Merge remote-tracking branch 'spi/for-5.9' into spi-next

This commit is contained in:
Mark Brown 2020-07-29 14:52:00 +01:00
commit 11ba28229f
No known key found for this signature in database
GPG Key ID: 24D68B725D5487D0
87 changed files with 2505 additions and 1373 deletions

View File

@ -0,0 +1,88 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/memory-controllers/renesas,rpc-if.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Renesas Reduced Pin Count Interface (RPC-IF)
maintainers:
- Sergei Shtylyov <sergei.shtylyov@gmail.com>
description: |
Renesas RPC-IF allows a SPI flash or HyperFlash connected to the SoC to
be accessed via the external address space read mode or the manual mode.
The flash chip itself should be represented by a subnode of the RPC-IF node.
The flash interface is selected based on the "compatible" property of this
subnode:
- if it contains "jedec,spi-nor", then SPI is used;
- if it contains "cfi-flash", then HyperFlash is used.
allOf:
- $ref: "/schemas/spi/spi-controller.yaml#"
properties:
compatible:
items:
- enum:
- renesas,r8a77970-rpc-if # R-Car V3M
- renesas,r8a77980-rpc-if # R-Car V3H
- renesas,r8a77995-rpc-if # R-Car D3
- const: renesas,rcar-gen3-rpc-if # a generic R-Car gen3 device
reg:
items:
- description: RPC-IF registers
- description: direct mapping read mode area
- description: write buffer area
reg-names:
items:
- const: regs
- const: dirmap
- const: wbuf
clocks:
maxItems: 1
power-domains:
maxItems: 1
resets:
maxItems: 1
patternProperties:
"flash@[0-9a-f]+$":
type: object
properties:
compatible:
enum:
- cfi-flash
- jedec,spi-nor
examples:
- |
#include <dt-bindings/clock/renesas-cpg-mssr.h>
#include <dt-bindings/power/r8a77995-sysc.h>
spi@ee200000 {
compatible = "renesas,r8a77995-rpc-if", "renesas,rcar-gen3-rpc-if";
reg = <0xee200000 0x200>,
<0x08000000 0x4000000>,
<0xee208000 0x100>;
reg-names = "regs", "dirmap", "wbuf";
clocks = <&cpg CPG_MOD 917>;
power-domains = <&sysc R8A77995_PD_ALWAYS_ON>;
resets = <&cpg 917>;
#address-cells = <1>;
#size-cells = <0>;
flash@0 {
compatible = "jedec,spi-nor";
reg = <0>;
spi-max-frequency = <40000000>;
spi-tx-bus-width = <1>;
spi-rx-bus-width = <1>;
};
};

View File

@ -1,56 +0,0 @@
* Freescale (Enhanced) Configurable Serial Peripheral Interface
(CSPI/eCSPI) for i.MX
Required properties:
- compatible :
- "fsl,imx1-cspi" for SPI compatible with the one integrated on i.MX1
- "fsl,imx21-cspi" for SPI compatible with the one integrated on i.MX21
- "fsl,imx27-cspi" for SPI compatible with the one integrated on i.MX27
- "fsl,imx31-cspi" for SPI compatible with the one integrated on i.MX31
- "fsl,imx35-cspi" for SPI compatible with the one integrated on i.MX35
- "fsl,imx51-ecspi" for SPI compatible with the one integrated on i.MX51
- "fsl,imx53-ecspi" for SPI compatible with the one integrated on i.MX53 and later Soc
- "fsl,imx8mq-ecspi" for SPI compatible with the one integrated on i.MX8MQ
- "fsl,imx8mm-ecspi" for SPI compatible with the one integrated on i.MX8MM
- "fsl,imx8mn-ecspi" for SPI compatible with the one integrated on i.MX8MN
- "fsl,imx8mp-ecspi" for SPI compatible with the one integrated on i.MX8MP
- reg : Offset and length of the register set for the device
- interrupts : Should contain CSPI/eCSPI interrupt
- clocks : Clock specifiers for both ipg and per clocks.
- clock-names : Clock names should include both "ipg" and "per"
See the clock consumer binding,
Documentation/devicetree/bindings/clock/clock-bindings.txt
Recommended properties:
- cs-gpios : GPIOs to use as chip selects, see spi-bus.txt. While the native chip
select lines can be used, they appear to always generate a pulse between each
word of a transfer. Most use cases will require GPIO based chip selects to
generate a valid transaction.
Optional properties:
- num-cs : Number of total chip selects, see spi-bus.txt.
- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
Documentation/devicetree/bindings/dma/dma.txt.
- dma-names: DMA request names, if present, should include "tx" and "rx".
- fsl,spi-rdy-drctl: Integer, representing the value of DRCTL, the register
controlling the SPI_READY handling. Note that to enable the DRCTL consideration,
the SPI_READY mode-flag needs to be set too.
Valid values are: 0 (disabled), 1 (edge-triggered burst) and 2 (level-triggered burst).
Obsolete properties:
- fsl,spi-num-chipselects : Contains the number of the chipselect
Example:
ecspi@70010000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,imx51-ecspi";
reg = <0x70010000 0x4000>;
interrupts = <36>;
cs-gpios = <&gpio3 24 0>, /* GPIO3_24 */
<&gpio3 25 0>; /* GPIO3_25 */
dmas = <&sdma 3 7 1>, <&sdma 4 7 2>;
dma-names = "rx", "tx";
fsl,spi-rdy-drctl = <1>;
};

View File

@ -0,0 +1,97 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/fsl-imx-cspi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Freescale (Enhanced) Configurable Serial Peripheral Interface (CSPI/eCSPI) for i.MX
maintainers:
- Shawn Guo <shawn.guo@linaro.org>
allOf:
- $ref: "/schemas/spi/spi-controller.yaml#"
properties:
compatible:
oneOf:
- const: fsl,imx1-cspi
- const: fsl,imx21-cspi
- const: fsl,imx27-cspi
- const: fsl,imx31-cspi
- const: fsl,imx35-cspi
- const: fsl,imx51-ecspi
- const: fsl,imx53-ecspi
- items:
- enum:
- fsl,imx50-ecspi
- fsl,imx6q-ecspi
- fsl,imx6sx-ecspi
- fsl,imx6sl-ecspi
- fsl,imx6sll-ecspi
- fsl,imx6ul-ecspi
- fsl,imx7d-ecspi
- fsl,imx8mq-ecspi
- fsl,imx8mm-ecspi
- fsl,imx8mn-ecspi
- fsl,imx8mp-ecspi
- const: fsl,imx51-ecspi
reg:
maxItems: 1
interrupts:
maxItems: 1
clocks:
items:
- description: SoC SPI ipg clock
- description: SoC SPI per clock
clock-names:
items:
- const: ipg
- const: per
dmas:
items:
- description: DMA controller phandle and request line for RX
- description: DMA controller phandle and request line for TX
dma-names:
items:
- const: rx
- const: tx
fsl,spi-rdy-drctl:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
Integer, representing the value of DRCTL, the register controlling
the SPI_READY handling. Note that to enable the DRCTL consideration,
the SPI_READY mode-flag needs to be set too.
Valid values are: 0 (disabled), 1 (edge-triggered burst) and 2 (level-triggered burst).
enum: [0, 1, 2]
required:
- compatible
- reg
- interrupts
- clocks
- clock-names
unevaluatedProperties: false
examples:
- |
#include <dt-bindings/clock/imx5-clock.h>
spi@70010000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,imx51-ecspi";
reg = <0x70010000 0x4000>;
interrupts = <36>;
clocks = <&clks IMX5_CLK_ECSPI1_IPG_GATE>,
<&clks IMX5_CLK_ECSPI1_PER_GATE>;
clock-names = "ipg", "per";
};

View File

@ -1,26 +0,0 @@
* Freescale MX233/MX28 SSP/SPI
Required properties:
- compatible: Should be "fsl,<soc>-spi", where soc is "imx23" or "imx28"
- reg: Offset and length of the register set for the device
- interrupts: Should contain SSP ERROR interrupt
- dmas: DMA specifier, consisting of a phandle to DMA controller node
and SSP DMA channel ID.
Refer to dma.txt and fsl-mxs-dma.txt for details.
- dma-names: Must be "rx-tx".
Optional properties:
- clock-frequency : Input clock frequency to the SPI block in Hz.
Default is 160000000 Hz.
Example:
ssp0: ssp@80010000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,imx28-spi";
reg = <0x80010000 0x2000>;
interrupts = <96>;
dmas = <&dma_apbh 0>;
dma-names = "rx-tx";
};

View File

@ -0,0 +1,56 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/mxs-spi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Freescale MX233/MX28 SSP/SPI
maintainers:
- Marek Vasut <marex@denx.de>
allOf:
- $ref: "/schemas/spi/spi-controller.yaml#"
properties:
compatible:
enum:
- fsl,imx23-spi
- fsl,imx28-spi
reg:
maxItems: 1
interrupts:
maxItems: 1
dmas:
maxItems: 1
dma-names:
const: rx-tx
clock-frequency:
description: input clock frequency to the SPI block in Hz.
default: 160000000
required:
- compatible
- reg
- interrupts
- dmas
- dma-names
unevaluatedProperties: false
examples:
- |
spi@80010000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,imx28-spi";
reg = <0x80010000 0x2000>;
interrupts = <96>;
dmas = <&dma_apbh 0>;
dma-names = "rx-tx";
};

View File

@ -21,6 +21,7 @@ properties:
# device
- items:
- enum:
- renesas,msiof-r8a7742 # RZ/G1H
- renesas,msiof-r8a7743 # RZ/G1M
- renesas,msiof-r8a7744 # RZ/G1N
- renesas,msiof-r8a7745 # RZ/G1E
@ -37,6 +38,7 @@ properties:
- renesas,msiof-r8a774a1 # RZ/G2M
- renesas,msiof-r8a774b1 # RZ/G2N
- renesas,msiof-r8a774c0 # RZ/G2E
- renesas,msiof-r8a774e1 # RZ/G2H
- renesas,msiof-r8a7795 # R-Car H3
- renesas,msiof-r8a7796 # R-Car M3-W
- renesas,msiof-r8a77965 # R-Car M3-N

