membarrier: Provide expedited private command
Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
This commit is contained in:
parent
955dbdf4ce
commit
22e4ebb975
@ -8621,7 +8621,7 @@ M: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
|
||||
M: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
|
||||
L: linux-kernel@vger.kernel.org
|
||||
S: Supported
|
||||
F: kernel/membarrier.c
|
||||
F: kernel/sched/membarrier.c
|
||||
F: include/uapi/linux/membarrier.h
|
||||
|
||||
MEMORY MANAGEMENT
|
||||
|
@ -360,6 +360,8 @@ __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
|
||||
/*
|
||||
* Complete any pending TLB or cache maintenance on this CPU in case
|
||||
* the thread migrates to a different CPU.
|
||||
* This full barrier is also required by the membarrier system
|
||||
* call.
|
||||
*/
|
||||
dsb(ish);
|
||||
|
||||
|
@ -40,14 +40,33 @@
|
||||
* (non-running threads are de facto in such a
|
||||
* state). This covers threads from all processes
|
||||
* running on the system. This command returns 0.
|
||||
* @MEMBARRIER_CMD_PRIVATE_EXPEDITED:
|
||||
* Execute a memory barrier on each running
|
||||
* thread belonging to the same process as the current
|
||||
* thread. Upon return from system call, the
|
||||
* caller thread is ensured that all its running
|
||||
* threads siblings have passed through a state
|
||||
* where all memory accesses to user-space
|
||||
* addresses match program order between entry
|
||||
* to and return from the system call
|
||||
* (non-running threads are de facto in such a
|
||||
* state). This only covers threads from the
|
||||
* same processes as the caller thread. This
|
||||
* command returns 0. The "expedited" commands
|
||||
* complete faster than the non-expedited ones,
|
||||
* they never block, but have the downside of
|
||||
* causing extra overhead.
|
||||
*
|
||||
* Command to be passed to the membarrier system call. The commands need to
|
||||
* be a single bit each, except for MEMBARRIER_CMD_QUERY which is assigned to
|
||||
* the value 0.
|
||||
*/
|
||||
enum membarrier_cmd {
|
||||
MEMBARRIER_CMD_QUERY = 0,
|
||||
MEMBARRIER_CMD_SHARED = (1 << 0),
|
||||
MEMBARRIER_CMD_QUERY = 0,
|
||||
MEMBARRIER_CMD_SHARED = (1 << 0),
|
||||
/* reserved for MEMBARRIER_CMD_SHARED_EXPEDITED (1 << 1) */
|
||||
/* reserved for MEMBARRIER_CMD_PRIVATE (1 << 2) */
|
||||
MEMBARRIER_CMD_PRIVATE_EXPEDITED = (1 << 3),
|
||||
};
|
||||
|
||||
#endif /* _UAPI_LINUX_MEMBARRIER_H */
|
||||
|
@ -108,7 +108,6 @@ obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
|
||||
obj-$(CONFIG_JUMP_LABEL) += jump_label.o
|
||||
obj-$(CONFIG_CONTEXT_TRACKING) += context_tracking.o
|
||||
obj-$(CONFIG_TORTURE_TEST) += torture.o
|
||||
obj-$(CONFIG_MEMBARRIER) += membarrier.o
|
||||
|
||||
obj-$(CONFIG_HAS_IOMEM) += memremap.o
|
||||
|
||||
|
@ -1,70 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2010, 2015 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
|
||||
*
|
||||
* membarrier system call
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/syscalls.h>
|
||||
#include <linux/membarrier.h>
|
||||
#include <linux/tick.h>
|
||||
|
||||
/*
|
||||
* Bitmask made from a "or" of all commands within enum membarrier_cmd,
|
||||
* except MEMBARRIER_CMD_QUERY.
|
||||
*/
|
||||
#define MEMBARRIER_CMD_BITMASK (MEMBARRIER_CMD_SHARED)
|
||||
|
||||
/**
|
||||
* sys_membarrier - issue memory barriers on a set of threads
|
||||
* @cmd: Takes command values defined in enum membarrier_cmd.
|
||||
* @flags: Currently needs to be 0. For future extensions.
|
||||
*
|
||||
* If this system call is not implemented, -ENOSYS is returned. If the
|
||||
* command specified does not exist, or if the command argument is invalid,
|
||||
* this system call returns -EINVAL. For a given command, with flags argument
|
||||
* set to 0, this system call is guaranteed to always return the same value
|
||||
* until reboot.
