forked from Minki/linux
drm/i915: Fix eviction when the GGTT is idle but full
In the full-ppgtt world, we can fill the GGTT full of context objects.
These context objects are currently implicitly tracked by the requests
that pin them i.e. they are only unpinned when the request is completed
and retired, but we do not have the link from the vma to the request
(anymore). In order to unpin those contexts, we have to issue another
request and wait upon the switch to the kernel context.
The bug during eviction was that we assumed that a full GGTT meant we
would have requests on the GGTT timeline, and so we missed situations
where those requests where merely in flight (and when even they have not
yet been submitted to hw yet). The fix employed here is to change the
already-is-idle test to no look at the execution timeline, but count the
outstanding requests and then check that we have switched to the kernel
context. Erring on the side of overkill here just means that we stall a
little longer than may be strictly required, but we only expect to hit
this path in extreme corner cases where returning an erroneous error is
worse than the delay.
v2: Logical inversion when swapping over branches.
Fixes: 80b204bce8
("drm/i915: Enable multiple timelines")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20171012125726.14736-1-chris@chris-wilson.co.uk
This commit is contained in:
parent
4d90f2d507
commit
55b4f1ce2f
@ -33,21 +33,20 @@
|
||||
#include "intel_drv.h"
|
||||
#include "i915_trace.h"
|
||||
|
||||
static bool ggtt_is_idle(struct drm_i915_private *dev_priv)
|
||||
static bool ggtt_is_idle(struct drm_i915_private *i915)
|
||||
{
|
||||
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
||||
struct intel_engine_cs *engine;
|
||||
enum intel_engine_id id;
|
||||
struct intel_engine_cs *engine;
|
||||
enum intel_engine_id id;
|
||||
|
||||
for_each_engine(engine, dev_priv, id) {
|
||||
struct intel_timeline *tl;
|
||||
if (i915->gt.active_requests)
|
||||
return false;
|
||||
|
||||
tl = &ggtt->base.timeline.engine[engine->id];
|
||||
if (i915_gem_active_isset(&tl->last_request))
|
||||
return false;
|
||||
}
|
||||
for_each_engine(engine, i915, id) {
|
||||
if (engine->last_retired_context != i915->kernel_context)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
static int ggtt_flush(struct drm_i915_private *i915)
|
||||
@ -157,7 +156,8 @@ i915_gem_evict_something(struct i915_address_space *vm,
|
||||
min_size, alignment, cache_level,
|
||||
start, end, mode);
|
||||
|
||||
/* Retire before we search the active list. Although we have
|
||||
/*
|
||||
* Retire before we search the active list. Although we have
|
||||
* reasonable accuracy in our retirement lists, we may have
|
||||
* a stray pin (preventing eviction) that can only be resolved by
|
||||
* retiring.
|
||||
@ -182,7 +182,8 @@ search_again:
|
||||
BUG_ON(ret);
|
||||
}
|
||||
|
||||
/* Can we unpin some objects such as idle hw contents,
|
||||
/*
|
||||
* Can we unpin some objects such as idle hw contents,
|
||||
* or pending flips? But since only the GGTT has global entries
|
||||
* such as scanouts, rinbuffers and contexts, we can skip the
|
||||
* purge when inspecting per-process local address spaces.
|
||||
@ -190,19 +191,33 @@ search_again:
|
||||
if (!i915_is_ggtt(vm) || flags & PIN_NONBLOCK)
|
||||
return -ENOSPC;
|
||||
|
||||
if (ggtt_is_idle(dev_priv)) {
|
||||
/* If we still have pending pageflip completions, drop
|
||||
* back to userspace to give our workqueues time to
|
||||
* acquire our locks and unpin the old scanouts.
|
||||
*/
|
||||
return intel_has_pending_fb_unpin(dev_priv) ? -EAGAIN : -ENOSPC;
|
||||
/*
|
||||
* Not everything in the GGTT is tracked via VMA using
|
||||
* i915_vma_move_to_active(), otherwise we could evict as required
|
||||
* with minimal stalling. Instead we are forced to idle the GPU and
|
||||
* explicitly retire outstanding requests which will then remove
|
||||
* the pinning for active objects such as contexts and ring,
|
||||
* enabling us to evict them on the next iteration.
|
||||
*
|
||||
* To ensure that all user contexts are evictable, we perform
|
||||
* a switch to the perma-pinned kernel context. This all also gives
|
||||
* us a termination condition, when the last retired context is
|
||||
* the kernel's there is no more we can evict.
|
||||
*/
|
||||
if (!ggtt_is_idle(dev_priv)) {
|
||||
ret = ggtt_flush(dev_priv);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
goto search_again;
|
||||
}
|
||||
|
||||
ret = ggtt_flush(dev_priv);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
goto search_again;
|
||||
/*
|
||||
* If we still have pending pageflip completions, drop
|
||||
* back to userspace to give our workqueues time to
|
||||
* acquire our locks and unpin the old scanouts.
|
||||
*/
|
||||
return intel_has_pending_fb_unpin(dev_priv) ? -EAGAIN : -ENOSPC;
|
||||
|
||||
found:
|
||||
/* drm_mm doesn't allow any other other operations while
|
||||
|
Loading…
Reference in New Issue
Block a user