forked from Minki/linux
[PATCH] hrtimer: convert posix timers completely
- convert posix-timers.c to use hrtimers - remove the now obsolete abslist code Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
97735f25d2
commit
becf8b5d00
@ -99,7 +99,8 @@ void uml_idle_timer(void)
|
||||
set_interval(ITIMER_REAL);
|
||||
}
|
||||
|
||||
extern int do_posix_clock_monotonic_gettime(struct timespec *tp);
|
||||
extern void ktime_get_ts(struct timespec *ts);
|
||||
#define do_posix_clock_monotonic_gettime(ts) ktime_get_ts(ts)
|
||||
|
||||
void time_init(void)
|
||||
{
|
||||
@ -114,8 +115,8 @@ void time_init(void)
|
||||
wall_to_monotonic.tv_nsec = -now.tv_nsec;
|
||||
}
|
||||
|
||||
/* Declared in linux/time.h, which can't be included here */
|
||||
extern void clock_was_set(void);
|
||||
/* Defined in linux/ktimer.h, which can't be included here */
|
||||
#define clock_was_set() do { } while (0)
|
||||
|
||||
void do_gettimeofday(struct timeval *tv)
|
||||
{
|
||||
|
@ -93,6 +93,13 @@ struct hrtimer_base {
|
||||
struct hrtimer *curr_timer;
|
||||
};
|
||||
|
||||
/*
|
||||
* clock_was_set() is a NOP for non- high-resolution systems. The
|
||||
* time-sorted order guarantees that a timer does not expire early and
|
||||
* is expired in the next softirq when the clock was advanced.
|
||||
*/
|
||||
#define clock_was_set() do { } while (0)
|
||||
|
||||
/* Exported timer functions: */
|
||||
|
||||
/* Initialize timers: */
|
||||
|
@ -51,12 +51,8 @@ struct k_itimer {
|
||||
struct sigqueue *sigq; /* signal queue entry. */
|
||||
union {
|
||||
struct {
|
||||
struct timer_list timer;
|
||||
/* clock abs_timer_list: */
|
||||
struct list_head abs_timer_entry;
|
||||
/* wall_to_monotonic used when set: */
|
||||
struct timespec wall_to_prev;
|
||||
unsigned long incr; /* interval in jiffies */
|
||||
struct hrtimer timer;
|
||||
ktime_t interval;
|
||||
} real;
|
||||
struct cpu_timer_list cpu;
|
||||
struct {
|
||||
@ -68,15 +64,9 @@ struct k_itimer {
|
||||
} it;
|
||||
};
|
||||
|
||||
struct k_clock_abs {
|
||||
struct list_head list;
|
||||
spinlock_t lock;
|
||||
};
|
||||
|
||||
struct k_clock {
|
||||
int res; /* in nanoseconds */
|
||||
int (*clock_getres) (const clockid_t which_clock, struct timespec *tp);
|
||||
struct k_clock_abs *abs_struct;
|
||||
int (*clock_set) (const clockid_t which_clock, struct timespec * tp);
|
||||
int (*clock_get) (const clockid_t which_clock, struct timespec * tp);
|
||||
int (*timer_create) (struct k_itimer *timer);
|
||||
@ -102,29 +92,6 @@ int do_posix_clock_nosettime(const clockid_t, struct timespec *tp);
|
||||
/* function to call to trigger timer event */
|
||||
int posix_timer_event(struct k_itimer *timr, int si_private);
|
||||
|
||||
struct now_struct {
|
||||
unsigned long jiffies;
|
||||
};
|
||||
|
||||
#define posix_get_now(now) \
|
||||
do { (now)->jiffies = jiffies; } while (0)
|
||||
|
||||
#define posix_time_before(timer, now) \
|
||||
time_before((timer)->expires, (now)->jiffies)
|
||||
|
||||
#define posix_bump_timer(timr, now) \
|
||||
do { \
|
||||
long delta, orun; \
|
||||
\
|
||||
delta = (now).jiffies - (timr)->it.real.timer.expires; \
|
||||
if (delta >= 0) { \
|
||||
orun = 1 + (delta / (timr)->it.real.incr); \
|
||||
(timr)->it.real.timer.expires += \
|
||||
orun * (timr)->it.real.incr; \
|
||||
(timr)->it_overrun += orun; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *ts);
|
||||
int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *ts);
|
||||
int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *ts);
|
||||
|
@ -73,8 +73,7 @@ struct timespec current_kernel_time(void);
|
||||
extern void do_gettimeofday(struct timeval *tv);
|
||||
extern int do_settimeofday(struct timespec *tv);
|
||||
extern int do_sys_settimeofday(struct timespec *tv, struct timezone *tz);
|
||||
extern void clock_was_set(void); // call whenever the clock is set
|
||||
extern int do_posix_clock_monotonic_gettime(struct timespec *tp);
|
||||
#define do_posix_clock_monotonic_gettime(ts) ktime_get_ts(ts)
|
||||
extern long do_utimes(char __user *filename, struct timeval *times);
|
||||
struct itimerval;
|
||||
extern int do_setitimer(int which, struct itimerval *value,
|
||||
|
@ -35,7 +35,6 @@
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/calc64.h>
|
||||
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/semaphore.h>
|
||||
@ -49,12 +48,6 @@
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
#define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
|
||||
|
||||
static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
|
||||
{
|
||||
return (u64)mpy1 * mpy2;
|
||||
}
|
||||
/*
|
||||
* Management arrays for POSIX timers. Timers are kept in slab memory
|
||||
* Timer ids are allocated by an external routine that keeps track of the
|
||||
@ -140,18 +133,18 @@ static DEFINE_SPINLOCK(idr_lock);
|
||||
*/
|
||||
|
||||
static struct k_clock posix_clocks[MAX_CLOCKS];
|
||||
/*
|
||||
* We only have one real clock that can be set so we need only one abs list,
|
||||
* even if we should want to have several clocks with differing resolutions.
