown and others)
* for-next/bti: (39 commits)
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
arm64: bti: Fix support for userspace only BTI
arm64: kconfig: Update and comment GCC version check for kernel BTI
arm64: vdso: Map the vDSO text with guarded pages when built for BTI
arm64: vdso: Force the vDSO to be linked as BTI when built for BTI
arm64: vdso: Annotate for BTI
arm64: asm: Provide a mechanism for generating ELF note for BTI
arm64: bti: Provide Kconfig for kernel mode BTI
arm64: mm: Mark executable text as guarded pages
arm64: bpf: Annotate JITed code for BTI
arm64: Set GP bit in kernel page tables to enable BTI for the kernel
arm64: asm: Override SYM_FUNC_START when building the kernel with BTI
arm64: bti: Support building kernel C code using BTI
arm64: Document why we enable PAC support for leaf functions
arm64: insn: Report PAC and BTI instructions as skippable
arm64: insn: Don't assume unrecognized HINTs are skippable
arm64: insn: Provide a better name for aarch64_insn_is_nop()
arm64: insn: Add constants for new HINT instruction decode
arm64: Disable old style assembly annotations
...
Given the legacy bpf_probe_read{,str}() BPF helpers are broken on archs
with overlapping address ranges, we should really take the next step to
disable them from BPF use there.
To generally fix the situation, we've recently added new helper variants
bpf_probe_read_{user,kernel}() and bpf_probe_read_{user,kernel}_str().
For details on them, see 6ae08ae3de ("bpf: Add probe_read_{user, kernel}
and probe_read_{user,kernel}_str helpers").
Given bpf_probe_read{,str}() have been around for ~5 years by now, there
are plenty of users at least on x86 still relying on them today, so we
cannot remove them entirely w/o breaking the BPF tracing ecosystem.
However, their use should be restricted to archs with non-overlapping
address ranges where they are working in their current form. Therefore,
move this behind a CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE and
have x86, arm64, arm select it (other archs supporting it can follow-up
on it as well).
For the remaining archs, they can workaround easily by relying on the
feature probe from bpftool which spills out defines that can be used out
of BPF C code to implement the drop-in replacement for old/new kernels
via: bpftool feature probe macro
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/bpf/20200515101118.6508-2-daniel@iogearbox.net
Some versions of GCC are known to suffer from a BTI code generation bug,
meaning that CONFIG_CC_HAS_BRANCH_PROT_PAC_RET_BTI cannot be solely used
to determine whether or not we can compile with kernel with BTI enabled.
Update the BTI Kconfig entry to refer to the relevant GCC bugzilla entry
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697) and update the check
now that the fix has been merged into GCC release 10.1.
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Now that all the code is in place provide a Kconfig option allowing users
to enable BTI for the kernel if their toolchain supports it, defaulting it
on since this has security benefits. This is a separate configuration
option since we currently don't support secondary CPUs that lack BTI if
the boot CPU supports it.
Code generation issues mean that current GCC 9 versions are not able to
produce usable BTI binaries so we disable support for building with GCC
versions prior to 10, once a fix is backported to GCC 9 the dependencies
will be updated.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20200506195138.22086-8-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Merge in dependencies for in-kernel Branch Target Identification support.
* for-next/asm:
arm64: Disable old style assembly annotations
arm64: kernel: Convert to modern annotations for assembly functions
arm64: entry: Refactor and modernise annotation for ret_to_user
x86/asm: Provide a Kconfig symbol for disabling old assembly annotations
x86/32: Remove CONFIG_DOUBLEFAULT
* for-next/insn:
arm64: insn: Report PAC and BTI instructions as skippable
arm64: insn: Don't assume unrecognized HINTs are skippable
arm64: insn: Provide a better name for aarch64_insn_is_nop()
arm64: insn: Add constants for new HINT instruction decode
Merge in user support for Branch Target Identification, which narrowly
missed the cut for 5.7 after a late ABI concern.
* for-next/bti-user:
arm64: bti: Document behaviour for dynamically linked binaries
arm64: elf: Fix allnoconfig kernel build with !ARCH_USE_GNU_PROPERTY
arm64: BTI: Add Kconfig entry for userspace BTI
mm: smaps: Report arm64 guarded pages in smaps
arm64: mm: Display guarded pages in ptdump
KVM: arm64: BTI: Reset BTYPE when skipping emulated instructions
arm64: BTI: Reset BTYPE when skipping emulated instructions
arm64: traps: Shuffle code to eliminate forward declarations
arm64: unify native/compat instruction skipping
arm64: BTI: Decode BYTPE bits when printing PSTATE
arm64: elf: Enable BTI at exec based on ELF program properties
elf: Allow arch to tweak initial mmap prot flags
arm64: Basic Branch Target Identification support
ELF: Add ELF program property parsing support
ELF: UAPI and Kconfig additions for ELF program properties
Sort configuration options for vendor-specific errata by vendor, to
increase uniformity.