View File

@ -1,8 +1,8 @@
Davinci SPI controller device bindings
Links on DM:
Keystone 2 - http://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf
dm644x - http://www.ti.com/lit/ug/sprue32a/sprue32a.pdf
Keystone 2 - https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf
dm644x - https://www.ti.com/lit/ug/sprue32a/sprue32a.pdf
OMAP-L138/da830 - http://www.ti.com/lit/ug/spruh77a/spruh77a.pdf
Required properties:

View File

@ -1,29 +0,0 @@
* Freescale Low Power SPI (LPSPI) for i.MX
Required properties:
- compatible :
- "fsl,imx7ulp-spi" for LPSPI compatible with the one integrated on i.MX7ULP soc
- "fsl,imx8qxp-spi" for LPSPI compatible with the one integrated on i.MX8QXP soc
- reg : address and length of the lpspi master registers
- interrupt-parent : core interrupt controller
- interrupts : lpspi interrupt
- clocks : lpspi clock specifier. Its number and order need to correspond to the
value in clock-names.
- clock-names : Corresponding to per clock and ipg clock in "clocks"
respectively. In i.MX7ULP, it only has per clk, so use CLK_DUMMY
to fill the "ipg" blank.
- spi-slave : spi slave mode support. In slave mode, add this attribute without
value. In master mode, remove it.
Examples:
lpspi2: lpspi@40290000 {
compatible = "fsl,imx7ulp-spi";
reg = <0x40290000 0x10000>;
interrupt-parent = <&intc>;
interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks IMX7ULP_CLK_LPSPI2>,
<&clks IMX7ULP_CLK_DUMMY>;
clock-names = "per", "ipg";
spi-slave;
};

View File

@ -0,0 +1,67 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/spi-fsl-lpspi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Freescale Low Power SPI (LPSPI) for i.MX
maintainers:
- Anson Huang <Anson.Huang@nxp.com>
allOf:
- $ref: "/schemas/spi/spi-controller.yaml#"
properties:
compatible:
enum:
- fsl,imx7ulp-spi
- fsl,imx8qxp-spi
reg:
maxItems: 1
interrupts:
maxItems: 1
clocks:
items:
- description: SoC SPI per clock
- description: SoC SPI ipg clock
clock-names:
items:
- const: per
- const: ipg
fsl,spi-only-use-cs1-sel:
description:
spi common code does not support use of CS signals discontinuously.
i.MX8DXL-EVK board only uses CS1 without using CS0. Therefore, add
this property to re-config the chipselect value in the LPSPI driver.
required:
- compatible
- reg
- interrupts
- clocks
- clock-names
unevaluatedProperties: false
examples:
- |
#include <dt-bindings/clock/imx7ulp-clock.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
spi@40290000 {
compatible = "fsl,imx7ulp-spi";
reg = <0x40290000 0x10000>;
interrupt-parent = <&intc>;
interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks IMX7ULP_CLK_LPSPI2>,
<&clks IMX7ULP_CLK_DUMMY>;
clock-names = "per", "ipg";
spi-slave;
fsl,spi-only-use-cs1-sel;
};

View File

@ -1,11 +1,17 @@
Lantiq Synchronous Serial Controller (SSC) SPI master driver
Required properties:
- compatible: "lantiq,ase-spi", "lantiq,falcon-spi", "lantiq,xrx100-spi"
- compatible: "lantiq,ase-spi", "lantiq,falcon-spi", "lantiq,xrx100-spi",
"intel,lgm-spi"
- #address-cells: see spi-bus.txt
- #size-cells: see spi-bus.txt
- reg: address and length of the spi master registers
- interrupts: should contain the "spi_rx", "spi_tx" and "spi_err" interrupt.
- interrupts:
For compatible "intel,lgm-ssc" - the common interrupt number for
all of tx rx & err interrupts.
or
For rest of the compatibles, should contain the "spi_rx", "spi_tx" and
"spi_err" interrupt.
Optional properties:
@ -27,3 +33,14 @@ spi: spi@e100800 {
num-cs = <6>;
base-cs = <1>;
};
ssc0: spi@e0800000 {
compatible = "intel,lgm-spi";
reg = <0xe0800000 0x400>;
interrupt-parent = <&ioapic1>;
interrupts = <35 1>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&cgu0 LGM_CLK_NGI>, <&cgu0 LGM_GCLK_SSC0>;
clock-names = "freq", "gate";
};

View File

@ -11,6 +11,7 @@ Required properties:
- mediatek,mt8135-spi: for mt8135 platforms
- mediatek,mt8173-spi: for mt8173 platforms
- mediatek,mt8183-spi: for mt8183 platforms
- "mediatek,mt8192-spi", "mediatek,mt6765-spi": for mt8192 platforms
- "mediatek,mt8516-spi", "mediatek,mt2712-spi": for mt8516 platforms
- #address-cells: should be 1.

View File

@ -6,7 +6,7 @@ Supported chips:
* NXP SI18IS602/602B/603
Datasheet: http://www.nxp.com/documents/data_sheet/SC18IS602_602B_603.pdf
Datasheet: https://www.nxp.com/documents/data_sheet/SC18IS602_602B_603.pdf
Author:
Guenter Roeck <linux@roeck-us.net>

View File

@ -75,11 +75,11 @@ extern const struct imx_mxc_w1_data imx27_mxc_w1_data;
imx_add_mxc_w1(&imx27_mxc_w1_data)
extern const struct imx_spi_imx_data imx27_cspi_data[];
#define imx27_add_cspi(id, pdata) \
imx_add_spi_imx(&imx27_cspi_data[id], pdata)
#define imx27_add_spi_imx0(pdata) imx27_add_cspi(0, pdata)
#define imx27_add_spi_imx1(pdata) imx27_add_cspi(1, pdata)
#define imx27_add_spi_imx2(pdata) imx27_add_cspi(2, pdata)
#define imx27_add_cspi(id, gtable) \
imx_add_spi_imx(&imx27_cspi_data[id], gtable)
#define imx27_add_spi_imx0(gtable) imx27_add_cspi(0, gtable)
#define imx27_add_spi_imx1(gtable) imx27_add_cspi(1, gtable)
#define imx27_add_spi_imx2(gtable) imx27_add_cspi(2, gtable)
extern const struct imx_pata_imx_data imx27_pata_imx_data;
#define imx27_add_pata_imx() \

View File

@ -69,11 +69,11 @@ extern const struct imx_mxc_w1_data imx31_mxc_w1_data;
imx_add_mxc_w1(&imx31_mxc_w1_data)
extern const struct imx_spi_imx_data imx31_cspi_data[];
#define imx31_add_cspi(id, pdata) \
imx_add_spi_imx(&imx31_cspi_data[id], pdata)
#define imx31_add_spi_imx0(pdata) imx31_add_cspi(0, pdata)
#define imx31_add_spi_imx1(pdata) imx31_add_cspi(1, pdata)
#define imx31_add_spi_imx2(pdata) imx31_add_cspi(2, pdata)
#define imx31_add_cspi(id, gtable) \
imx_add_spi_imx(&imx31_cspi_data[id], gtable)
#define imx31_add_spi_imx0(gtable) imx31_add_cspi(0, gtable)
#define imx31_add_spi_imx1(gtable) imx31_add_cspi(1, gtable)
#define imx31_add_spi_imx2(gtable) imx31_add_cspi(2, gtable)
extern const struct imx_pata_imx_data imx31_pata_imx_data;
#define imx31_add_pata_imx() \

View File

@ -6,6 +6,7 @@
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/gpio/machine.h>
#include <linux/platform_data/dma-imx-sdma.h>
extern struct device mxc_aips_bus;
@ -276,7 +277,6 @@ struct platform_device *__init imx_add_sdhci_esdhc_imx(
const struct imx_sdhci_esdhc_imx_data *data,
const struct esdhc_platform_data *pdata);
#include <linux/platform_data/spi-imx.h>
struct imx_spi_imx_data {
const char *devid;
int id;
@ -285,8 +285,7 @@ struct imx_spi_imx_data {
int irq;
};
struct platform_device *__init imx_add_spi_imx(
const struct imx_spi_imx_data *data,
const struct spi_imx_master *pdata);
const struct imx_spi_imx_data *data, struct gpiod_lookup_table *gtable);
struct platform_device *imx_add_imx_dma(char *name, resource_size_t iobase,
int irq);

View File

@ -3,6 +3,7 @@
* Copyright (C) 2009-2010 Pengutronix
* Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>
*/
#include <linux/gpio/machine.h>
#include "../hardware.h"
#include "devices-common.h"
@ -57,8 +58,7 @@ const struct imx_spi_imx_data imx35_cspi_data[] __initconst = {
#endif /* ifdef CONFIG_SOC_IMX35 */
struct platform_device *__init imx_add_spi_imx(
const struct imx_spi_imx_data *data,
const struct spi_imx_master *pdata)
const struct imx_spi_imx_data *data, struct gpiod_lookup_table *gtable)
{
struct resource res[] = {
{
@ -71,7 +71,8 @@ struct platform_device *__init imx_add_spi_imx(
.flags = IORESOURCE_IRQ,
},
};
if (gtable)
gpiod_add_lookup_table(gtable);
return imx_add_platform_device(data->devid, data->id,
res, ARRAY_SIZE(res), pdata, sizeof(*pdata));
res, ARRAY_SIZE(res), NULL, 0);
}