|
||||
*
|
||||
* All memory accesses performed in program order from each targeted thread
|
||||
* is guaranteed to be ordered with respect to sys_membarrier(). If we use
|
||||
* the semantic "barrier()" to represent a compiler barrier forcing memory
|
||||
* accesses to be performed in program order across the barrier, and
|
||||
* smp_mb() to represent explicit memory barriers forcing full memory
|
||||
* ordering across the barrier, we have the following ordering table for
|
||||
* each pair of barrier(), sys_membarrier() and smp_mb():
|
||||
*
|
||||
* The pair ordering is detailed as (O: ordered, X: not ordered):
|
||||
*
|
||||
* barrier() smp_mb() sys_membarrier()
|
||||
* barrier() X X O
|
||||
* smp_mb() X O O
|
||||
* sys_membarrier() O O O
|
||||
*/
|
||||
SYSCALL_DEFINE2(membarrier, int, cmd, int, flags)
|
||||
{
|
||||
/* MEMBARRIER_CMD_SHARED is not compatible with nohz_full. */
|
||||
if (tick_nohz_full_enabled())
|
||||
return -ENOSYS;
|
||||
if (unlikely(flags))
|
||||
return -EINVAL;
|
||||
switch (cmd) {
|
||||
case MEMBARRIER_CMD_QUERY:
|
||||
return MEMBARRIER_CMD_BITMASK;
|
||||
case MEMBARRIER_CMD_SHARED:
|
||||
if (num_online_cpus() > 1)
|
||||
synchronize_sched();
|
||||
return 0;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
@ -25,3 +25,4 @@ obj-$(CONFIG_SCHED_DEBUG) += debug.o
|
||||
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
|
||||
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
|
||||
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
|
||||
obj-$(CONFIG_MEMBARRIER) += membarrier.o
|
||||
|
@ -2640,6 +2640,16 @@ static struct rq *finish_task_switch(struct task_struct *prev)
|
||||
prev_state = prev->state;
|
||||
vtime_task_switch(prev);
|
||||
perf_event_task_sched_in(prev, current);
|
||||
/*
|
||||
* The membarrier system call requires a full memory barrier
|
||||
* after storing to rq->curr, before going back to user-space.
|
||||
*
|
||||
* TODO: This smp_mb__after_unlock_lock can go away if PPC end
|
||||
* up adding a full barrier to switch_mm(), or we should figure
|
||||
* out if a smp_mb__after_unlock_lock is really the proper API
|
||||
* to use.
|
||||
*/
|
||||
smp_mb__after_unlock_lock();
|
||||
finish_lock_switch(rq, prev);
|
||||
finish_arch_post_lock_switch();
|
||||
|
||||
@ -3329,6 +3339,21 @@ static void __sched notrace __schedule(bool preempt)
|
||||
if (likely(prev != next)) {
|
||||
rq->nr_switches++;
|
||||
rq->curr = next;
|
||||
/*
|
||||
* The membarrier system call requires each architecture
|
||||
* to have a full memory barrier after updating
|
||||
* rq->curr, before returning to user-space. For TSO
|
||||
* (e.g. x86), the architecture must provide its own
|
||||
* barrier in switch_mm(). For weakly ordered machines
|
||||
* for which spin_unlock() acts as a full memory
|
||||
* barrier, finish_lock_switch() in common code takes
|
||||
* care of this barrier. For weakly ordered machines for
|
||||
* which spin_unlock() acts as a RELEASE barrier (only
|
||||
* arm64 and PowerPC), arm64 has a full barrier in
|
||||
* switch_to(), and PowerPC has
|
||||
* smp_mb__after_unlock_lock() before
|
||||
* finish_lock_switch().
|
||||
*/
|
||||
++*switch_count;
|
||||
|
||||
trace_sched_switch(preempt, prev, next);
|
||||
|
152
kernel/sched/membarrier.c
Normal file
152
kernel/sched/membarrier.c
Normal file
@ -0,0 +1,152 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
|
||||
*
|
||||
* membarrier system call
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/syscalls.h>
|
||||
#include <linux/membarrier.h>
|
||||
#include <linux/tick.h>
|
||||
#include <linux/cpumask.h>
|
||||
|
||||
#include "sched.h" /* for cpu_rq(). */
|
||||
|
||||
/*
|
||||
* Bitmask made from a "or" of all commands within enum membarrier_cmd,
|
||||
* except MEMBARRIER_CMD_QUERY.
|
||||
*/
|
||||
#define MEMBARRIER_CMD_BITMASK \
|
||||
(MEMBARRIER_CMD_SHARED | MEMBARRIER_CMD_PRIVATE_EXPEDITED)
|
||||
|
||||
static void ipi_mb(void *info)
|
||||
{
|
||||
smp_mb(); /* IPIs should be serializing but paranoid. */
|
||||
}
|
||||
|
||||
static void membarrier_private_expedited(void)
|
||||
{
|
||||
int cpu;
|
||||
bool fallback = false;
|
||||
cpumask_var_t tmpmask;
|
||||
|
||||
if (num_online_cpus() == 1)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Matches memory barriers around rq->curr modification in
|
||||
* scheduler.