Move ARM64_WORKAROUND_REPEAT_TLBI up, as it is also selected by
ARM64_ERRATUM_1286807.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Will Deacon <will@kernel.org>
Errata 1165522, 1319367 and 1530923 each allow TLB entries to be
allocated as a result of a speculative AT instruction. In order to
avoid mandating VHE on certain affected CPUs, apply the workaround to
both the nVHE and the VHE case for all affected CPUs.
Signed-off-by: Andrew Scull <ascull@google.com>
Acked-by: Will Deacon <will@kernel.org>
CC: Marc Zyngier <maz@kernel.org>
CC: James Morse <james.morse@arm.com>
CC: Suzuki K Poulose <suzuki.poulose@arm.com>
CC: Will Deacon <will@kernel.org>
CC: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20200504094858.108917-1-ascull@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Now that we have converted arm64 over to the new style SYM_ assembler
annotations select ARCH_USE_SYM_ANNOTATIONS so the old macros aren't
available and we don't regress.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200501115430.37315-4-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Most of the arm-stub code is written in an architecture independent manner.
As a result, RISC-V can reuse most of the arm-stub code.
Rename the arm-stub.c to efi-stub.c so that ARM, ARM64 and RISC-V can use it.
This patch doesn't introduce any functional changes.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Reviewed-by: Palmer Dabbelt <palmerdabbelt@google.com>
Link: https://lore.kernel.org/r/20200415195422.19866-2-atish.patra@wdc.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
- Ensure that the compiler and linker versions are aligned so that ld
doesn't complain about not understanding a .note.gnu.property section
(emitted when pointer authentication is enabled).
- Force -mbranch-protection=none when the feature is not enabled, in
case a compiler may choose a different default value.
- Remove CONFIG_DEBUG_ALIGN_RODATA. It was never in defconfig and rarely
enabled.
- Fix checking 16-bit Thumb-2 instructions checking mask in the
emulation of the SETEND instruction (it could match the bottom half of
a 32-bit Thumb-2 instruction).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6PUYAACgkQa9axLQDI
XvH83g/7B5v0RFqjqVW4/cQKoN1rii7qSA8pBfNgGiCMJKtoGvliAlp3xWEtlW0h
nYJ4gCvey946r5kvZrjdBXC/Ulo2CcGYtX0n8d+8IB6wXAnGcQ0DUBUFZ4+fAU9Z
F7+R7its24dma9R1wIFHFmQUdlO+EgQTfQFvhQKYMSNVaFQF73Sp/vk3oKhJ2E0x
QevgDBQSmmcX3DFxhUW7BdcdboBgtTDUGdhcImdorgp7QmI1r40espJKX4VMKvmb
pfzwg+i7KM6N1RDhRfA2oFMegXwI3rvM3XesqYaua8+xWD5vJuIQfq+ysEq9F9x/
Hnu+W9nbcN8RKQ9JToiqkE7ifuOBTvaIJaqsgIXYSqtYjatuPAh85MkrorHi9Ji2
9i7fc0GMTgtgYDo/93++l8SmmRJMX+h+9KtGtxx39+UqGjToJMCnPGjwBSwe4wdK
lKOAgj488HHsNwTlrRUnq1hXjNjd1w+ON7JM2L3IyRNX/eWN60VxwzwHkZMByCOj
jlcY4ISWquigW4w9Sp4nxEhLF9dWT1+OrE33Xh3CUxPU94jSEvgcDHcxuGeGOlrA
QjN1B2APZFox8XbOsLgeG2kKe5C3Fui90SEn0GyA0ncVLsXDI78VnVJR9uz5+6Pd
ALVQKkJxswhSDPQFlH+7CmQAcr8jWyLEEvyXXaZsoJmewzCpEPM=
=pHRG
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Ensure that the compiler and linker versions are aligned so that ld
doesn't complain about not understanding a .note.gnu.property section
(emitted when pointer authentication is enabled).
- Force -mbranch-protection=none when the feature is not enabled, in
case a compiler may choose a different default value.
- Remove CONFIG_DEBUG_ALIGN_RODATA. It was never in defconfig and
rarely enabled.
- Fix checking 16-bit Thumb-2 instructions checking mask in the
emulation of the SETEND instruction (it could match the bottom half
of a 32-bit Thumb-2 instruction).
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: armv8_deprecated: Fix undef_hook mask for thumb setend
arm64: remove CONFIG_DEBUG_ALIGN_RODATA feature
arm64: Always force a branch protection mode when the compiler has one
arm64: Kconfig: ptrauth: Add binutils version check to fix mismatch
init/kconfig: Add LD_VERSION Kconfig
Recent addition of ARM64_PTR_AUTH exposed a mismatch issue with binutils.
9.1+ versions of gcc inserts a section note .note.gnu.property but this
can be used properly by binutils version greater than 2.33.1. If older
binutils are used then the following warnings are generated,
aarch64-linux-ld: warning: arch/arm64/kernel/vdso/vgettimeofday.o: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0000000
aarch64-linux-objdump: warning: arch/arm64/lib/csum.o: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0000000
aarch64-linux-nm: warning: .tmp_vmlinux1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0000000
This patch enables ARM64_PTR_AUTH when gcc and binutils versions are
compatible with each other. Older gcc which do not insert such section
continue to work as before.