View File

@ -303,18 +303,34 @@ static struct imx_ssi_platform_data mx27_3ds_ssi_pdata = {
};
/* SPI */
static int spi1_chipselect[] = {SPI1_SS0};
static const struct spi_imx_master spi1_pdata __initconst = {
.chipselect = spi1_chipselect,
.num_chipselect = ARRAY_SIZE(spi1_chipselect),
static struct gpiod_lookup_table mx27_spi1_gpiod_table = {
.dev_id = "imx27-cspi.0", /* Actual device name for spi1 */
.table = {
/*
* The i.MX27 has the i.MX21 GPIO controller, the SPI1 CS GPIO
* SPI1_SS0 is numbered IMX_GPIO_NR(4, 28).
*
* This is in "bank 4" which is subtracted by one in the macro
* so this is actually bank 3 on "imx21-gpio.3".
*/
GPIO_LOOKUP_IDX("imx21-gpio.3", 28, "cs", 0, GPIO_ACTIVE_LOW),
{ },
},
};
static int spi2_chipselect[] = {SPI2_SS0};
static const struct spi_imx_master spi2_pdata __initconst = {
.chipselect = spi2_chipselect,
.num_chipselect = ARRAY_SIZE(spi2_chipselect),
static struct gpiod_lookup_table mx27_spi2_gpiod_table = {
.dev_id = "imx27-cspi.1", /* Actual device name for spi2 */
.table = {
/*
* The i.MX27 has the i.MX21 GPIO controller, the SPI2 CS GPIO
* SPI2_SS0 is numbered IMX_GPIO_NR(4, 21).
*
* This is in "bank 4" which is subtracted by one in the macro
* so this is actually bank 3 on "imx21-gpio.3".
*/
GPIO_LOOKUP_IDX("imx21-gpio.3", 21, "cs", 0, GPIO_ACTIVE_LOW),
{ },
},
};
static struct imx_fb_videomode mx27_3ds_modes[] = {
@ -397,8 +413,8 @@ static void __init mx27pdk_init(void)
imx27_add_imx_keypad(&mx27_3ds_keymap_data);
imx27_add_imx2_wdt();
imx27_add_spi_imx1(&spi2_pdata);
imx27_add_spi_imx0(&spi1_pdata);
imx27_add_spi_imx1(&mx27_spi2_gpiod_table);
imx27_add_spi_imx0(&mx27_spi1_gpiod_table);
imx27_add_imx_i2c(0, &mx27_3ds_i2c0_data);
imx27_add_imx_fb(&mx27_3ds_fb_data);

View File

@ -378,15 +378,6 @@ static struct imx_ssi_platform_data mx31_3ds_ssi_pdata = {
.flags = IMX_SSI_DMA | IMX_SSI_NET,
};
/* SPI */
static const struct spi_imx_master spi0_pdata __initconst = {
.num_chipselect = 3,
};
static const struct spi_imx_master spi1_pdata __initconst = {
.num_chipselect = 3,
};
static struct spi_board_info mx31_3ds_spi_devs[] __initdata = {
{
.modalias = "mc13783",
@ -561,14 +552,14 @@ static void __init mx31_3ds_init(void)
imx31_add_imx_uart0(&uart_pdata);
imx31_add_mxc_nand(&mx31_3ds_nand_board_info);
imx31_add_spi_imx1(&spi1_pdata);
imx31_add_spi_imx1(NULL);
imx31_add_imx_keypad(&mx31_3ds_keymap_data);
imx31_add_imx2_wdt();
imx31_add_imx_i2c0(&mx31_3ds_i2c0_data);
imx31_add_spi_imx0(&spi0_pdata);
imx31_add_spi_imx0(NULL);
imx31_add_ipu_core();
imx31_add_mx3_sdc_fb(&mx3fb_pdata);

View File

@ -215,16 +215,6 @@ static void __init lilly1131_usb_init(void)
imx31_add_mxc_ehci_hs(2, &usbh2_pdata);
}
/* SPI */
static const struct spi_imx_master spi0_pdata __initconst = {
.num_chipselect = 3,
};
static const struct spi_imx_master spi1_pdata __initconst = {
.num_chipselect = 3,
};
static struct mc13xxx_platform_data mc13783_pdata __initdata = {
.flags = MC13XXX_USE_RTC | MC13XXX_USE_TOUCHSCREEN,
};
@ -281,8 +271,8 @@ static void __init mx31lilly_board_init(void)
mxc_iomux_alloc_pin(MX31_PIN_CSPI2_SS1__SS1, "SPI2_SS1");
mxc_iomux_alloc_pin(MX31_PIN_CSPI2_SS2__SS2, "SPI2_SS2");
imx31_add_spi_imx0(&spi0_pdata);
imx31_add_spi_imx1(&spi1_pdata);
imx31_add_spi_imx0(NULL);
imx31_add_spi_imx1(NULL);
regulator_register_fixed(0, dummy_supplies, ARRAY_SIZE(dummy_supplies));
}

View File

@ -73,11 +73,6 @@ static const struct imxuart_platform_data uart_pdata __initconst = {
.flags = IMXUART_HAVE_RTSCTS,
};
/* SPI */
static const struct spi_imx_master spi0_pdata __initconst = {
.num_chipselect = 3,
};
static const struct mxc_nand_platform_data
mx31lite_nand_board_info __initconst = {
.width = 1,
@ -111,16 +106,6 @@ static struct platform_device smsc911x_device = {
},
};
/*
* SPI
*
* The MC13783 is the only hard-wired SPI device on the module.
*/
static const struct spi_imx_master spi1_pdata __initconst = {
.num_chipselect = 1,
};
static struct mc13xxx_platform_data mc13783_pdata __initdata = {
.flags = MC13XXX_USE_RTC,
};
@ -246,13 +231,13 @@ static void __init mx31lite_init(void)
"mx31lite");
imx31_add_imx_uart0(&uart_pdata);
imx31_add_spi_imx0(&spi0_pdata);
imx31_add_spi_imx0(NULL);
/* NOR and NAND flash */
platform_device_register(&physmap_flash_device);
imx31_add_mxc_nand(&mx31lite_nand_board_info);
imx31_add_spi_imx1(&spi1_pdata);
imx31_add_spi_imx1(NULL);
regulator_register_fixed(0, dummy_supplies, ARRAY_SIZE(dummy_supplies));
}

View File

@ -143,10 +143,6 @@ static const struct imxi2c_platform_data moboard_i2c1_data __initconst = {
.bitrate = 100000,
};
static const struct spi_imx_master moboard_spi1_pdata __initconst = {
.num_chipselect = 3,
};
static struct regulator_consumer_supply sdhc_consumers[] = {
{
.dev_name = "imx31-mmc.0",
@ -287,10 +283,6 @@ static struct spi_board_info moboard_spi_board_info[] __initdata = {
},
};
static const struct spi_imx_master moboard_spi2_pdata __initconst = {
.num_chipselect = 2,
};
#define SDHC1_CD IOMUX_TO_GPIO(MX31_PIN_ATA_CS0)
#define SDHC1_WP IOMUX_TO_GPIO(MX31_PIN_ATA_CS1)
@ -514,8 +506,8 @@ static void __init mx31moboard_init(void)
imx31_add_imx_i2c0(&moboard_i2c0_data);
imx31_add_imx_i2c1(&moboard_i2c1_data);
imx31_add_spi_imx1(&moboard_spi1_pdata);
imx31_add_spi_imx2(&moboard_spi2_pdata);
imx31_add_spi_imx1(NULL);
imx31_add_spi_imx2(NULL);
mx31moboard_init_cam();

View File

@ -14,6 +14,7 @@
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/gpio/machine.h>
#include <linux/usb/otg.h>
#include <linux/usb/ulpi.h>
@ -188,11 +189,19 @@ static struct spi_board_info pca100_spi_board_info[] __initdata = {
},
};
static int pca100_spi_cs[] = {SPI1_SS0, SPI1_SS1};
static const struct spi_imx_master pca100_spi0_data __initconst = {
.chipselect = pca100_spi_cs,
.num_chipselect = ARRAY_SIZE(pca100_spi_cs),
static struct gpiod_lookup_table pca100_spi0_gpiod_table = {
.dev_id = "imx27-cspi.0", /* Actual device name for spi0 */
.table = {
/*
* The i.MX27 has the i.MX21 GPIO controller, port D is
* bank 3 and thus named "imx21-gpio.3".
* SPI1_SS0 is GPIO_PORTD + 28
* SPI1_SS1 is GPIO_PORTD + 27
*/
GPIO_LOOKUP_IDX("imx21-gpio.3", 28, "cs", 0, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("imx21-gpio.3", 27, "cs", 1, GPIO_ACTIVE_LOW),
{ },
},
};
static void pca100_ac97_warm_reset(struct snd_ac97 *ac97)
@ -362,7 +371,7 @@ static void __init pca100_init(void)
mxc_gpio_mode(GPIO_PORTD | 27 | GPIO_GPIO | GPIO_IN);
spi_register_board_info(pca100_spi_board_info,
ARRAY_SIZE(pca100_spi_board_info));
imx27_add_spi_imx0(&pca100_spi0_data);
imx27_add_spi_imx0(&pca100_spi0_gpiod_table);
imx27_add_imx_fb(&pca100_fb_data);

View File

@ -52,11 +52,6 @@ static struct spi_board_info pcm037_spi_dev[] = {
},
};
/* Platform Data for MXC CSPI */
static const struct spi_imx_master pcm037_spi1_pdata __initconst = {
.num_chipselect = 2,
};
/* GPIO-keys input device */
static struct gpio_keys_button pcm037_gpio_keys[] = {
{
@ -163,7 +158,7 @@ int __init pcm037_eet_init_devices(void)
/* SPI */
spi_register_board_info(pcm037_spi_dev, ARRAY_SIZE(pcm037_spi_dev));
imx31_add_spi_imx0(&pcm037_spi1_pdata);
imx31_add_spi_imx0(NULL);
imx_add_gpio_keys(&pcm037_gpio_keys_platform_data);