|
||||
*/
|
||||
static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
|
||||
.lock = SPIN_LOCK_UNLOCKED};
|
||||
|
||||
static void posix_timer_fn(unsigned long);
|
||||
static u64 do_posix_clock_monotonic_gettime_parts(
|
||||
struct timespec *tp, struct timespec *mo);
|
||||
int do_posix_clock_monotonic_gettime(struct timespec *tp);
|
||||
static int do_posix_clock_monotonic_get(const clockid_t, struct timespec *tp);
|
||||
/*
|
||||
* These ones are defined below.
|
||||
*/
|
||||
static int common_nsleep(const clockid_t, int flags, struct timespec *t,
|
||||
struct timespec __user *rmtp);
|
||||
static void common_timer_get(struct k_itimer *, struct itimerspec *);
|
||||
static int common_timer_set(struct k_itimer *, int,
|
||||
struct itimerspec *, struct itimerspec *);
|
||||
static int common_timer_del(struct k_itimer *timer);
|
||||
|
||||
static int posix_timer_fn(void *data);
|
||||
|
||||
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
|
||||
|
||||
@ -184,10 +177,12 @@ static inline int common_clock_getres(const clockid_t which_clock,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int common_clock_get(const clockid_t which_clock,
|
||||
struct timespec *tp)
|
||||
/*
|
||||
* Get real time for posix timers
|
||||
*/
|
||||
static int common_clock_get(clockid_t which_clock, struct timespec *tp)
|
||||
{
|
||||
getnstimeofday(tp);
|
||||
ktime_get_real_ts(tp);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -199,25 +194,14 @@ static inline int common_clock_set(const clockid_t which_clock,
|
||||
|
||||
static inline int common_timer_create(struct k_itimer *new_timer)
|
||||
{
|
||||
INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
|
||||
init_timer(&new_timer->it.real.timer);
|
||||
new_timer->it.real.timer.data = (unsigned long) new_timer;
|
||||
hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock);
|
||||
new_timer->it.real.timer.data = new_timer;
|
||||
new_timer->it.real.timer.function = posix_timer_fn;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* These ones are defined below.
|
||||
*/
|
||||
static int common_nsleep(const clockid_t, int flags, struct timespec *t,
|
||||
struct timespec __user *rmtp);
|
||||
static void common_timer_get(struct k_itimer *, struct itimerspec *);
|
||||
static int common_timer_set(struct k_itimer *, int,
|
||||
struct itimerspec *, struct itimerspec *);
|
||||
static int common_timer_del(struct k_itimer *timer);
|
||||
|
||||
/*
|
||||
* Return nonzero iff we know a priori this clockid_t value is bogus.
|
||||
* Return nonzero if we know a priori this clockid_t value is bogus.
|
||||
*/
|
||||
static inline int invalid_clockid(const clockid_t which_clock)
|
||||
{
|
||||
@ -227,26 +211,32 @@ static inline int invalid_clockid(const clockid_t which_clock)
|
||||
return 1;
|
||||
if (posix_clocks[which_clock].clock_getres != NULL)
|
||||
return 0;
|
||||
#ifndef CLOCK_DISPATCH_DIRECT
|
||||
if (posix_clocks[which_clock].res != 0)
|
||||
return 0;
|
||||
#endif
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get monotonic time for posix timers
|
||||
*/
|
||||
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
|
||||
{
|
||||
ktime_get_ts(tp);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize everything, well, just everything in Posix clocks/timers ;)
|
||||
*/
|
||||
static __init int init_posix_timers(void)
|
||||
{
|
||||
struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
|
||||
.abs_struct = &abs_list
|
||||
struct k_clock clock_realtime = {
|
||||
.clock_getres = hrtimer_get_res,
|
||||
};
|
||||
struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
|
||||
.abs_struct = NULL,
|
||||
.clock_get = do_posix_clock_monotonic_get,
|
||||
.clock_set = do_posix_clock_nosettime
|
||||
struct k_clock clock_monotonic = {
|
||||
.clock_getres = hrtimer_get_res,
|
||||
.clock_get = posix_ktime_get_ts,
|
||||
.clock_set = do_posix_clock_nosettime,
|
||||
};
|
||||
|
||||
register_posix_clock(CLOCK_REALTIME, &clock_realtime);
|
||||
@ -260,117 +250,17 @@ static __init int init_posix_timers(void)
|
||||
|
||||
__initcall(init_posix_timers);
|
||||
|
||||
static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
|
||||
{
|
||||
long sec = tp->tv_sec;
|
||||
long nsec = tp->tv_nsec + res - 1;
|
||||
|
||||
if (nsec >= NSEC_PER_SEC) {
|
||||
sec++;
|
||||
nsec -= NSEC_PER_SEC;
|
||||
}
|
||||
|
||||
/*
|
||||
* The scaling constants are defined in <linux/time.h>
|
||||
* The difference between there and here is that we do the
|
||||
* res rounding and compute a 64-bit result (well so does that
|
||||
* but it then throws away the high bits).