This scenario may not occur with clang as a recent commit 3b446c7d27
("arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH") masks
binutils version lesser then 2.34.
Reported-by: kbuild test robot <lkp@intel.com>
Suggested-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
[catalin.marinas@arm.com: slight adjustment to the comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- In-kernel Pointer Authentication support (previously only offered to
user space).
- ARM Activity Monitors (AMU) extension support allowing better CPU
utilisation numbers for the scheduler (frequency invariance).
- Memory hot-remove support for arm64.
- Lots of asm annotations (SYM_*) in preparation for the in-kernel
Branch Target Identification (BTI) support.
- arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the PMU
init callbacks, support for new DT compatibles.
- IPv6 header checksum optimisation.
- Fixes: SDEI (software delegated exception interface) double-lock on
hibernate with shared events.
- Minor clean-ups and refactoring: cpu_ops accessor, cpu_do_switch_mm()
converted to C, cpufeature finalisation helper.
- sys_mremap() comment explaining the asymmetric address untagging
behaviour.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6DVyIACgkQa9axLQDI
XvHkqRAAiZA2EYKiQL4M1DJ1cNTADjT7xKX9+UtYBXj7GMVhgVWdunpHVE6qtfgk
cT6avmKrS/6PDqizJgr+Z1yX8x3Kvs57G4BvmIUKIw97mkdewvFQ9JKv6VA1vb86
7Qrl1WzqsGg5Kj9uUfI4h+ZoT1H4C/9PQeFxJwgZRtF9DxRh8O7VeZI+JCu8Aub2
lIkjI8rh+EpTsGT9h/PMGWUcawnKQloZ1/F+GfMAuYBvIv2RNN2xVreJtTmm4NyJ
VcpL0KCNyAI2lGdaJg5nBLRDyGuXDm5i+PLsCSXMquI4fie00txXeD8sjbeuO0ks
YTJ0EhmUUhbSE17go+SxYiEFE0v09i+lD5ud+B4Vmojp0KTczTta9VSgURlbb2/9
n9biq5G3PPDNIrZqiTT2Tf4AMz1350nkbzL2gzKecM5aIzR/u3y5yII5CgfZtFnj
7bGbyFpFpcqI7UaISPsNCxmknbTt/7ff0WM3+7SbecxI3AD2mnxsOdN9JTLyhDp+
owjyiaWxl5zMWF9DhplLG/9BKpNWSxh3skazdOdELd8GTq2MbJlXrVG2XgXTAOh3
y1s6RQrfw8zXh8TSqdmmzauComXIRWTum/sbVB3U8Z3AUsIeq/NTSbN5X9JyIbOP
HOabhlVhhkI6omN1grqPX4jwUiZLZoNfn7Ez4q71549KVK/uBtA=
=LJVX
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The bulk is in-kernel pointer authentication, activity monitors and
lots of asm symbol annotations. I also queued the sys_mremap() patch
commenting the asymmetry in the address untagging.
Summary:
- In-kernel Pointer Authentication support (previously only offered
to user space).
- ARM Activity Monitors (AMU) extension support allowing better CPU
utilisation numbers for the scheduler (frequency invariance).
- Memory hot-remove support for arm64.
- Lots of asm annotations (SYM_*) in preparation for the in-kernel
Branch Target Identification (BTI) support.
- arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the
PMU init callbacks, support for new DT compatibles.
- IPv6 header checksum optimisation.
- Fixes: SDEI (software delegated exception interface) double-lock on
hibernate with shared events.
- Minor clean-ups and refactoring: cpu_ops accessor,
cpu_do_switch_mm() converted to C, cpufeature finalisation helper.
- sys_mremap() comment explaining the asymmetric address untagging
behaviour"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits)
mm/mremap: Add comment explaining the untagging behaviour of mremap()
arm64: head: Convert install_el2_stub to SYM_INNER_LABEL
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
arm64: move kimage_vaddr to .rodata
arm64: use mov_q instead of literal ldr
arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH
lkdtm: arm64: test kernel pointer authentication
arm64: compile the kernel with ptrauth return address signing
kconfig: Add support for 'as-option'
arm64: suspend: restore the kernel ptrauth keys
arm64: __show_regs: strip PAC from lr in printk
arm64: unwind: strip PAC from kernel addresses
arm64: mask PAC bits of __builtin_return_address
arm64: initialize ptrauth keys for kernel booting task
arm64: initialize and switch ptrauth kernel keys
arm64: enable ptrauth earlier
arm64: cpufeature: handle conflicts based on capability
arm64: cpufeature: Move cpu capability helpers inside C file
...