|
||||
*/
|
||||
smp_mb(); /* system call entry is not a mb. */
|
||||
|
||||
/*
|
||||
* Expedited membarrier commands guarantee that they won't
|
||||
* block, hence the GFP_NOWAIT allocation flag and fallback
|
||||
* implementation.
|
||||
*/
|
||||
if (!zalloc_cpumask_var(&tmpmask, GFP_NOWAIT)) {
|
||||
/* Fallback for OOM. */
|
||||
fallback = true;
|
||||
}
|
||||
|
||||
cpus_read_lock();
|
||||
for_each_online_cpu(cpu) {
|
||||
struct task_struct *p;
|
||||
|
||||
/*
|
||||
* Skipping the current CPU is OK even through we can be
|
||||
* migrated at any point. The current CPU, at the point
|
||||
* where we read raw_smp_processor_id(), is ensured to
|
||||
* be in program order with respect to the caller
|
||||
* thread. Therefore, we can skip this CPU from the
|
||||
* iteration.
|
||||
*/
|
||||
if (cpu == raw_smp_processor_id())
|
||||
continue;
|
||||
rcu_read_lock();
|
||||
p = task_rcu_dereference(&cpu_rq(cpu)->curr);
|
||||
if (p && p->mm == current->mm) {
|
||||
if (!fallback)
|
||||
__cpumask_set_cpu(cpu, tmpmask);
|
||||
else
|
||||
smp_call_function_single(cpu, ipi_mb, NULL, 1);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
}
|
||||
if (!fallback) {
|
||||
smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
|
||||
free_cpumask_var(tmpmask);
|
||||
}
|
||||
cpus_read_unlock();
|
||||
|
||||
/*
|
||||
* Memory barrier on the caller thread _after_ we finished
|
||||
* waiting for the last IPI. Matches memory barriers around
|
||||
* rq->curr modification in scheduler.
|
||||
*/
|
||||
smp_mb(); /* exit from system call is not a mb */
|
||||
}
|
||||
|
||||
/**
|
||||
* sys_membarrier - issue memory barriers on a set of threads
|
||||
* @cmd: Takes command values defined in enum membarrier_cmd.
|
||||
* @flags: Currently needs to be 0. For future extensions.
|
||||
*
|
||||
* If this system call is not implemented, -ENOSYS is returned. If the
|
||||
* command specified does not exist, not available on the running
|
||||
* kernel, or if the command argument is invalid, this system call
|
||||
* returns -EINVAL. For a given command, with flags argument set to 0,
|
||||
* this system call is guaranteed to always return the same value until
|
||||
* reboot.
|
||||
*
|
||||
* All memory accesses performed in program order from each targeted thread
|
||||
* is guaranteed to be ordered with respect to sys_membarrier(). If we use
|
||||
* the semantic "barrier()" to represent a compiler barrier forcing memory
|
||||
* accesses to be performed in program order across the barrier, and
|
||||
* smp_mb() to represent explicit memory barriers forcing full memory
|
||||
* ordering across the barrier, we have the following ordering table for
|
||||
* each pair of barrier(), sys_membarrier() and smp_mb():
|
||||
*
|
||||
* The pair ordering is detailed as (O: ordered, X: not ordered):
|
||||
*
|
||||
* barrier() smp_mb() sys_membarrier()
|
||||
* barrier() X X O
|
||||
* smp_mb() X O O
|
||||
* sys_membarrier() O O O
|
||||
*/
|
||||
SYSCALL_DEFINE2(membarrier, int, cmd, int, flags)
|
||||
{
|
||||
if (unlikely(flags))
|
||||
return -EINVAL;
|
||||
switch (cmd) {
|
||||
case MEMBARRIER_CMD_QUERY:
|
||||
{
|
||||
int cmd_mask = MEMBARRIER_CMD_BITMASK;
|
||||
|
||||
if (tick_nohz_full_enabled())
|
||||
cmd_mask &= ~MEMBARRIER_CMD_SHARED;
|
||||
return cmd_mask;
|
||||
}
|
||||
case MEMBARRIER_CMD_SHARED:
|
||||
/* MEMBARRIER_CMD_SHARED is not compatible with nohz_full. */
|
||||
if (tick_nohz_full_enabled())
|
||||
return -EINVAL;
|
||||
if (num_online_cpus() > 1)
|
||||
synchronize_sched();
|
||||
return 0;
|
||||
case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
|
||||
membarrier_private_expedited();
|
||||
return 0;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user