|
||||
*/
|
||||
*jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
|
||||
(mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
|
||||
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function adjusts the timer as needed as a result of the clock
|
||||
* being set. It should only be called for absolute timers, and then
|
||||
* under the abs_list lock. It computes the time difference and sets
|
||||
* the new jiffies value in the timer. It also updates the timers
|
||||
* reference wall_to_monotonic value. It is complicated by the fact
|
||||
* that tstojiffies() only handles positive times and it needs to work
|
||||
* with both positive and negative times. Also, for negative offsets,
|
||||
* we need to defeat the res round up.
|
||||
*
|
||||
* Return is true if there is a new time, else false.
|
||||
*/
|
||||
static long add_clockset_delta(struct k_itimer *timr,
|
||||
struct timespec *new_wall_to)
|
||||
{
|
||||
struct timespec delta;
|
||||
int sign = 0;
|
||||
u64 exp;
|
||||
|
||||
set_normalized_timespec(&delta,
|
||||
new_wall_to->tv_sec -
|
||||
timr->it.real.wall_to_prev.tv_sec,
|
||||
new_wall_to->tv_nsec -
|
||||
timr->it.real.wall_to_prev.tv_nsec);
|
||||
if (likely(!(delta.tv_sec | delta.tv_nsec)))
|
||||
return 0;
|
||||
if (delta.tv_sec < 0) {
|
||||
set_normalized_timespec(&delta,
|
||||
-delta.tv_sec,
|
||||
1 - delta.tv_nsec -
|
||||
posix_clocks[timr->it_clock].res);
|
||||
sign++;
|
||||
}
|
||||
tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
|
||||
timr->it.real.wall_to_prev = *new_wall_to;
|
||||
timr->it.real.timer.expires += (sign ? -exp : exp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void remove_from_abslist(struct k_itimer *timr)
|
||||
{
|
||||
if (!list_empty(&timr->it.real.abs_timer_entry)) {
|
||||
spin_lock(&abs_list.lock);
|
||||
list_del_init(&timr->it.real.abs_timer_entry);
|
||||
spin_unlock(&abs_list.lock);
|
||||
}
|
||||
}
|
||||
|
||||
static void schedule_next_timer(struct k_itimer *timr)
|
||||
{
|
||||
struct timespec new_wall_to;
|
||||
struct now_struct now;
|
||||
unsigned long seq;
|
||||
|
||||
/*
|
||||
* Set up the timer for the next interval (if there is one).
|
||||
* Note: this code uses the abs_timer_lock to protect
|
||||
* it.real.wall_to_prev and must hold it until exp is set, not exactly
|
||||
* obvious...
|
||||
|
||||
* This function is used for CLOCK_REALTIME* and
|
||||
* CLOCK_MONOTONIC* timers. If we ever want to handle other
|
||||
* CLOCKs, the calling code (do_schedule_next_timer) would need
|
||||
* to pull the "clock" info from the timer and dispatch the
|
||||
* "other" CLOCKs "next timer" code (which, I suppose should
|
||||
* also be added to the k_clock structure).
|
||||
*/
|
||||
if (!timr->it.real.incr)
|
||||
if (timr->it.real.interval.tv64 == 0)
|
||||
return;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
new_wall_to = wall_to_monotonic;
|
||||
posix_get_now(&now);
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
|
||||
if (!list_empty(&timr->it.real.abs_timer_entry)) {
|
||||
spin_lock(&abs_list.lock);
|
||||
add_clockset_delta(timr, &new_wall_to);
|
||||
|
||||
posix_bump_timer(timr, now);
|
||||
|
||||
spin_unlock(&abs_list.lock);
|
||||
} else {
|
||||
posix_bump_timer(timr, now);
|
||||
}
|
||||
timr->it_overrun += hrtimer_forward(&timr->it.real.timer,
|
||||
timr->it.real.interval);
|
||||
timr->it_overrun_last = timr->it_overrun;
|
||||
timr->it_overrun = -1;
|
||||
++timr->it_requeue_pending;
|
||||
add_timer(&timr->it.real.timer);
|
||||
hrtimer_restart(&timr->it.real.timer);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -391,31 +281,23 @@ void do_schedule_next_timer(struct siginfo *info)
|
||||
|
||||
timr = lock_timer(info->si_tid, &flags);
|
||||
|
||||
if (!timr || timr->it_requeue_pending != info->si_sys_private)
|
||||
goto exit;
|
||||
if (timr && timr->it_requeue_pending == info->si_sys_private) {
|
||||
if (timr->it_clock < 0)
|
||||
posix_cpu_timer_schedule(timr);
|
||||
else
|
||||
schedule_next_timer(timr);
|
||||
|
||||
if (timr->it_clock < 0) /* CPU clock */
|
||||
posix_cpu_timer_schedule(timr);
|
||||
else
|
||||
schedule_next_timer(timr);
|
||||
info->si_overrun = timr->it_overrun_last;
|
||||
exit:
|
||||
if (timr)
|
||||
unlock_timer(timr, flags);
|
||||
info->si_overrun = timr->it_overrun_last;
|
||||
}
|
||||
|
||||
unlock_timer(timr, flags);
|
||||
}
|
||||
|
||||
int posix_timer_event(struct k_itimer *timr,int si_private)
|
||||
{
|
||||
memset(&timr->sigq->info, 0, sizeof(siginfo_t));
|
||||
timr->sigq->info.si_sys_private = si_private;
|
||||
/*
|
||||
* Send signal to the process that owns this timer.