* for-next/memory-hotremove:
: Memory hot-remove support for arm64
arm64/mm: Enable memory hot remove
arm64/mm: Hold memory hotplug lock while walking for kernel page table dump
* for-next/arm_sdei:
: SDEI: fix double locking on return from hibernate and clean-up
firmware: arm_sdei: clean up sdei_event_create()
firmware: arm_sdei: Use cpus_read_lock() to avoid races with cpuhp
firmware: arm_sdei: fix possible double-lock on hibernate error path
firmware: arm_sdei: fix double-lock on hibernate with shared events
* for-next/amu:
: ARMv8.4 Activity Monitors support
clocksource/drivers/arm_arch_timer: validate arch_timer_rate
arm64: use activity monitors for frequency invariance
cpufreq: add function to get the hardware max frequency
Documentation: arm64: document support for the AMU extension
arm64/kvm: disable access to AMU registers from kvm guests
arm64: trap to EL1 accesses to AMU counters from EL0
arm64: add support for the AMU extension v1
* for-next/final-cap-helper:
: Introduce cpus_have_final_cap_helper(), migrate arm64 KVM to it
arm64: kvm: hyp: use cpus_have_final_cap()
arm64: cpufeature: add cpus_have_final_cap()
* for-next/cpu_ops-cleanup:
: cpu_ops[] access code clean-up
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
* for-next/misc:
: Various fixes and clean-ups
arm64: define __alloc_zeroed_user_highpage
arm64/kernel: Simplify __cpu_up() by bailing out early
arm64: remove redundant blank for '=' operator
arm64: kexec_file: Fixed code style.
arm64: add blank after 'if'
arm64: fix spelling mistake "ca not" -> "cannot"
arm64: entry: unmask IRQ in el0_sp()
arm64: efi: add efi-entry.o to targets instead of extra-$(CONFIG_EFI)
arm64: csum: Optimise IPv6 header checksum
arch/arm64: fix typo in a comment
arm64: remove gratuitious/stray .ltorg stanzas
arm64: Update comment for ASID() macro
arm64: mm: convert cpu_do_switch_mm() to C
arm64: fix NUMA Kconfig typos
* for-next/perf:
: arm64 perf updates
arm64: perf: Add support for ARMv8.5-PMU 64-bit counters
KVM: arm64: limit PMU version to PMUv3 for ARMv8.1
arm64: cpufeature: Extract capped perfmon fields
arm64: perf: Clean up enable/disable calls
perf: arm-ccn: Use scnprintf() for robustness
arm64: perf: Support new DT compatibles
arm64: perf: Refactor PMU init callbacks
perf: arm_spe: Remove unnecessary zero check on 'nr_pages'
Clang relies on GNU as from binutils to assemble the Linux kernel,
currently. A recent patch to enable the armv8.3-a extension for pointer
authentication checked for compiler support of the relevant flags.
Everything works with binutils 2.34+, but for older versions we observe
assembler errors:
/tmp/vgettimeofday-36a54b.s: Assembler messages:
/tmp/vgettimeofday-36a54b.s:40: Error: unknown pseudo-op: `.cfi_negate_ra_state'
When compiling with Clang, require the assembler to support
.cfi_negate_ra_state directives, in order to support CONFIG_ARM64_PTR_AUTH.
Link: https://github.com/ClangBuiltLinux/linux/issues/938
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Commit ab7876a98a ("arm64: elf: Enable BTI at exec based on ELF
program properties") introduced the conditional selection of
ARCH_USE_GNU_PROPERTY if BINFMT_ELF is enabled. With allnoconfig, this
option is no longer selected and the arm64 arch_parse_elf_property()
function clashes with the generic dummy implementation.
Link: http://lkml.kernel.org/r/20200318082830.GA31312@willie-the-truck
Fixes: ab7876a98a ("arm64: elf: Enable BTI at exec based on ELF program properties")
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Compile all functions with two ptrauth instructions: PACIASP in the
prologue to sign the return address, and AUTIASP in the epilogue to
authenticate the return address (from the stack). If authentication
fails, the return will cause an instruction abort to be taken, followed
by an oops and killing the task.
This should help protect the kernel against attacks using
return-oriented programming. As ptrauth protects the return address, it
can also serve as a replacement for CONFIG_STACKPROTECTOR, although note
that it does not protect other parts of the stack.
The new instructions are in the HINT encoding space, so on a system
without ptrauth they execute as NOPs.
CONFIG_ARM64_PTR_AUTH now not only enables ptrauth for userspace and KVM
guests, but also automatically builds the kernel with ptrauth
instructions if the compiler supports it. If there is no compiler
support, we do not warn that the kernel was built without ptrauth
instructions.
GCC 7 and 8 support the -msign-return-address option, while GCC 9
deprecates that option and replaces it with -mbranch-protection. Support
both options.
Clang uses an external assembler hence this patch makes sure that the
correct parameters (-march=armv8.3-a) are passed down to help it recognize
the ptrauth instructions.
Ftrace function tracer works properly with Ptrauth only when
patchable-function-entry feature is present and is ensured by the
Kconfig dependency.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> # not co-dev parts
Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Cover leaf function, comments, Ftrace Kconfig]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Functions like vmap() record how much memory has been allocated by their
callers, and callers are identified using __builtin_return_address(). Once
the kernel is using pointer-auth the return address will be signed. This
means it will not match any kernel symbol, and will vary between threads
even for the same caller.