View File

@ -26,7 +26,7 @@
/**
* of_gpio_spi_cs_get_count() - special GPIO counting for SPI
* Some elder GPIO controllers need special quirks. Currently we handle
* the Freescale GPIO controller with bindings that doesn't use the
* the Freescale and PPC GPIO controller with bindings that doesn't use the
* established "cs-gpios" for chip selects but instead rely on
* "gpios" for the chip select lines. If we detect this, we redirect
* the counting of "cs-gpios" to count "gpios" transparent to the
@ -41,7 +41,8 @@ static int of_gpio_spi_cs_get_count(struct device *dev, const char *con_id)
if (!con_id || strcmp(con_id, "cs"))
return 0;
if (!of_device_is_compatible(np, "fsl,spi") &&
!of_device_is_compatible(np, "aeroflexgaisler,spictrl"))
!of_device_is_compatible(np, "aeroflexgaisler,spictrl") &&
!of_device_is_compatible(np, "ibm,ppc4xx-spi"))
return 0;
return of_gpio_named_count(np, "gpios");
}
@ -405,9 +406,10 @@ static struct gpio_desc *of_find_spi_cs_gpio(struct device *dev,
if (!IS_ENABLED(CONFIG_SPI_MASTER))
return ERR_PTR(-ENOENT);
/* Allow this specifically for Freescale devices */
/* Allow this specifically for Freescale and PPC devices */
if (!of_device_is_compatible(np, "fsl,spi") &&
!of_device_is_compatible(np, "aeroflexgaisler,spictrl"))
!of_device_is_compatible(np, "aeroflexgaisler,spictrl") &&
!of_device_is_compatible(np, "ibm,ppc4xx-spi"))
return ERR_PTR(-ENOENT);
/* Allow only if asking for "cs-gpios" */
if (!con_id || strcmp(con_id, "cs"))

View File

@ -174,6 +174,15 @@ config PL353_SMC
This driver is for the ARM PL351/PL353 Static Memory
Controller(SMC) module.
config RENESAS_RPCIF
tristate "Renesas RPC-IF driver"
depends on ARCH_RENESAS
select REGMAP_MMIO
help
This supports Renesas R-Car Gen3 RPC-IF which provides either SPI
host or HyperFlash. You'll have to select individual components
under the corresponding menu.
source "drivers/memory/samsung/Kconfig"
source "drivers/memory/tegra/Kconfig"

View File

@ -22,6 +22,7 @@ obj-$(CONFIG_JZ4780_NEMC) += jz4780-nemc.o
obj-$(CONFIG_MTK_SMI) += mtk-smi.o
obj-$(CONFIG_DA8XX_DDRCTL) += da8xx-ddrctl.o
obj-$(CONFIG_PL353_SMC) += pl353-smc.o
obj-$(CONFIG_RENESAS_RPCIF) += renesas-rpc-if.o
obj-$(CONFIG_SAMSUNG_MC) += samsung/
obj-$(CONFIG_TEGRA_MC) += tegra/