|
||||
|
||||
* This code assumes that all the possible abs_lists share the
|
||||
* same lock (there is only one list at this time). If this is
|
||||
* not the case, the CLOCK info would need to be used to find
|
||||
* the proper abs list lock.
|
||||
*/
|
||||
/* Send signal to the process that owns this timer.*/
|
||||
|
||||
timr->sigq->info.si_signo = timr->it_sigev_signo;
|
||||
timr->sigq->info.si_errno = 0;
|
||||
@ -449,65 +331,36 @@ EXPORT_SYMBOL_GPL(posix_timer_event);
|
||||
|
||||
* This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
|
||||
*/
|
||||
static void posix_timer_fn(unsigned long __data)
|
||||
static int posix_timer_fn(void *data)
|
||||
{
|
||||
struct k_itimer *timr = (struct k_itimer *) __data;
|
||||
struct k_itimer *timr = data;
|
||||
unsigned long flags;
|
||||
unsigned long seq;
|
||||
struct timespec delta, new_wall_to;
|
||||
u64 exp = 0;
|
||||
int do_notify = 1;
|
||||
int si_private = 0;
|
||||
int ret = HRTIMER_NORESTART;
|
||||
|
||||
spin_lock_irqsave(&timr->it_lock, flags);
|
||||
if (!list_empty(&timr->it.real.abs_timer_entry)) {
|
||||
spin_lock(&abs_list.lock);
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
new_wall_to = wall_to_monotonic;
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
set_normalized_timespec(&delta,
|
||||
new_wall_to.tv_sec -
|
||||
timr->it.real.wall_to_prev.tv_sec,
|
||||
new_wall_to.tv_nsec -
|
||||
timr->it.real.wall_to_prev.tv_nsec);
|
||||
if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
|
||||
/* do nothing, timer is on time */
|
||||
} else if (delta.tv_sec < 0) {
|
||||
/* do nothing, timer is already late */
|
||||
} else {
|
||||
/* timer is early due to a clock set */
|
||||
tstojiffie(&delta,
|
||||
posix_clocks[timr->it_clock].res,
|
||||
&exp);
|
||||
timr->it.real.wall_to_prev = new_wall_to;
|
||||
timr->it.real.timer.expires += exp;
|
||||
add_timer(&timr->it.real.timer);
|
||||
do_notify = 0;
|
||||
|
||||
if (timr->it.real.interval.tv64 != 0)
|
||||
si_private = ++timr->it_requeue_pending;
|
||||
|
||||
if (posix_timer_event(timr, si_private)) {
|
||||
/*
|
||||
* signal was not sent because of sig_ignor
|
||||
* we will not get a call back to restart it AND
|
||||
* it should be restarted.
|
||||
*/
|
||||
if (timr->it.real.interval.tv64 != 0) {
|
||||
timr->it_overrun +=
|
||||
hrtimer_forward(&timr->it.real.timer,
|
||||
timr->it.real.interval);
|
||||
ret = HRTIMER_RESTART;
|
||||
}
|
||||
spin_unlock(&abs_list.lock);
|
||||
|
||||
}
|
||||
if (do_notify) {
|
||||
int si_private=0;
|
||||
|
||||
if (timr->it.real.incr)
|
||||
si_private = ++timr->it_requeue_pending;
|
||||
else {
|
||||
remove_from_abslist(timr);
|
||||
}
|
||||
|
||||
if (posix_timer_event(timr, si_private))
|
||||
/*
|
||||
* signal was not sent because of sig_ignor
|
||||
* we will not get a call back to restart it AND
|
||||
* it should be restarted.
|
||||
*/
|
||||
schedule_next_timer(timr);
|
||||
}
|
||||
unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
|
||||
unlock_timer(timr, flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
static inline struct task_struct * good_sigevent(sigevent_t * event)
|
||||
{
|
||||
struct task_struct *rtn = current->group_leader;
|
||||
@ -597,8 +450,7 @@ sys_timer_create(const clockid_t which_clock,
|
||||
goto out;
|
||||
}
|
||||
spin_lock_irq(&idr_lock);
|
||||
error = idr_get_new(&posix_timers_id,
|
||||
(void *) new_timer,
|
||||
error = idr_get_new(&posix_timers_id, (void *) new_timer,
|
||||
&new_timer_id);
|
||||
spin_unlock_irq(&idr_lock);
|
||||
if (error == -EAGAIN)
|
||||
@ -698,26 +550,6 @@ out:
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* good_timespec
|
||||
*
|
||||
* This function checks the elements of a timespec structure.
|
||||
*
|
||||
* Arguments:
|
||||
* ts : Pointer to the timespec structure to check
|
||||
*
|
||||
* Return value:
|
||||
* If a NULL pointer was passed in, or the tv_nsec field was less than 0
|
||||
* or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
|
||||
* this function returns 0. Otherwise it returns 1.