The output of /proc/vmallocinfo in this case may look like,
0x(____ptrval____)-0x(____ptrval____) 20480 0x86e28000100e7c60 pages=4 vmalloc N0=4
0x(____ptrval____)-0x(____ptrval____) 20480 0x86e28000100e7c60 pages=4 vmalloc N0=4
0x(____ptrval____)-0x(____ptrval____) 20480 0xc5c78000100e7c60 pages=4 vmalloc N0=4
The above three 64bit values should be the same symbol name and not
different LR values.
Use the pre-processor to add logic to clear the PAC to
__builtin_return_address() callers. This patch adds a new file
asm/compiler.h and is transitively included via include/compiler_types.h on
the compiler command line so it is guaranteed to be loaded and the users of
this macro will not find a wrong version.
Helper macros ptrauth_kernel_pac_mask/ptrauth_clear_pac are created for
this purpose and added in this file. Existing macro ptrauth_user_pac_mask
moved from asm/pointer_auth.h.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When the kernel is compiled with pointer auth instructions, the boot CPU
needs to start using address auth very early, so change the cpucap to
account for this.
Pointer auth must be enabled before we call C functions, because it is
not possible to enter a function with pointer auth disabled and exit it
with pointer auth enabled. Note, mismatches between architected and
IMPDEF algorithms will still be caught by the cpufeature framework (the
separate *_ARCH and *_IMP_DEF cpucaps).
Note the change in behavior: if the boot CPU has address auth and a
late CPU does not, then the late CPU is parked by the cpufeature
framework. This is possible as kernel will only have NOP space intructions
for PAC so such mismatched late cpu will silently ignore those
instructions in C functions. Also, if the boot CPU does not have address
auth and the late CPU has then the late cpu will still boot but with
ptrauth feature disabled.
Leave generic authentication as a "system scope" cpucap for now, since
initially the kernel will only use address authentication.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Re-worked ptrauth setup logic, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that the code for userspace BTI support is in the kernel add the
Kconfig entry so that it can be built and used.
[Split out of "arm64: Basic Branch Target Identification support"
-- broonie]
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For BTI protection to be as comprehensive as possible, it is
desirable to have BTI enabled from process startup. If this is not
done, the process must use mprotect() to enable BTI for each of its
executable mappings, but this is painful to do in the libc startup
code. It's simpler and more sound to have the kernel do it
instead.
To this end, detect BTI support in the executable (or ELF
interpreter, as appropriate), via the
NT_GNU_PROGRAM_PROPERTY_TYPE_0 note, and tweak the initial prot
flags for the process' executable pages to include PROT_BTI as
appropriate.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The activity monitors extension is an optional extension introduced
by the ARMv8.4 CPU architecture. This implements basic support for
version 1 of the activity monitors architecture, AMUv1.
This support includes:
- Extension detection on each CPU (boot, secondary, hotplugged)
- Register interface for AMU aarch64 registers
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The arch code for hot-remove must tear down portions of the linear map and
vmemmap corresponding to memory being removed. In both cases the page
tables mapping these regions must be freed, and when sparse vmemmap is in
use the memory backing the vmemmap must also be freed.
This patch adds unmap_hotplug_range() and free_empty_tables() helpers which
can be used to tear down either region and calls it from vmemmap_free() and
___remove_pgd_mapping(). The free_mapped argument determines whether the
backing memory will be freed.
It makes two distinct passes over the kernel page table. In the first pass
with unmap_hotplug_range() it unmaps, invalidates applicable TLB cache and
frees backing memory if required (vmemmap) for each mapped leaf entry. In
the second pass with free_empty_tables() it looks for empty page table
sections whose page table page can be unmapped, TLB invalidated and freed.
While freeing intermediate level page table pages bail out if any of its
entries are still valid. This can happen for partially filled kernel page
table either from a previously attempted failed memory hot add or while
removing an address range which does not span the entire page table page
range.
The vmemmap region may share levels of table with the vmalloc region.
There can be conflicts between hot remove freeing page table pages with
a concurrent vmalloc() walking the kernel page table. This conflict can
not just be solved by taking the init_mm ptl because of existing locking
scheme in vmalloc(). So free_empty_tables() implements a floor and ceiling
method which is borrowed from user page table tear with free_pgd_range()
which skips freeing page table pages if intermediate address range is not
aligned or maximum floor-ceiling might not own the entire page table page.
Boot memory on arm64 cannot be removed. Hence this registers a new memory
hotplug notifier which prevents boot memory offlining and it's removal.
While here update arch_add_memory() to handle __add_pages() failures by
just unmapping recently added kernel linear mapping. Now enable memory hot
remove on arm64 platforms by default with ARCH_ENABLE_MEMORY_HOTREMOVE.
This implementation is overall inspired from kernel page table tear down
procedure on X86 architecture and user page table tear down method.