View File

@ -0,0 +1,603 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Renesas RPC-IF core driver
*
* Copyright (C) 2018-2019 Renesas Solutions Corp.
* Copyright (C) 2019 Macronix International Co., Ltd.
* Copyright (C) 2019-2020 Cogent Embedded, Inc.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <memory/renesas-rpc-if.h>
#define RPCIF_CMNCR 0x0000 /* R/W */
#define RPCIF_CMNCR_MD BIT(31)
#define RPCIF_CMNCR_SFDE BIT(24) /* undocumented but must be set */
#define RPCIF_CMNCR_MOIIO3(val) (((val) & 0x3) << 22)
#define RPCIF_CMNCR_MOIIO2(val) (((val) & 0x3) << 20)
#define RPCIF_CMNCR_MOIIO1(val) (((val) & 0x3) << 18)
#define RPCIF_CMNCR_MOIIO0(val) (((val) & 0x3) << 16)
#define RPCIF_CMNCR_MOIIO_HIZ (RPCIF_CMNCR_MOIIO0(3) | \
RPCIF_CMNCR_MOIIO1(3) | \
RPCIF_CMNCR_MOIIO2(3) | RPCIF_CMNCR_MOIIO3(3))
#define RPCIF_CMNCR_IO3FV(val) (((val) & 0x3) << 14) /* undocumented */
#define RPCIF_CMNCR_IO2FV(val) (((val) & 0x3) << 12) /* undocumented */
#define RPCIF_CMNCR_IO0FV(val) (((val) & 0x3) << 8)
#define RPCIF_CMNCR_IOFV_HIZ (RPCIF_CMNCR_IO0FV(3) | RPCIF_CMNCR_IO2FV(3) | \
RPCIF_CMNCR_IO3FV(3))
#define RPCIF_CMNCR_BSZ(val) (((val) & 0x3) << 0)
#define RPCIF_SSLDR 0x0004 /* R/W */
#define RPCIF_SSLDR_SPNDL(d) (((d) & 0x7) << 16)
#define RPCIF_SSLDR_SLNDL(d) (((d) & 0x7) << 8)
#define RPCIF_SSLDR_SCKDL(d) (((d) & 0x7) << 0)
#define RPCIF_DRCR 0x000C /* R/W */
#define RPCIF_DRCR_SSLN BIT(24)
#define RPCIF_DRCR_RBURST(v) ((((v) - 1) & 0x1F) << 16)
#define RPCIF_DRCR_RCF BIT(9)
#define RPCIF_DRCR_RBE BIT(8)
#define RPCIF_DRCR_SSLE BIT(0)
#define RPCIF_DRCMR 0x0010 /* R/W */
#define RPCIF_DRCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPCIF_DRCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPCIF_DREAR 0x0014 /* R/W */
#define RPCIF_DREAR_EAV(c) (((c) & 0xF) << 16)
#define RPCIF_DREAR_EAC(c) (((c) & 0x7) << 0)
#define RPCIF_DROPR 0x0018 /* R/W */
#define RPCIF_DRENR 0x001C /* R/W */
#define RPCIF_DRENR_CDB(o) (u32)((((o) & 0x3) << 30))
#define RPCIF_DRENR_OCDB(o) (((o) & 0x3) << 28)
#define RPCIF_DRENR_ADB(o) (((o) & 0x3) << 24)
#define RPCIF_DRENR_OPDB(o) (((o) & 0x3) << 20)
#define RPCIF_DRENR_DRDB(o) (((o) & 0x3) << 16)
#define RPCIF_DRENR_DME BIT(15)
#define RPCIF_DRENR_CDE BIT(14)
#define RPCIF_DRENR_OCDE BIT(12)
#define RPCIF_DRENR_ADE(v) (((v) & 0xF) << 8)
#define RPCIF_DRENR_OPDE(v) (((v) & 0xF) << 4)
#define RPCIF_SMCR 0x0020 /* R/W */
#define RPCIF_SMCR_SSLKP BIT(8)
#define RPCIF_SMCR_SPIRE BIT(2)
#define RPCIF_SMCR_SPIWE BIT(1)
#define RPCIF_SMCR_SPIE BIT(0)
#define RPCIF_SMCMR 0x0024 /* R/W */
#define RPCIF_SMCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPCIF_SMCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPCIF_SMADR 0x0028 /* R/W */
#define RPCIF_SMOPR 0x002C /* R/W */
#define RPCIF_SMOPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPCIF_SMOPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPCIF_SMOPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPCIF_SMOPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPCIF_SMENR 0x0030 /* R/W */
#define RPCIF_SMENR_CDB(o) (((o) & 0x3) << 30)
#define RPCIF_SMENR_OCDB(o) (((o) & 0x3) << 28)
#define RPCIF_SMENR_ADB(o) (((o) & 0x3) << 24)
#define RPCIF_SMENR_OPDB(o) (((o) & 0x3) << 20)
#define RPCIF_SMENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPCIF_SMENR_DME BIT(15)
#define RPCIF_SMENR_CDE BIT(14)
#define RPCIF_SMENR_OCDE BIT(12)
#define RPCIF_SMENR_ADE(v) (((v) & 0xF) << 8)
#define RPCIF_SMENR_OPDE(v) (((v) & 0xF) << 4)
#define RPCIF_SMENR_SPIDE(v) (((v) & 0xF) << 0)
#define RPCIF_SMRDR0 0x0038 /* R */
#define RPCIF_SMRDR1 0x003C /* R */
#define RPCIF_SMWDR0 0x0040 /* W */
#define RPCIF_SMWDR1 0x0044 /* W */
#define RPCIF_CMNSR 0x0048 /* R */
#define RPCIF_CMNSR_SSLF BIT(1)
#define RPCIF_CMNSR_TEND BIT(0)
#define RPCIF_DRDMCR 0x0058 /* R/W */
#define RPCIF_DMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0)
#define RPCIF_DRDRENR 0x005C /* R/W */
#define RPCIF_DRDRENR_HYPE(v) (((v) & 0x7) << 12)
#define RPCIF_DRDRENR_ADDRE BIT(8)
#define RPCIF_DRDRENR_OPDRE BIT(4)
#define RPCIF_DRDRENR_DRDRE BIT(0)
#define RPCIF_SMDMCR 0x0060 /* R/W */
#define RPCIF_SMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0)
#define RPCIF_SMDRENR 0x0064 /* R/W */
#define RPCIF_SMDRENR_HYPE(v) (((v) & 0x7) << 12)
#define RPCIF_SMDRENR_ADDRE BIT(8)
#define RPCIF_SMDRENR_OPDRE BIT(4)
#define RPCIF_SMDRENR_SPIDRE BIT(0)
#define RPCIF_PHYCNT 0x007C /* R/W */
#define RPCIF_PHYCNT_CAL BIT(31)
#define RPCIF_PHYCNT_OCTA(v) (((v) & 0x3) << 22)
#define RPCIF_PHYCNT_EXDS BIT(21)
#define RPCIF_PHYCNT_OCT BIT(20)
#define RPCIF_PHYCNT_DDRCAL BIT(19)
#define RPCIF_PHYCNT_HS BIT(18)
#define RPCIF_PHYCNT_STRTIM(v) (((v) & 0x7) << 15)
#define RPCIF_PHYCNT_WBUF2 BIT(4)
#define RPCIF_PHYCNT_WBUF BIT(2)
#define RPCIF_PHYCNT_PHYMEM(v) (((v) & 0x3) << 0)
#define RPCIF_PHYOFFSET1 0x0080 /* R/W */
#define RPCIF_PHYOFFSET1_DDRTMG(v) (((v) & 0x3) << 28)
#define RPCIF_PHYOFFSET2 0x0084 /* R/W */
#define RPCIF_PHYOFFSET2_OCTTMG(v) (((v) & 0x7) << 8)
#define RPCIF_PHYINT 0x0088 /* R/W */
#define RPCIF_PHYINT_WPVAL BIT(1)
#define RPCIF_DIRMAP_SIZE 0x4000000
static const struct regmap_range rpcif_volatile_ranges[] = {
regmap_reg_range(RPCIF_SMRDR0, RPCIF_SMRDR1),
regmap_reg_range(RPCIF_SMWDR0, RPCIF_SMWDR1),
regmap_reg_range(RPCIF_CMNSR, RPCIF_CMNSR),
};
static const struct regmap_access_table rpcif_volatile_table = {
.yes_ranges = rpcif_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(rpcif_volatile_ranges),
};
static const struct regmap_config rpcif_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.fast_io = true,
.max_register = RPCIF_PHYINT,
.volatile_table = &rpcif_volatile_table,
};
int rpcif_sw_init(struct rpcif *rpc, struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct resource *res;
void __iomem *base;
rpc->dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
rpc->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&rpcif_regmap_config);
if (IS_ERR(rpc->regmap)) {
dev_err(&pdev->dev,
"failed to init regmap for rpcif, error %ld\n",
PTR_ERR(rpc->regmap));
return PTR_ERR(rpc->regmap);
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
rpc->size = resource_size(res);
rpc->dirmap = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rpc->dirmap))
rpc->dirmap = NULL;
rpc->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(rpc->rstc))
return PTR_ERR(rpc->rstc);
return 0;
}
EXPORT_SYMBOL(rpcif_sw_init);
void rpcif_enable_rpm(struct rpcif *rpc)
{
pm_runtime_enable(rpc->dev);
}
EXPORT_SYMBOL(rpcif_enable_rpm);
void rpcif_disable_rpm(struct rpcif *rpc)
{
pm_runtime_put_sync(rpc->dev);
}
EXPORT_SYMBOL(rpcif_disable_rpm);
void rpcif_hw_init(struct rpcif *rpc, bool hyperflash)
{
u32 dummy;
pm_runtime_get_sync(rpc->dev);
/*
* NOTE: The 0x260 are undocumented bits, but they must be set.
* RPCIF_PHYCNT_STRTIM is strobe timing adjustment bits,
* 0x0 : the delay is biggest,
* 0x1 : the delay is 2nd biggest,
* On H3 ES1.x, the value should be 0, while on others,
* the value should be 7.
*/
regmap_write(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_STRTIM(7) |
RPCIF_PHYCNT_PHYMEM(hyperflash ? 3 : 0) | 0x260);
/*
* NOTE: The 0x1511144 are undocumented bits, but they must be set
* for RPCIF_PHYOFFSET1.
* The 0x31 are undocumented bits, but they must be set
* for RPCIF_PHYOFFSET2.
*/
regmap_write(rpc->regmap, RPCIF_PHYOFFSET1, 0x1511144 |
RPCIF_PHYOFFSET1_DDRTMG(3));
regmap_write(rpc->regmap, RPCIF_PHYOFFSET2, 0x31 |
RPCIF_PHYOFFSET2_OCTTMG(4));
if (hyperflash)
regmap_update_bits(rpc->regmap, RPCIF_PHYINT,
RPCIF_PHYINT_WPVAL, 0);
regmap_write(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_SFDE |
RPCIF_CMNCR_MOIIO_HIZ | RPCIF_CMNCR_IOFV_HIZ |
RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0));
/* Set RCF after BSZ update */
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
regmap_write(rpc->regmap, RPCIF_SSLDR, RPCIF_SSLDR_SPNDL(7) |
RPCIF_SSLDR_SLNDL(7) | RPCIF_SSLDR_SCKDL(7));
pm_runtime_put(rpc->dev);
rpc->bus_size = hyperflash ? 2 : 1;
}
EXPORT_SYMBOL(rpcif_hw_init);
static int wait_msg_xfer_end(struct rpcif *rpc)
{
u32 sts;
return regmap_read_poll_timeout(rpc->regmap, RPCIF_CMNSR, sts,
sts & RPCIF_CMNSR_TEND, 0,
USEC_PER_SEC);
}
static u8 rpcif_bits_set(struct rpcif *rpc, u32 nbytes)
{
if (rpc->bus_size == 2)
nbytes /= 2;
nbytes = clamp(nbytes, 1U, 4U);
return GENMASK(3, 4 - nbytes);
}
static u8 rpcif_bit_size(u8 buswidth)
{
return buswidth > 4 ? 2 : ilog2(buswidth);
}
void rpcif_prepare(struct rpcif *rpc, const struct rpcif_op *op, u64 *offs,
size_t *len)
{
rpc->smcr = 0;
rpc->smadr = 0;
rpc->enable = 0;
rpc->command = 0;
rpc->option = 0;
rpc->dummy = 0;
rpc->ddr = 0;
rpc->xferlen = 0;
if (op->cmd.buswidth) {
rpc->enable = RPCIF_SMENR_CDE |
RPCIF_SMENR_CDB(rpcif_bit_size(op->cmd.buswidth));
rpc->command = RPCIF_SMCMR_CMD(op->cmd.opcode);
if (op->cmd.ddr)
rpc->ddr = RPCIF_SMDRENR_HYPE(0x5);
}
if (op->ocmd.buswidth) {
rpc->enable |= RPCIF_SMENR_OCDE |
RPCIF_SMENR_OCDB(rpcif_bit_size(op->ocmd.buswidth));
rpc->command |= RPCIF_SMCMR_OCMD(op->ocmd.opcode);
}
if (op->addr.buswidth) {
rpc->enable |=
RPCIF_SMENR_ADB(rpcif_bit_size(op->addr.buswidth));
if (op->addr.nbytes == 4)
rpc->enable |= RPCIF_SMENR_ADE(0xF);
else
rpc->enable |= RPCIF_SMENR_ADE(GENMASK(
2, 3 - op->addr.nbytes));
if (op->addr.ddr)
rpc->ddr |= RPCIF_SMDRENR_ADDRE;
if (offs && len)
rpc->smadr = *offs;
else
rpc->smadr = op->addr.val;
}
if (op->dummy.buswidth) {
rpc->enable |= RPCIF_SMENR_DME;
rpc->dummy = RPCIF_SMDMCR_DMCYC(op->dummy.ncycles /
op->dummy.buswidth);
}
if (op->option.buswidth) {
rpc->enable |= RPCIF_SMENR_OPDE(
rpcif_bits_set(rpc, op->option.nbytes)) |
RPCIF_SMENR_OPDB(rpcif_bit_size(op->option.buswidth));
if (op->option.ddr)
rpc->ddr |= RPCIF_SMDRENR_OPDRE;
rpc->option = op->option.val;
}
rpc->dir = op->data.dir;
if (op->data.buswidth) {
u32 nbytes;
rpc->buffer = op->data.buf.in;
switch (op->data.dir) {
case RPCIF_DATA_IN:
rpc->smcr = RPCIF_SMCR_SPIRE;
break;
case RPCIF_DATA_OUT:
rpc->smcr = RPCIF_SMCR_SPIWE;
break;
default:
break;
}
if (op->data.ddr)
rpc->ddr |= RPCIF_SMDRENR_SPIDRE;
if (offs && len)
nbytes = *len;
else
nbytes = op->data.nbytes;
rpc->xferlen = nbytes;
rpc->enable |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes)) |
RPCIF_SMENR_SPIDB(rpcif_bit_size(op->data.buswidth));
}
}
EXPORT_SYMBOL(rpcif_prepare);
int rpcif_manual_xfer(struct rpcif *rpc)
{
u32 smenr, smcr, pos = 0, max = 4;
int ret = 0;
if (rpc->bus_size == 2)
max = 8;
pm_runtime_get_sync(rpc->dev);
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT,
RPCIF_PHYCNT_CAL, RPCIF_PHYCNT_CAL);
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, RPCIF_CMNCR_MD);
regmap_write(rpc->regmap, RPCIF_SMCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_SMOPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_SMDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_SMDRENR, rpc->ddr);
smenr = rpc->enable;
switch (rpc->dir) {
case RPCIF_DATA_OUT:
while (pos < rpc->xferlen) {
u32 nbytes = rpc->xferlen - pos;
u32 data[2];
smcr = rpc->smcr | RPCIF_SMCR_SPIE;
if (nbytes > max) {
nbytes = max;
smcr |= RPCIF_SMCR_SSLKP;
}
memcpy(data, rpc->buffer + pos, nbytes);
if (nbytes > 4) {
regmap_write(rpc->regmap, RPCIF_SMWDR1,
data[0]);
regmap_write(rpc->regmap, RPCIF_SMWDR0,
data[1]);
} else if (nbytes > 2) {
regmap_write(rpc->regmap, RPCIF_SMWDR0,
data[0]);
} else {
regmap_write(rpc->regmap, RPCIF_SMWDR0,
data[0] << 16);
}
regmap_write(rpc->regmap, RPCIF_SMADR,
rpc->smadr + pos);
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
regmap_write(rpc->regmap, RPCIF_SMCR, smcr);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
pos += nbytes;
smenr = rpc->enable &
~RPCIF_SMENR_CDE & ~RPCIF_SMENR_ADE(0xF);
}
break;
case RPCIF_DATA_IN:
/*
* RPC-IF spoils the data for the commands without an address
* phase (like RDID) in the manual mode, so we'll have to work
* around this issue by using the external address space read
* mode instead.
*/
if (!(smenr & RPCIF_SMENR_ADE(0xF)) && rpc->dirmap) {
u32 dummy;
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR,
RPCIF_DRCR_RBURST(32) | RPCIF_DRCR_RBE);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
smenr & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
memcpy_fromio(rpc->buffer, rpc->dirmap, rpc->xferlen);
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
break;
}
while (pos < rpc->xferlen) {
u32 nbytes = rpc->xferlen - pos;
u32 data[2];
if (nbytes > max)
nbytes = max;
regmap_write(rpc->regmap, RPCIF_SMADR,
rpc->smadr + pos);
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
if (nbytes > 4) {
regmap_read(rpc->regmap, RPCIF_SMRDR1,
&data[0]);
regmap_read(rpc->regmap, RPCIF_SMRDR0,
&data[1]);
} else if (nbytes > 2) {
regmap_read(rpc->regmap, RPCIF_SMRDR0,
&data[0]);
} else {
regmap_read(rpc->regmap, RPCIF_SMRDR0,
&data[0]);
data[0] >>= 16;
}
memcpy(rpc->buffer + pos, data, nbytes);
pos += nbytes;
}
break;
default:
regmap_write(rpc->regmap, RPCIF_SMENR, rpc->enable);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
}
exit:
pm_runtime_put(rpc->dev);
return ret;
err_out:
ret = reset_control_reset(rpc->rstc);
rpcif_hw_init(rpc, rpc->bus_size == 2);
goto exit;
}
EXPORT_SYMBOL(rpcif_manual_xfer);
ssize_t rpcif_dirmap_read(struct rpcif *rpc, u64 offs, size_t len, void *buf)
{
loff_t from = offs & (RPCIF_DIRMAP_SIZE - 1);
size_t size = RPCIF_DIRMAP_SIZE - from;
if (len > size)
len = size;
pm_runtime_get_sync(rpc->dev);
regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR, 0);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAV(offs >> 25) | RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
rpc->enable & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
memcpy_fromio(buf, rpc->dirmap + from, len);
pm_runtime_put(rpc->dev);
return len;
}
EXPORT_SYMBOL(rpcif_dirmap_read);
static int rpcif_probe(struct platform_device *pdev)
{
struct platform_device *vdev;
struct device_node *flash;
const char *name;
flash = of_get_next_child(pdev->dev.of_node, NULL);
if (!flash) {
dev_warn(&pdev->dev, "no flash node found\n");
return -ENODEV;
}
if (of_device_is_compatible(flash, "jedec,spi-nor")) {
name = "rpc-if-spi";
} else if (of_device_is_compatible(flash, "cfi-flash")) {
name = "rpc-if-hyperflash";
} else {
dev_warn(&pdev->dev, "unknown flash type\n");
return -ENODEV;
}
vdev = platform_device_alloc(name, pdev->id);
if (!vdev)
return -ENOMEM;
vdev->dev.parent = &pdev->dev;
platform_set_drvdata(pdev, vdev);
return platform_device_add(vdev);
}
static int rpcif_remove(struct platform_device *pdev)
{
struct platform_device *vdev = platform_get_drvdata(pdev);
platform_device_unregister(vdev);
return 0;
}
static const struct of_device_id rpcif_of_match[] = {
{ .compatible = "renesas,rcar-gen3-rpc-if", },
{},
};
MODULE_DEVICE_TABLE(of, rpcif_of_match);
static struct platform_driver rpcif_driver = {
.probe = rpcif_probe,
.remove = rpcif_remove,
.driver = {
.name = "rpc-if",
.of_match_table = rpcif_of_match,
},
};
module_platform_driver(rpcif_driver);
MODULE_DESCRIPTION("Renesas RPC-IF core driver");
MODULE_LICENSE("GPL v2");