|
||||
*/
|
||||
static int good_timespec(const struct timespec *ts)
|
||||
{
|
||||
if ((!ts) || !timespec_valid(ts))
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Locking issues: We need to protect the result of the id look up until
|
||||
* we get the timer locked down so it is not deleted under us. The
|
||||
@ -770,39 +602,39 @@ static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
|
||||
static void
|
||||
common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
|
||||
{
|
||||
unsigned long expires;
|
||||
struct now_struct now;
|
||||
ktime_t remaining;
|
||||
struct hrtimer *timer = &timr->it.real.timer;
|
||||
|
||||
do
|
||||
expires = timr->it.real.timer.expires;
|
||||
while ((volatile long) (timr->it.real.timer.expires) != expires);
|
||||
memset(cur_setting, 0, sizeof(struct itimerspec));
|
||||
remaining = hrtimer_get_remaining(timer);
|
||||
|
||||
posix_get_now(&now);
|
||||
|
||||
if (expires &&
|
||||
((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
|
||||
!timr->it.real.incr &&
|
||||
posix_time_before(&timr->it.real.timer, &now))
|
||||
timr->it.real.timer.expires = expires = 0;
|
||||
if (expires) {
|
||||
if (timr->it_requeue_pending & REQUEUE_PENDING ||
|
||||
(timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
|
||||
posix_bump_timer(timr, now);
|
||||
expires = timr->it.real.timer.expires;
|
||||
}
|
||||
else
|
||||
if (!timer_pending(&timr->it.real.timer))
|
||||
expires = 0;
|
||||
if (expires)
|
||||
expires -= now.jiffies;
|
||||
/* Time left ? or timer pending */
|
||||
if (remaining.tv64 > 0 || hrtimer_active(timer))
|
||||
goto calci;
|
||||
/* interval timer ? */
|
||||
if (timr->it.real.interval.tv64 == 0)
|
||||
return;
|
||||
/*
|
||||
* When a requeue is pending or this is a SIGEV_NONE timer
|
||||
* move the expiry time forward by intervals, so expiry is >
|
||||
* now.
|
||||
*/
|
||||
if (timr->it_requeue_pending & REQUEUE_PENDING ||
|
||||
(timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
|
||||
timr->it_overrun +=
|
||||
hrtimer_forward(timer, timr->it.real.interval);
|
||||
remaining = hrtimer_get_remaining(timer);
|
||||
}
|
||||
jiffies_to_timespec(expires, &cur_setting->it_value);
|
||||
jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
|
||||
|
||||
if (cur_setting->it_value.tv_sec < 0) {
|
||||
calci:
|
||||
/* interval timer ? */
|
||||
if (timr->it.real.interval.tv64 != 0)
|
||||
cur_setting->it_interval =
|
||||
ktime_to_timespec(timr->it.real.interval);
|
||||
/* Return 0 only, when the timer is expired and not pending */
|
||||
if (remaining.tv64 <= 0)
|
||||
cur_setting->it_value.tv_nsec = 1;
|
||||
cur_setting->it_value.tv_sec = 0;
|
||||
}
|
||||
else
|
||||
cur_setting->it_value = ktime_to_timespec(remaining);
|
||||
}
|
||||
|
||||
/* Get the time remaining on a POSIX.1b interval timer. */
|
||||
@ -826,6 +658,7 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the number of overruns of a POSIX.1b interval timer. This is to
|
||||
* be the overrun of the timer last delivered. At the same time we are
|
||||
@ -835,7 +668,6 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
|
||||
* the call back to do_schedule_next_timer(). So all we need to do is
|
||||
* to pick up the frozen overrun.
|
||||
*/
|
||||
|
||||
asmlinkage long
|
||||
sys_timer_getoverrun(timer_t timer_id)
|
||||
{
|
||||
@ -852,84 +684,6 @@ sys_timer_getoverrun(timer_t timer_id)
|
||||
|
||||
return overrun;
|
||||
}
|
||||
/*
|
||||
* Adjust for absolute time
|
||||
*
|
||||
* If absolute time is given and it is not CLOCK_MONOTONIC, we need to
|
||||
* adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
|
||||
* what ever clock he is using.
|
||||
*
|
||||
* If it is relative time, we need to add the current (CLOCK_MONOTONIC)
|
||||
* time to it to get the proper time for the timer.
|
||||
*/
|
||||
static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
|
||||
int abs, u64 *exp, struct timespec *wall_to)
|
||||
{
|
||||
struct timespec now;
|
||||
struct timespec oc = *tp;
|
||||
u64 jiffies_64_f;
|
||||
int rtn =0;
|
||||
|
||||
if (abs) {
|
||||
/*
|
||||
* The mask pick up the 4 basic clocks
|
||||
*/
|
||||
if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
|
||||
jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
|
||||
&now, wall_to);
|
||||
/*
|
||||
* If we are doing a MONOTONIC clock
|
||||
*/
|
||||
if((clock - &posix_clocks[0]) & CLOCKS_MONO){
|
||||
now.tv_sec += wall_to->tv_sec;
|
||||
now.tv_nsec += wall_to->tv_nsec;
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* Not one of the basic clocks
|
||||
*/
|
||||
clock->clock_get(clock - posix_clocks, &now);
|
||||
jiffies_64_f = get_jiffies_64();
|
||||
}
|
||||
/*
|
||||
* Take away now to get delta and normalize
|
||||
*/
|
||||
set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
|
||||
oc.tv_nsec - now.tv_nsec);
|
||||
}else{
|
||||
jiffies_64_f = get_jiffies_64();
|
||||
}
|
||||
/*
|
||||
* Check if the requested time is prior to now (if so set now)
|
||||
*/
|
||||
if (oc.tv_sec < 0)
|
||||
oc.tv_sec = oc.tv_nsec = 0;
|
||||
|
||||
if (oc.tv_sec | oc.tv_nsec)
|
||||
set_normalized_timespec(&oc, oc.tv_sec,
|
||||
oc.tv_nsec + clock->res);
|
||||
tstojiffie(&oc, clock->res, exp);
|
||||
|
||||
/*
|
||||
* Check if the requested time is more than the timer code
|
||||
* can handle (if so we error out but return the value too).