[Mike and Catalin added P4D page table level support]
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fix typos in arch/arm64/Kconfig:
- spell Numa as NUMA
- add hyphenation to Non-Uniform
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that all architectures are converted to use the generic storage the
helpers and conditionals can be removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lkml.kernel.org/r/20200207124403.470699892@linutronix.de
Convert ARM/ARM64 to the generic VDSO clock mode storage. This needs to
happen in one go as they share the clocksource driver.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lkml.kernel.org/r/20200207124403.363235229@linutronix.de
Now walk_page_range() can walk kernel page tables, we can switch the arm64
ptdump code over to using it, simplifying the code.
Link: http://lkml.kernel.org/r/20191218162402.45610-22-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
1) Add WireGuard
2) Add HE and TWT support to ath11k driver, from John Crispin.
3) Add ESP in TCP encapsulation support, from Sabrina Dubroca.
4) Add variable window congestion control to TIPC, from Jon Maloy.
5) Add BCM84881 PHY driver, from Russell King.
6) Start adding netlink support for ethtool operations, from Michal
Kubecek.
7) Add XDP drop and TX action support to ena driver, from Sameeh
Jubran.
8) Add new ipv4 route notifications so that mlxsw driver does not have
to handle identical routes itself. From Ido Schimmel.
9) Add BPF dynamic program extensions, from Alexei Starovoitov.
10) Support RX and TX timestamping in igc, from Vinicius Costa Gomes.
11) Add support for macsec HW offloading, from Antoine Tenart.
12) Add initial support for MPTCP protocol, from Christoph Paasch,
Matthieu Baerts, Florian Westphal, Peter Krystad, and many others.
13) Add Octeontx2 PF support, from Sunil Goutham, Geetha sowjanya, Linu
Cherian, and others.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1469 commits)
net: phy: add default ARCH_BCM_IPROC for MDIO_BCM_IPROC
udp: segment looped gso packets correctly
netem: change mailing list
qed: FW 8.42.2.0 debug features
qed: rt init valid initialization changed
qed: Debug feature: ilt and mdump
qed: FW 8.42.2.0 Add fw overlay feature
qed: FW 8.42.2.0 HSI changes
qed: FW 8.42.2.0 iscsi/fcoe changes
qed: Add abstraction for different hsi values per chip
qed: FW 8.42.2.0 Additional ll2 type
qed: Use dmae to write to widebus registers in fw_funcs
qed: FW 8.42.2.0 Parser offsets modified
qed: FW 8.42.2.0 Queue Manager changes
qed: FW 8.42.2.0 Expose new registers and change windows
qed: FW 8.42.2.0 Internal ram offsets modifications
MAINTAINERS: Add entry for Marvell OcteonTX2 Physical Function driver
Documentation: net: octeontx2: Add RVU HW and drivers overview
octeontx2-pf: ethtool RSS config support
octeontx2-pf: Add basic ethtool support
...
Pull scheduler updates from Ingo Molnar:
"These were the main changes in this cycle:
- More -rt motivated separation of CONFIG_PREEMPT and
CONFIG_PREEMPTION.
- Add more low level scheduling topology sanity checks and warnings
to filter out nonsensical topologies that break scheduling.
- Extend uclamp constraints to influence wakeup CPU placement
- Make the RT scheduler more aware of asymmetric topologies and CPU
capacities, via uclamp metrics, if CONFIG_UCLAMP_TASK=y
- Make idle CPU selection more consistent
- Various fixes, smaller cleanups, updates and enhancements - please
see the git log for details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
sched/fair: Define sched_idle_cpu() only for SMP configurations
sched/topology: Assert non-NUMA topology masks don't (partially) overlap
idle: fix spelling mistake "iterrupts" -> "interrupts"
sched/fair: Remove redundant call to cpufreq_update_util()
sched/psi: create /proc/pressure and /proc/pressure/{io|memory|cpu} only when psi enabled
sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAP
sched/fair: calculate delta runnable load only when it's needed
sched/cputime: move rq parameter in irqtime_account_process_tick
stop_machine: Make stop_cpus() static
sched/debug: Reset watchdog on all CPUs while processing sysrq-t
sched/core: Fix size of rq::uclamp initialization
sched/uclamp: Fix a bug in propagating uclamp value in new cgroups
sched/fair: Load balance aggressively for SCHED_IDLE CPUs
sched/fair : Improve update_sd_pick_busiest for spare capacity case
watchdog: Remove soft_lockup_hrtimer_cnt and related code
sched/rt: Make RT capacity-aware
sched/fair: Make EAS wakeup placement consider uclamp restrictions
sched/fair: Make task_fits_capacity() consider uclamp restrictions
sched/uclamp: Rename uclamp_util_with() into uclamp_rq_util_with()
sched/uclamp: Make uclamp util helpers use and return UL values
...
Pull objtool updates from Ingo Molnar:
"The main changes are to move the ORC unwind table sorting from early
init to build-time - this speeds up booting.
No change in functionality intended"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fix !CONFIG_MODULES build warning
x86/unwind/orc: Remove boot-time ORC unwind tables sorting
scripts/sorttable: Implement build-time ORC unwind table sorting
scripts/sorttable: Rename 'sortextable' to 'sorttable'
scripts/sortextable: Refactor the do_func() function
scripts/sortextable: Remove dead code
scripts/sortextable: Clean up the code to meet the kernel coding style better
scripts/sortextable: Rewrite error/success handling
- New architecture features
* Support for Armv8.5 E0PD, which benefits KASLR in the same way as
KPTI but without the overhead. This allows KPTI to be disabled on
CPUs that are not affected by Meltdown, even is KASLR is enabled.