View File

@ -9,17 +9,6 @@ config SPI_ASPEED_SMC
and support for the SPI flash memory controller (SPI) for
the host firmware. The implementation only supports SPI NOR.
config SPI_CADENCE_QUADSPI
tristate "Cadence Quad SPI controller"
depends on OF && (ARM || ARM64 || COMPILE_TEST)
help
Enable support for the Cadence Quad SPI Flash controller.
Cadence QSPI is a specialized controller for connecting an SPI
Flash over 1/2/4-bit wide bus. Enable this option if you have a
device with a Cadence QSPI controller and want to access the
Flash as an MTD device.
config SPI_HISI_SFC
tristate "Hisilicon FMC SPI NOR Flash Controller(SFC)"
depends on ARCH_HISI || COMPILE_TEST

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_SPI_ASPEED_SMC) += aspeed-smc.o
obj-$(CONFIG_SPI_CADENCE_QUADSPI) += cadence-quadspi.o
obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o
obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o
obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o

View File

@ -59,6 +59,7 @@ comment "SPI Master Controller Drivers"
config SPI_ALTERA
tristate "Altera SPI Controller"
select REGMAP_MMIO
help
This is the driver for the Altera SPI Controller.
@ -102,7 +103,7 @@ config SPI_AT91_USART
config SPI_ATMEL_QUADSPI
tristate "Atmel Quad SPI Controller"
depends on ARCH_AT91 || (ARM && COMPILE_TEST && !ARCH_EBSA110)
depends on ARCH_AT91 || COMPILE_TEST
depends on OF && HAS_IOMEM
help
This enables support for the Quad SPI controller in master mode.
@ -149,13 +150,13 @@ config SPI_BCM2835AUX
config SPI_BCM63XX
tristate "Broadcom BCM63xx SPI controller"
depends on BCM63XX || COMPILE_TEST
depends on BCM63XX || BMIPS_GENERIC || COMPILE_TEST
help
Enable support for the SPI controller on the Broadcom BCM63xx SoCs.
config SPI_BCM63XX_HSSPI
tristate "Broadcom BCM63XX HS SPI controller driver"
depends on BCM63XX || ARCH_BCM_63XX || COMPILE_TEST
depends on BCM63XX || BMIPS_GENERIC || ARCH_BCM_63XX || COMPILE_TEST
help
This enables support for the High Speed SPI controller present on
newer Broadcom BCM63XX SoCs.
@ -168,7 +169,7 @@ config SPI_BCM_QSPI
help
Enables support for the Broadcom SPI flash and MSPI controller.
Select this option for any one of BRCMSTB, iProc NSP and NS2 SoCs
based platforms. This driver works for both SPI master for spi-nor
based platforms. This driver works for both SPI master for SPI NOR
flash device as well as MSPI device.
config SPI_BITBANG
@ -200,6 +201,17 @@ config SPI_CADENCE
This selects the Cadence SPI controller master driver
used by Xilinx Zynq and ZynqMP.
config SPI_CADENCE_QUADSPI
tristate "Cadence Quad SPI controller"
depends on OF && (ARM || ARM64 || COMPILE_TEST)
help
Enable support for the Cadence Quad SPI Flash controller.
Cadence QSPI is a specialized controller for connecting an SPI
Flash over 1/2/4-bit wide bus. Enable this option if you have a
device with a Cadence QSPI controller and want to access the
Flash as an MTD device.
config SPI_CLPS711X
tristate "CLPS711X host SPI controller"
depends on ARCH_CLPS711X || COMPILE_TEST
@ -299,11 +311,11 @@ config SPI_FSL_QUADSPI
supports the high-level SPI memory interface.
config SPI_HISI_SFC_V3XX
tristate "HiSilicon SPI-NOR Flash Controller for Hi16XX chipsets"
tristate "HiSilicon SPI NOR Flash Controller for Hi16XX chipsets"
depends on (ARM64 && ACPI) || COMPILE_TEST
depends on HAS_IOMEM
help
This enables support for HiSilicon v3xx SPI-NOR flash controller
This enables support for HiSilicon v3xx SPI NOR flash controller
found in hi16xx chipsets.
config SPI_NXP_FLEXSPI
@ -465,9 +477,9 @@ config SPI_MTK_NOR
depends on ARCH_MEDIATEK || COMPILE_TEST
help
This enables support for SPI NOR controller found on MediaTek
ARM SoCs. This is a controller specifically for SPI-NOR flash.
ARM SoCs. This is a controller specifically for SPI NOR flash.
It can perform generic SPI transfers up to 6 bytes via generic
SPI interface as well as several SPI-NOR specific instructions
SPI interface as well as several SPI NOR specific instructions
via SPI MEM interface.
config SPI_NPCM_FIU
@ -489,11 +501,11 @@ config SPI_NPCM_PSPI
config SPI_LANTIQ_SSC
tristate "Lantiq SSC SPI controller"
depends on LANTIQ || COMPILE_TEST
depends on LANTIQ || X86 || COMPILE_TEST
help
This driver supports the Lantiq SSC SPI controller in master
mode. This controller is found on Intel (former Lantiq) SoCs like
the Danube, Falcon, xRX200, xRX300.
the Danube, Falcon, xRX200, xRX300, Lightning Mountain.
config SPI_OC_TINY
tristate "OpenCores tiny SPI"
@ -605,6 +617,12 @@ config SPI_RB4XX
help
SPI controller driver for the Mikrotik RB4xx series boards.
config SPI_RPCIF
tristate "Renesas RPC-IF SPI driver"
depends on RENESAS_RPCIF
help
SPI driver for Renesas R-Car Gen3 RPC-IF.
config SPI_RSPI
tristate "Renesas RSPI/QSPI controller"
depends on SUPERH || ARCH_RENESAS || COMPILE_TEST

View File

@ -31,6 +31,7 @@ obj-$(CONFIG_SPI_BCM_QSPI) += spi-iproc-qspi.o spi-brcmstb-qspi.o spi-bcm-qspi.
obj-$(CONFIG_SPI_BITBANG) += spi-bitbang.o
obj-$(CONFIG_SPI_BUTTERFLY) += spi-butterfly.o
obj-$(CONFIG_SPI_CADENCE) += spi-cadence.o
obj-$(CONFIG_SPI_CADENCE_QUADSPI) += spi-cadence-quadspi.o
obj-$(CONFIG_SPI_CLPS711X) += spi-clps711x.o
obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o
obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o
@ -92,6 +93,7 @@ obj-$(CONFIG_SPI_QCOM_QSPI) += spi-qcom-qspi.o
obj-$(CONFIG_SPI_QUP) += spi-qup.o
obj-$(CONFIG_SPI_ROCKCHIP) += spi-rockchip.o
obj-$(CONFIG_SPI_RB4XX) += spi-rb4xx.o
obj-$(CONFIG_SPI_RPCIF) += spi-rpc-if.o
obj-$(CONFIG_SPI_RSPI) += spi-rspi.o
obj-$(CONFIG_SPI_S3C24XX) += spi-s3c24xx-hw.o
spi-s3c24xx-hw-y := spi-s3c24xx.o