|
||||
*/
|
||||
if (*exp > ((u64)MAX_JIFFY_OFFSET))
|
||||
/*
|
||||
* This is a considered response, not exactly in
|
||||
* line with the standard (in fact it is silent on
|
||||
* possible overflows). We assume such a large
|
||||
* value is ALMOST always a programming error and
|
||||
* try not to compound it by setting a really dumb
|
||||
* value.
|
||||
*/
|
||||
rtn = -EINVAL;
|
||||
/*
|
||||
* return the actual jiffies expire time, full 64 bits
|
||||
*/
|
||||
*exp += jiffies_64_f;
|
||||
return rtn;
|
||||
}
|
||||
|
||||
/* Set a POSIX.1b interval timer. */
|
||||
/* timr->it_lock is taken. */
|
||||
@ -937,68 +691,48 @@ static inline int
|
||||
common_timer_set(struct k_itimer *timr, int flags,
|
||||
struct itimerspec *new_setting, struct itimerspec *old_setting)
|
||||
{
|
||||
struct k_clock *clock = &posix_clocks[timr->it_clock];
|
||||
u64 expire_64;
|
||||
struct hrtimer *timer = &timr->it.real.timer;
|
||||
|
||||
if (old_setting)
|
||||
common_timer_get(timr, old_setting);
|
||||
|
||||
/* disable the timer */
|
||||
timr->it.real.incr = 0;
|
||||
timr->it.real.interval.tv64 = 0;
|
||||
/*
|
||||
* careful here. If smp we could be in the "fire" routine which will
|
||||
* be spinning as we hold the lock. But this is ONLY an SMP issue.
|
||||
*/
|
||||
if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* It can only be active if on an other cpu. Since
|
||||
* we have cleared the interval stuff above, it should
|
||||
* clear once we release the spin lock. Of course once
|
||||
* we do that anything could happen, including the
|
||||
* complete melt down of the timer. So return with
|
||||
* a "retry" exit status.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(timer) < 0)
|
||||
return TIMER_RETRY;
|
||||
#endif
|
||||
}
|
||||
|
||||
remove_from_abslist(timr);
|
||||
|
||||
timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
|
||||
~REQUEUE_PENDING;
|
||||
timr->it_overrun_last = 0;
|
||||
timr->it_overrun = -1;
|
||||
/*
|
||||
*switch off the timer when it_value is zero
|
||||
*/
|
||||
if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
|
||||
timr->it.real.timer.expires = 0;
|
||||
|
||||
/* switch off the timer when it_value is zero */
|
||||
if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (adjust_abs_time(clock,
|
||||
&new_setting->it_value, flags & TIMER_ABSTIME,
|
||||
&expire_64, &(timr->it.real.wall_to_prev))) {
|
||||
return -EINVAL;
|
||||
}
|
||||
timr->it.real.timer.expires = (unsigned long)expire_64;
|
||||
tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
|
||||
timr->it.real.incr = (unsigned long)expire_64;
|
||||
|
||||
/*
|
||||
* We do not even queue SIGEV_NONE timers! But we do put them
|
||||
* in the abs list so we can do that right.
|
||||
/* Posix madness. Only absolute CLOCK_REALTIME timers
|
||||
* are affected by clock sets. So we must reiniatilize
|
||||
* the timer.
|
||||
*/
|
||||
if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
|
||||
add_timer(&timr->it.real.timer);
|
||||
if (timr->it_clock == CLOCK_REALTIME && (flags & TIMER_ABSTIME))
|
||||
hrtimer_rebase(timer, CLOCK_REALTIME);
|
||||
else
|
||||
hrtimer_rebase(timer, CLOCK_MONOTONIC);
|
||||
|
||||
if (flags & TIMER_ABSTIME && clock->abs_struct) {
|
||||
spin_lock(&clock->abs_struct->lock);
|
||||
list_add_tail(&(timr->it.real.abs_timer_entry),
|
||||
&(clock->abs_struct->list));
|
||||
spin_unlock(&clock->abs_struct->lock);
|
||||
}
|
||||
timer->expires = timespec_to_ktime(new_setting->it_value);
|
||||
|
||||
/* Convert interval */
|
||||
timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
|
||||
|
||||
/* SIGEV_NONE timers are not queued ! See common_timer_get */
|
||||
if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
|
||||
return 0;
|
||||
|
||||
hrtimer_start(timer, timer->expires, (flags & TIMER_ABSTIME) ?