* Initial support for the Armv8.5 RNG instructions, which claim to
provide access to a high bandwidth, cryptographically secure hardware
random number generator. As well as exposing these to userspace, we
also use them as part of the KASLR seed and to seed the crng once
all CPUs have come online.
* Advertise a bunch of new instructions to userspace, including support
for Data Gathering Hint, Matrix Multiply and 16-bit floating point.
- Kexec
* Cleanups in preparation for relocating with the MMU enabled
* Support for loading crash dump kernels with kexec_file_load()
- Perf and PMU drivers
* Cleanups and non-critical fixes for a couple of system PMU drivers
- FPU-less (aka broken) CPU support
* Considerable fixes to support CPUs without the FP/SIMD extensions,
including their presence in heterogeneous systems. Good luck finding
a 64-bit userspace that handles this.
- Modern assembly function annotations
* Start migrating our use of ENTRY() and ENDPROC() over to the
new-fangled SYM_{CODE,FUNC}_{START,END} macros, which are intended to
aid debuggers
- Kbuild
* Cleanup detection of LSE support in the assembler by introducing
'as-instr'
* Remove compressed Image files when building clean targets
- IP checksumming
* Implement optimised IPv4 checksumming routine when hardware offload
is not in use. An IPv6 version is in the works, pending testing.
- Hardware errata
* Work around Cortex-A55 erratum #1530923
- Shadow call stack
* Work around some issues with Clang's integrated assembler not liking
our perfectly reasonable assembly code
* Avoid allocating the X18 register, so that it can be used to hold the
shadow call stack pointer in future
- ACPI
* Fix ID count checking in IORT code. This may regress broken firmware
that happened to work with the old implementation, in which case we'll
have to revert it and try something else
* Fix DAIF corruption on return from GHES handler with pseudo-NMIs
- Miscellaneous
* Whitelist some CPUs that are unaffected by Spectre-v2
* Reduce frequency of ASID rollover when KPTI is compiled in but
inactive
* Reserve a couple of arch-specific PROT flags that are already used by
Sparc and PowerPC and are planned for later use with BTI on arm64
* Preparatory cleanup of our entry assembly code in preparation for
moving more of it into C later on
* Refactoring and cleanup
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl4oY+IQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNNfRB/4p3vax0hqaOnLRvmJPRXF31B8oPlivnr2u
6HCA9LkdU5IlrgaTNOJ/sQEqJAPOPCU7v49Ol0iYw0iKL1suUE7Ikui5VB6Uybqt
YbfF5UNzfXAMs2A86TF/hzqhxw+W+lpnZX8NVTuQeAODfHEGUB1HhTLfRi9INsER
wKEAuoZyuSUibxTFvji+DAq7nVRniXX7CM7tE385pxDisCMuu/7E5wOl+3EZYXWz
DTGzTbHXuVFL+UFCANFEUlAtmr3dQvPFIqAwVl/CxjRJjJ7a+/G3cYLsHFPrQCjj
qYX4kfhAeeBtqmHL7YFNWFwFs5WaT5UcQquFO665/+uCTWSJpORY
=AIh/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The changes are a real mixed bag this time around.
The only scary looking one from the diffstat is the uapi change to
asm-generic/mman-common.h, but this has been acked by Arnd and is
actually just adding a pair of comments in an attempt to prevent
allocation of some PROT values which tend to get used for
arch-specific purposes. We'll be using them for Branch Target
Identification (a CFI-like hardening feature), which is currently
under review on the mailing list.
New architecture features:
- Support for Armv8.5 E0PD, which benefits KASLR in the same way as
KPTI but without the overhead. This allows KPTI to be disabled on
CPUs that are not affected by Meltdown, even is KASLR is enabled.
- Initial support for the Armv8.5 RNG instructions, which claim to
provide access to a high bandwidth, cryptographically secure
hardware random number generator. As well as exposing these to
userspace, we also use them as part of the KASLR seed and to seed
the crng once all CPUs have come online.
- Advertise a bunch of new instructions to userspace, including
support for Data Gathering Hint, Matrix Multiply and 16-bit
floating point.
Kexec:
- Cleanups in preparation for relocating with the MMU enabled
- Support for loading crash dump kernels with kexec_file_load()
Perf and PMU drivers:
- Cleanups and non-critical fixes for a couple of system PMU drivers
FPU-less (aka broken) CPU support:
- Considerable fixes to support CPUs without the FP/SIMD extensions,
including their presence in heterogeneous systems. Good luck
finding a 64-bit userspace that handles this.