View File

@ -285,6 +285,12 @@ static bool atmel_qspi_supports_op(struct spi_mem *mem,
op->dummy.nbytes == 0)
return false;
/* DTR ops not supported. */
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
return false;
if (op->cmd.nbytes != 1)
return false;
return true;
}
@ -424,11 +430,11 @@ static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN)
_memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
else
_memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Release the chip-select */
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);

View File

@ -14,6 +14,7 @@
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/altera.h>
#include <linux/spi/spi.h>
#include <linux/io.h>
#include <linux/of.h>
@ -40,19 +41,61 @@
#define ALTERA_SPI_CONTROL_IE_MSK 0x100
#define ALTERA_SPI_CONTROL_SSO_MSK 0x400
#define ALTERA_SPI_MAX_CS 32
enum altera_spi_type {
ALTERA_SPI_TYPE_UNKNOWN,
ALTERA_SPI_TYPE_SUBDEV,
};
struct altera_spi {
void __iomem *base;
int irq;
int len;
int count;
int bytes_per_word;
unsigned long imr;
u32 imr;
/* data buffers */
const unsigned char *tx;
unsigned char *rx;
struct regmap *regmap;
u32 regoff;
struct device *dev;
};
static const struct regmap_config spi_altera_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
};
static int altr_spi_writel(struct altera_spi *hw, unsigned int reg,
unsigned int val)
{
int ret;
ret = regmap_write(hw->regmap, hw->regoff + reg, val);
if (ret)
dev_err(hw->dev, "fail to write reg 0x%x val 0x%x: %d\n",
reg, val, ret);
return ret;
}
static int altr_spi_readl(struct altera_spi *hw, unsigned int reg,
unsigned int *val)
{
int ret;
ret = regmap_read(hw->regmap, hw->regoff + reg, val);
if (ret)
dev_err(hw->dev, "fail to read reg 0x%x: %d\n", reg, ret);
return ret;
}
static inline struct altera_spi *altera_spi_to_hw(struct spi_device *sdev)
{
return spi_master_get_devdata(sdev->master);
@ -64,12 +107,13 @@ static void altera_spi_set_cs(struct spi_device *spi, bool is_high)
if (is_high) {
hw->imr &= ~ALTERA_SPI_CONTROL_SSO_MSK;
writel(hw->imr, hw->base + ALTERA_SPI_CONTROL);
writel(0, hw->base + ALTERA_SPI_SLAVE_SEL);
altr_spi_writel(hw, ALTERA_SPI_CONTROL, hw->imr);
altr_spi_writel(hw, ALTERA_SPI_SLAVE_SEL, 0);
} else {
writel(BIT(spi->chip_select), hw->base + ALTERA_SPI_SLAVE_SEL);
altr_spi_writel(hw, ALTERA_SPI_SLAVE_SEL,
BIT(spi->chip_select));
hw->imr |= ALTERA_SPI_CONTROL_SSO_MSK;
writel(hw->imr, hw->base + ALTERA_SPI_CONTROL);
altr_spi_writel(hw, ALTERA_SPI_CONTROL, hw->imr);
}
}
@ -86,17 +130,24 @@ static void altera_spi_tx_word(struct altera_spi *hw)
txd = (hw->tx[hw->count * 2]
| (hw->tx[hw->count * 2 + 1] << 8));
break;
case 4:
txd = (hw->tx[hw->count * 4]
| (hw->tx[hw->count * 4 + 1] << 8)
| (hw->tx[hw->count * 4 + 2] << 16)
| (hw->tx[hw->count * 4 + 3] << 24));
break;
}
}
writel(txd, hw->base + ALTERA_SPI_TXDATA);
altr_spi_writel(hw, ALTERA_SPI_TXDATA, txd);
}
static void altera_spi_rx_word(struct altera_spi *hw)
{
unsigned int rxd;
rxd = readl(hw->base + ALTERA_SPI_RXDATA);
altr_spi_readl(hw, ALTERA_SPI_RXDATA, &rxd);
if (hw->rx) {
switch (hw->bytes_per_word) {
case 1:
@ -106,6 +157,13 @@ static void altera_spi_rx_word(struct altera_spi *hw)
hw->rx[hw->count * 2] = rxd;
hw->rx[hw->count * 2 + 1] = rxd >> 8;
break;
case 4:
hw->rx[hw->count * 4] = rxd;
hw->rx[hw->count * 4 + 1] = rxd >> 8;
hw->rx[hw->count * 4 + 2] = rxd >> 16;
hw->rx[hw->count * 4 + 3] = rxd >> 24;
break;
}
}
@ -116,6 +174,7 @@ static int altera_spi_txrx(struct spi_master *master,
struct spi_device *spi, struct spi_transfer *t)
{
struct altera_spi *hw = spi_master_get_devdata(master);
u32 val;
hw->tx = t->tx_buf;
hw->rx = t->rx_buf;
@ -126,7 +185,7 @@ static int altera_spi_txrx(struct spi_master *master,
if (hw->irq >= 0) {
/* enable receive interrupt */
hw->imr |= ALTERA_SPI_CONTROL_IRRDY_MSK;
writel(hw->imr, hw->base + ALTERA_SPI_CONTROL);
altr_spi_writel(hw, ALTERA_SPI_CONTROL, hw->imr);
/* send the first byte */
altera_spi_tx_word(hw);
@ -134,9 +193,13 @@ static int altera_spi_txrx(struct spi_master *master,
while (hw->count < hw->len) {
altera_spi_tx_word(hw);
while (!(readl(hw->base + ALTERA_SPI_STATUS) &
ALTERA_SPI_STATUS_RRDY_MSK))
for (;;) {
altr_spi_readl(hw, ALTERA_SPI_STATUS, &val);
if (val & ALTERA_SPI_STATUS_RRDY_MSK)
break;
cpu_relax();
}
altera_spi_rx_word(hw);
}
@ -158,7 +221,7 @@ static irqreturn_t altera_spi_irq(int irq, void *dev)
} else {
/* disable receive interrupt */
hw->imr &= ~ALTERA_SPI_CONTROL_IRRDY_MSK;
writel(hw->imr, hw->base + ALTERA_SPI_CONTROL);
altr_spi_writel(hw, ALTERA_SPI_CONTROL, hw->imr);
spi_finalize_current_transfer(master);
}
@ -168,9 +231,14 @@ static irqreturn_t altera_spi_irq(int irq, void *dev)
static int altera_spi_probe(struct platform_device *pdev)
{
const struct platform_device_id *platid = platform_get_device_id(pdev);
struct altera_spi_platform_data *pdata = dev_get_platdata(&pdev->dev);
enum altera_spi_type type = ALTERA_SPI_TYPE_UNKNOWN;
struct altera_spi *hw;
struct spi_master *master;
int err = -ENODEV;
u32 val;
u16 i;
master = spi_alloc_master(&pdev->dev, sizeof(struct altera_spi));
if (!master)
@ -178,27 +246,72 @@ static int altera_spi_probe(struct platform_device *pdev)
/* setup the master state. */
master->bus_num = pdev->id;
master->num_chipselect = 16;
master->mode_bits = SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 16);
if (pdata) {
if (pdata->num_chipselect > ALTERA_SPI_MAX_CS) {
dev_err(&pdev->dev,
"Invalid number of chipselect: %hu\n",
pdata->num_chipselect);
return -EINVAL;
}
master->num_chipselect = pdata->num_chipselect;
master->mode_bits = pdata->mode_bits;
master->bits_per_word_mask = pdata->bits_per_word_mask;
} else {
master->num_chipselect = 16;
master->mode_bits = SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 16);
}
master->dev.of_node = pdev->dev.of_node;
master->transfer_one = altera_spi_txrx;
master->set_cs = altera_spi_set_cs;
hw = spi_master_get_devdata(master);
hw->dev = &pdev->dev;
if (platid)
type = platid->driver_data;
/* find and map our resources */
hw->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hw->base)) {
err = PTR_ERR(hw->base);
goto exit;
if (type == ALTERA_SPI_TYPE_SUBDEV) {
struct resource *regoff;
hw->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!hw->regmap) {
dev_err(&pdev->dev, "get regmap failed\n");
goto exit;
}
regoff = platform_get_resource(pdev, IORESOURCE_REG, 0);
if (regoff)
hw->regoff = regoff->start;
} else {
void __iomem *res;
res = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(res)) {
err = PTR_ERR(res);
goto exit;
}
hw->regmap = devm_regmap_init_mmio(&pdev->dev, res,
&spi_altera_config);
if (IS_ERR(hw->regmap)) {
dev_err(&pdev->dev, "regmap mmio init failed\n");
err = PTR_ERR(hw->regmap);
goto exit;
}
}
/* program defaults into the registers */
hw->imr = 0; /* disable spi interrupts */
writel(hw->imr, hw->base + ALTERA_SPI_CONTROL);
writel(0, hw->base + ALTERA_SPI_STATUS); /* clear status reg */
if (readl(hw->base + ALTERA_SPI_STATUS) & ALTERA_SPI_STATUS_RRDY_MSK)
readl(hw->base + ALTERA_SPI_RXDATA); /* flush rxdata */
altr_spi_writel(hw, ALTERA_SPI_CONTROL, hw->imr);
altr_spi_writel(hw, ALTERA_SPI_STATUS, 0); /* clear status reg */
altr_spi_readl(hw, ALTERA_SPI_STATUS, &val);
if (val & ALTERA_SPI_STATUS_RRDY_MSK)
altr_spi_readl(hw, ALTERA_SPI_RXDATA, &val); /* flush rxdata */
/* irq is optional */
hw->irq = platform_get_irq(pdev, 0);
if (hw->irq >= 0) {
@ -211,7 +324,17 @@ static int altera_spi_probe(struct platform_device *pdev)
err = devm_spi_register_master(&pdev->dev, master);
if (err)
goto exit;
dev_info(&pdev->dev, "base %p, irq %d\n", hw->base, hw->irq);
if (pdata) {
for (i = 0; i < pdata->num_devices; i++) {
if (!spi_new_device(master, pdata->devices + i))
dev_warn(&pdev->dev,
"unable to create SPI device: %s\n",
pdata->devices[i].modalias);
}
}
dev_info(&pdev->dev, "regoff %u, irq %d\n", hw->regoff, hw->irq);
return 0;
exit:
@ -228,6 +351,13 @@ static const struct of_device_id altera_spi_match[] = {
MODULE_DEVICE_TABLE(of, altera_spi_match);
#endif /* CONFIG_OF */
static const struct platform_device_id altera_spi_ids[] = {
{ DRV_NAME, ALTERA_SPI_TYPE_UNKNOWN },
{ "subdev_spi_altera", ALTERA_SPI_TYPE_SUBDEV },
{ }
};
MODULE_DEVICE_TABLE(platform, altera_spi_ids);
static struct platform_driver altera_spi_driver = {
.probe = altera_spi_probe,
.driver = {
@ -235,6 +365,7 @@ static struct platform_driver altera_spi_driver = {
.pm = NULL,
.of_match_table = of_match_ptr(altera_spi_match),
},
.id_table = altera_spi_ids,
};
module_platform_driver(altera_spi_driver);