|
||||
HRTIMER_ABS : HRTIMER_REL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -1020,8 +754,8 @@ sys_timer_settime(timer_t timer_id, int flags,
|
||||
if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
|
||||
return -EFAULT;
|
||||
|
||||
if ((!good_timespec(&new_spec.it_interval)) ||
|
||||
(!good_timespec(&new_spec.it_value)))
|
||||
if (!timespec_valid(&new_spec.it_interval) ||
|
||||
!timespec_valid(&new_spec.it_value))
|
||||
return -EINVAL;
|
||||
retry:
|
||||
timr = lock_timer(timer_id, &flag);
|
||||
@ -1037,8 +771,8 @@ retry:
|
||||
goto retry;
|
||||
}
|
||||
|
||||
if (old_setting && !error && copy_to_user(old_setting,
|
||||
&old_spec, sizeof (old_spec)))
|
||||
if (old_setting && !error &&
|
||||
copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
|
||||
error = -EFAULT;
|
||||
|
||||
return error;
|
||||
@ -1046,24 +780,10 @@ retry:
|
||||
|
||||
static inline int common_timer_del(struct k_itimer *timer)
|
||||
{
|
||||
timer->it.real.incr = 0;
|
||||
timer->it.real.interval.tv64 = 0;
|
||||
|
||||
if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* It can only be active if on an other cpu. Since
|
||||
* we have cleared the interval stuff above, it should
|
||||
* clear once we release the spin lock. Of course once
|
||||
* we do that anything could happen, including the
|
||||
* complete melt down of the timer. So return with
|
||||
* a "retry" exit status.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
|
||||
return TIMER_RETRY;
|
||||
#endif
|
||||
}
|
||||
|
||||
remove_from_abslist(timer);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -1079,24 +799,16 @@ sys_timer_delete(timer_t timer_id)
|
||||
struct k_itimer *timer;
|
||||
long flags;
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
int error;
|
||||
retry_delete:
|
||||
#endif
|
||||
timer = lock_timer(timer_id, &flags);
|
||||
if (!timer)
|
||||
return -EINVAL;
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
error = timer_delete_hook(timer);
|
||||
|
||||
if (error == TIMER_RETRY) {
|
||||
if (timer_delete_hook(timer) == TIMER_RETRY) {
|
||||
unlock_timer(timer, flags);
|
||||
goto retry_delete;
|
||||
}
|
||||
#else
|
||||
timer_delete_hook(timer);
|
||||
#endif
|
||||
|
||||
spin_lock(¤t->sighand->siglock);
|
||||
list_del(&timer->list);
|
||||
spin_unlock(¤t->sighand->siglock);
|
||||
@ -1113,6 +825,7 @@ retry_delete:
|
||||
release_posix_timer(timer, IT_ID_SET);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* return timer owned by the process, used by exit_itimers
|
||||
*/
|
||||
@ -1120,22 +833,13 @@ static inline void itimer_delete(struct k_itimer *timer)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
int error;
|
||||
retry_delete:
|
||||
#endif
|
||||
spin_lock_irqsave(&timer->it_lock, flags);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
error = timer_delete_hook(timer);
|
||||
|
||||
if (error == TIMER_RETRY) {
|
||||
if (timer_delete_hook(timer) == TIMER_RETRY) {
|
||||
unlock_timer(timer, flags);
|
||||
goto retry_delete;
|
||||
}
|
||||
#else
|
||||
timer_delete_hook(timer);
|
||||
#endif
|
||||
list_del(&timer->list);
|
||||
/*
|
||||
* This keeps any tasks waiting on the spin lock from thinking
|
||||
@ -1164,57 +868,7 @@ void exit_itimers(struct signal_struct *sig)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* And now for the "clock" calls
|
||||
*
|
||||
* These functions are called both from timer functions (with the timer
|
||||
* spin_lock_irq() held and from clock calls with no locking. They must
|
||||
* use the save flags versions of locks.
|
||||
*/
|
||||
|
||||
/*
|
||||
* We do ticks here to avoid the irq lock ( they take sooo long).
|
||||
* The seqlock is great here. Since we a reader, we don't really care
|
||||
* if we are interrupted since we don't take lock that will stall us or
|
||||
* any other cpu. Voila, no irq lock is needed.
|
||||
*
|
||||
*/
|
||||
|
||||
static u64 do_posix_clock_monotonic_gettime_parts(
|
||||
struct timespec *tp, struct timespec *mo)
|
||||
{
|
||||
u64 jiff;
|
||||
unsigned int seq;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
getnstimeofday(tp);
|
||||
*mo = wall_to_monotonic;
|
||||
jiff = jiffies_64;
|
||||
|
||||
} while(read_seqretry(&xtime_lock, seq));
|
||||
|
||||
return jiff;
|
||||
}
|
||||
|
||||
static int do_posix_clock_monotonic_get(const clockid_t clock,
|
||||
struct timespec *tp)
|
||||
{
|
||||
struct timespec wall_to_mono;
|
||||
|
||||
do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
|
||||
|
||||
set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec,
|
||||
tp->tv_nsec + wall_to_mono.tv_nsec);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int do_posix_clock_monotonic_gettime(struct timespec *tp)
|
||||
{
|
||||
return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
|
||||
}
|
||||
|
||||
/* Not available / possible... functions */
|
||||
int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
|
||||
{
|
||||
return -EINVAL;
|
||||
@ -1287,107 +941,6 @@ sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* The standard says that an absolute nanosleep call MUST wake up at
|
||||
* the requested time in spite of clock settings. Here is what we do:
|
||||
* For each nanosleep call that needs it (only absolute and not on
|
||||
* CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
|
||||
* into the "nanosleep_abs_list". All we need is the task_struct pointer.