Modern assembly function annotations:
- Start migrating our use of ENTRY() and ENDPROC() over to the
new-fangled SYM_{CODE,FUNC}_{START,END} macros, which are intended
to aid debuggers
Kbuild:
- Cleanup detection of LSE support in the assembler by introducing
'as-instr'
- Remove compressed Image files when building clean targets
IP checksumming:
- Implement optimised IPv4 checksumming routine when hardware offload
is not in use. An IPv6 version is in the works, pending testing.
Hardware errata:
- Work around Cortex-A55 erratum #1530923
Shadow call stack:
- Work around some issues with Clang's integrated assembler not
liking our perfectly reasonable assembly code
- Avoid allocating the X18 register, so that it can be used to hold
the shadow call stack pointer in future
ACPI:
- Fix ID count checking in IORT code. This may regress broken
firmware that happened to work with the old implementation, in
which case we'll have to revert it and try something else
- Fix DAIF corruption on return from GHES handler with pseudo-NMIs
Miscellaneous:
- Whitelist some CPUs that are unaffected by Spectre-v2
- Reduce frequency of ASID rollover when KPTI is compiled in but
inactive
- Reserve a couple of arch-specific PROT flags that are already used
by Sparc and PowerPC and are planned for later use with BTI on
arm64
- Preparatory cleanup of our entry assembly code in preparation for
moving more of it into C later on
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (73 commits)
arm64: acpi: fix DAIF manipulation with pNMI
arm64: kconfig: Fix alignment of E0PD help text
arm64: Use v8.5-RNG entropy for KASLR seed
arm64: Implement archrandom.h for ARMv8.5-RNG
arm64: kbuild: remove compressed images on 'make ARCH=arm64 (dist)clean'
arm64: entry: Avoid empty alternatives entries
arm64: Kconfig: select HAVE_FUTEX_CMPXCHG
arm64: csum: Fix pathological zero-length calls
arm64: entry: cleanup sp_el0 manipulation
arm64: entry: cleanup el0 svc handler naming
arm64: entry: mark all entry code as notrace
arm64: assembler: remove smp_dmb macro
arm64: assembler: remove inherit_daif macro
ACPI/IORT: Fix 'Number of IDs' handling in iort_id_map()
mm: Reserve asm-generic prot flags 0x10 and 0x20 for arch use
arm64: Use macros instead of hard-coded constants for MAIR_EL1
arm64: Add KRYO{3,4}XX CPU cores to spectre-v2 safe list
arm64: kernel: avoid x18 in __cpu_soft_restart
arm64: kvm: stop treating register x18 as caller save
arm64/lib: copy_page: avoid x18 register in assembler code
...
Expose the ID_AA64ISAR0.RNDR field to userspace, as the RNG system
registers are always available at EL0.
Implement arch_get_random_seed_long using RNDR. Given that the
TRNG is likely to be a shared resource between cores, and VMs,
do not explicitly force re-seeding with RNDRRS. In order to avoid
code complexity and potential issues with hetrogenous systems only
provide values after cpufeature has finalized the system capabilities.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
[Modified to only function after cpufeature has finalized the system
capabilities and move all the code into the header -- broonie]
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
[will: Advertise HWCAP via /proc/cpuinfo]
Signed-off-by: Will Deacon <will@kernel.org>
arm64 provides always working implementation of futex_atomic_cmpxchg_inatomic(),
so there is no need to check it runtime.
Reported-by: Piyush swami <Piyush.swami@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Cortex-A55 erratum 1530923 allows TLB entries to be allocated as a
result of a speculative AT instruction. This may happen in the middle of
a guest world switch while the relevant VMSA configuration is in an
inconsistent state, leading to erroneous content being allocated into
TLBs.
The same workaround as is used for Cortex-A76 erratum 1165522
(WORKAROUND_SPECULATIVE_AT_VHE) can be used here. Note that this
mandates the use of VHE on affected parts.
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
To match SPECULATIVE_AT_VHE let's also have a generic name for the NVHE
variant.
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Cortex-A55 is affected by a similar erratum, so rename the existing
workaround for errarum 1165522 so it can be used for both errata.
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Use the new 'as-instr' Kconfig macro to define CONFIG_BROKEN_GAS_INST
directly, making it available everywhere.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
[will: Drop redundant 'y if' logic]
Signed-off-by: Will Deacon <will@kernel.org>
Kernel Page Table Isolation (KPTI) is used to mitigate some speculation
based security issues by ensuring that the kernel is not mapped when
userspace is running but this approach is expensive and is incompatible
with SPE. E0PD, introduced in the ARMv8.5 extensions, provides an
alternative to this which ensures that accesses from userspace to the
kernel's half of the memory map to always fault with constant time,
preventing timing attacks without requiring constant unmapping and
remapping or preventing legitimate accesses.
Currently this feature will only be enabled if all CPUs in the system
support E0PD, if some CPUs do not support the feature at boot time then
the feature will not be enabled and in the unlikely event that a late
CPU is the first CPU to lack the feature then we will reject that CPU.
This initial patch does not yet integrate with KPTI, this will be dealt
with in followup patches. Ideally we could ensure that by default we
don't use KPTI on CPUs where E0PD is present.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: Fixed typo in Kconfig text]
Signed-off-by: Will Deacon <will@kernel.org>