|
||||
* When ever the clock is set we just wake up all those tasks. The rest
|
||||
* is done by the while loop in clock_nanosleep().
|
||||
*
|
||||
* On locking, clock_was_set() is called from update_wall_clock which
|
||||
* holds (or has held for it) a write_lock_irq( xtime_lock) and is
|
||||
* called from the timer bh code. Thus we need the irq save locks.
|
||||
*
|
||||
* Also, on the call from update_wall_clock, that is done as part of a
|
||||
* softirq thing. We don't want to delay the system that much (possibly
|
||||
* long list of timers to fix), so we defer that work to keventd.
|
||||
*/
|
||||
|
||||
static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
|
||||
static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
|
||||
|
||||
static DECLARE_MUTEX(clock_was_set_lock);
|
||||
|
||||
void clock_was_set(void)
|
||||
{
|
||||
struct k_itimer *timr;
|
||||
struct timespec new_wall_to;
|
||||
LIST_HEAD(cws_list);
|
||||
unsigned long seq;
|
||||
|
||||
|
||||
if (unlikely(in_interrupt())) {
|
||||
schedule_work(&clock_was_set_work);
|
||||
return;
|
||||
}
|
||||
wake_up_all(&nanosleep_abs_wqueue);
|
||||
|
||||
/*
|
||||
* Check if there exist TIMER_ABSTIME timers to correct.
|
||||
*
|
||||
* Notes on locking: This code is run in task context with irq
|
||||
* on. We CAN be interrupted! All other usage of the abs list
|
||||
* lock is under the timer lock which holds the irq lock as
|
||||
* well. We REALLY don't want to scan the whole list with the
|
||||
* interrupt system off, AND we would like a sequence lock on
|
||||
* this code as well. Since we assume that the clock will not
|
||||
* be set often, it seems ok to take and release the irq lock
|
||||
* for each timer. In fact add_timer will do this, so this is
|
||||
* not an issue. So we know when we are done, we will move the
|
||||
* whole list to a new location. Then as we process each entry,
|
||||
* we will move it to the actual list again. This way, when our
|
||||
* copy is empty, we are done. We are not all that concerned
|
||||
* about preemption so we will use a semaphore lock to protect
|
||||
* aginst reentry. This way we will not stall another
|
||||
* processor. It is possible that this may delay some timers
|
||||
* that should have expired, given the new clock, but even this
|
||||
* will be minimal as we will always update to the current time,
|
||||
* even if it was set by a task that is waiting for entry to
|
||||
* this code. Timers that expire too early will be caught by
|
||||
* the expire code and restarted.
|
||||
|
||||
* Absolute timers that repeat are left in the abs list while
|
||||
* waiting for the task to pick up the signal. This means we
|
||||
* may find timers that are not in the "add_timer" list, but are
|
||||
* in the abs list. We do the same thing for these, save
|
||||
* putting them back in the "add_timer" list. (Note, these are
|
||||
* left in the abs list mainly to indicate that they are
|
||||
* ABSOLUTE timers, a fact that is used by the re-arm code, and
|
||||
* for which we have no other flag.)
|
||||
|
||||
*/
|
||||
|
||||
down(&clock_was_set_lock);
|
||||
spin_lock_irq(&abs_list.lock);
|
||||
list_splice_init(&abs_list.list, &cws_list);
|
||||
spin_unlock_irq(&abs_list.lock);
|
||||
do {
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
new_wall_to = wall_to_monotonic;
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
|
||||
spin_lock_irq(&abs_list.lock);
|
||||
if (list_empty(&cws_list)) {
|
||||
spin_unlock_irq(&abs_list.lock);
|
||||
break;
|
||||
}
|
||||
timr = list_entry(cws_list.next, struct k_itimer,
|
||||
it.real.abs_timer_entry);
|
||||
|
||||
list_del_init(&timr->it.real.abs_timer_entry);
|
||||
if (add_clockset_delta(timr, &new_wall_to) &&
|
||||
del_timer(&timr->it.real.timer)) /* timer run yet? */
|
||||
add_timer(&timr->it.real.timer);
|
||||
list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
|
||||
spin_unlock_irq(&abs_list.lock);
|
||||
} while (1);
|
||||
|
||||
up(&clock_was_set_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* nanosleep for monotonic and realtime clocks
|
||||
*/
|
||||
@ -1401,7 +954,7 @@ static int common_nsleep(const clockid_t which_clock, int flags,
|
||||
case CLOCK_REALTIME:
|
||||
/* Posix madness. Only absolute timers on clock realtime
|
||||
are affected by clock set. */
|
||||
if (mode == HRTIMER_ABS)
|
||||
if (mode != HRTIMER_ABS)
|
||||
clockid = CLOCK_MONOTONIC;
|
||||
case CLOCK_MONOTONIC:
|
||||
break;
|
||||
|
Loading…
Reference in New Issue
Block a user