View File

@ -294,11 +294,13 @@ err_free_master:
return err;
}
#ifdef CONFIG_ACPI
static const struct acpi_device_id spi_acpi_match[] = {
{ "AMDI0061", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, spi_acpi_match);
#endif
static struct platform_driver amd_spi_driver = {
.driver = {

View File

@ -681,13 +681,6 @@ static const struct dev_pm_ops at91_usart_spi_pm_ops = {
at91_usart_spi_runtime_resume, NULL)
};
static const struct of_device_id at91_usart_spi_dt_ids[] = {
{ .compatible = "microchip,at91sam9g45-usart-spi"},
{ /* sentinel */}
};
MODULE_DEVICE_TABLE(of, at91_usart_spi_dt_ids);
static struct platform_driver at91_usart_spi_driver = {
.driver = {
.name = "at91_usart_spi",

View File

@ -1546,10 +1546,9 @@ static int atmel_spi_probe(struct platform_device *pdev)
return PTR_ERR(clk);
/* setup spi core then atmel-specific driver state */
ret = -ENOMEM;
master = spi_alloc_master(&pdev->dev, sizeof(*as));
if (!master)
goto out_free;
return -ENOMEM;
/* the spi->mode bits understood by this driver: */
master->use_gpio_descriptors = true;
@ -1678,7 +1677,6 @@ out_free_dma:
clk_disable_unprepare(clk);
out_free_irq:
out_unmap_regs:
out_free:
spi_master_put(master);
return ret;
}

View File

@ -86,6 +86,7 @@ MODULE_PARM_DESC(polling_limit_us,
* @clk: core clock, divided to calculate serial clock
* @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
* @tfr: SPI transfer currently processed
* @ctlr: SPI controller reverse lookup
* @tx_buf: pointer whence next transmitted byte is read
* @rx_buf: pointer where next received byte is written
* @tx_len: remaining bytes to transmit
@ -125,6 +126,7 @@ struct bcm2835_spi {
struct clk *clk;
int irq;
struct spi_transfer *tfr;
struct spi_controller *ctlr;
const u8 *tx_buf;
u8 *rx_buf;
int tx_len;
@ -243,13 +245,13 @@ static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
bs->rx_len -= count;
while (count > 0) {
do {
val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
len = min(count, 4);
memcpy(bs->rx_buf, &val, len);
bs->rx_buf += len;
count -= 4;
}
} while (count > 0);
}
/**
@ -269,7 +271,7 @@ static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
bs->tx_len -= count;
while (count > 0) {
do {
if (bs->tx_buf) {
len = min(count, 4);
memcpy(&val, bs->tx_buf, len);
@ -279,7 +281,7 @@ static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
}
bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
count -= 4;
}
} while (count > 0);
}
/**
@ -308,12 +310,11 @@ static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
count = min(count, bs->rx_len);
bs->rx_len -= count;
while (count) {
do {
val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
if (bs->rx_buf)
*bs->rx_buf++ = val;
count--;
}
} while (--count);
}
/**
@ -328,16 +329,14 @@ static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
count = min(count, bs->tx_len);
bs->tx_len -= count;
while (count) {
do {
val = bs->tx_buf ? *bs->tx_buf++ : 0;
bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
count--;
}
} while (--count);
}
static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
{
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/* Disable SPI interrupts and transfer */
@ -363,8 +362,7 @@ static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
{
struct spi_controller *ctlr = dev_id;
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
struct bcm2835_spi *bs = dev_id;
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/*
@ -386,9 +384,9 @@ static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
if (!bs->rx_len) {
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(ctlr);
bcm2835_spi_reset_hw(bs);
/* wake up the framework */
complete(&ctlr->xfer_completion);
complete(&bs->ctlr->xfer_completion);
}
return IRQ_HANDLED;
@ -607,7 +605,7 @@ static void bcm2835_spi_dma_rx_done(void *data)
bcm2835_spi_undo_prologue(bs);
/* reset fifo and HW */
bcm2835_spi_reset_hw(ctlr);
bcm2835_spi_reset_hw(bs);
/* and mark as completed */;
complete(&ctlr->xfer_completion);
@ -641,7 +639,7 @@ static void bcm2835_spi_dma_tx_done(void *data)
dmaengine_terminate_async(ctlr->dma_rx);
bcm2835_spi_undo_prologue(bs);
bcm2835_spi_reset_hw(ctlr);
bcm2835_spi_reset_hw(bs);
complete(&ctlr->xfer_completion);
}
@ -825,14 +823,14 @@ static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
if (!bs->rx_buf && !bs->tx_dma_active &&
cmpxchg(&bs->rx_dma_active, true, false)) {
dmaengine_terminate_async(ctlr->dma_rx);
bcm2835_spi_reset_hw(ctlr);
bcm2835_spi_reset_hw(bs);
}
/* wait for wakeup in framework */
return 1;
err_reset_hw:
bcm2835_spi_reset_hw(ctlr);
bcm2835_spi_reset_hw(bs);
bcm2835_spi_undo_prologue(bs);
return ret;
}
@ -1074,7 +1072,7 @@ static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
}
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(ctlr);
bcm2835_spi_reset_hw(bs);
/* and return without waiting for completion */
return 0;
}
@ -1084,7 +1082,7 @@ static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
struct spi_transfer *tfr)
{
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
unsigned long spi_hz, clk_hz, cdiv;
unsigned long hz_per_byte, byte_limit;
u32 cs = bs->prepare_cs[spi->chip_select];
@ -1104,7 +1102,7 @@ static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
} else {
cdiv = 0; /* 0 is the slowest we can go */
}
spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
tfr->effective_speed_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
/* handle all the 3-wire mode */
@ -1124,7 +1122,7 @@ static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
* per 300,000 Hz of bus clock.
*/
hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
/* run in polling mode for short transfers */
if (tfr->len < byte_limit)
@ -1182,7 +1180,7 @@ static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
bcm2835_spi_undo_prologue(bs);
/* and reset */
bcm2835_spi_reset_hw(ctlr);
bcm2835_spi_reset_hw(bs);
}
static int chip_match_name(struct gpio_chip *chip, void *data)
@ -1311,6 +1309,7 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
ctlr->dev.of_node = pdev->dev.of_node;
bs = spi_controller_get_devdata(ctlr);
bs->ctlr = ctlr;
bs->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(bs->regs)) {
@ -1345,7 +1344,7 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
dev_name(&pdev->dev), ctlr);
dev_name(&pdev->dev), bs);
if (err) {
dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
goto out_dma_release;

View File

@ -345,7 +345,7 @@ static int bcm2835aux_spi_transfer_one(struct spi_master *master,
struct spi_transfer *tfr)
{
struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
unsigned long spi_hz, clk_hz, speed, spi_used_hz;
unsigned long spi_hz, clk_hz, speed;
unsigned long hz_per_byte, byte_limit;
/* calculate the registers to handle
@ -374,7 +374,7 @@ static int bcm2835aux_spi_transfer_one(struct spi_master *master,
/* set the new speed */
bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
spi_used_hz = clk_hz / (2 * (speed + 1));
tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
/* set transmit buffers and length */
bs->tx_buf = tfr->tx_buf;
@ -391,7 +391,7 @@ static int bcm2835aux_spi_transfer_one(struct spi_master *master,
* 30 µs per 300,000 Hz of bus clock.
*/
hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
/* run in polling mode for short transfers */
if (tfr->len < byte_limit)

View File

@ -20,6 +20,7 @@
#include <linux/spi/spi.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/reset.h>
#define HSSPI_GLOBAL_CTRL_REG 0x0
#define GLOBAL_CTRL_CS_POLARITY_SHIFT 0
@ -334,6 +335,7 @@ static int bcm63xx_hsspi_probe(struct platform_device *pdev)
struct clk *clk, *pll_clk = NULL;
int irq, ret;
u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS;
struct reset_control *reset;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
@ -348,10 +350,20 @@ static int bcm63xx_hsspi_probe(struct platform_device *pdev)
if (IS_ERR(clk))
return PTR_ERR(clk);
reset = devm_reset_control_get_optional_exclusive(dev, NULL);
if (IS_ERR(reset))
return PTR_ERR(reset);
ret = clk_prepare_enable(clk);
if (ret)
return ret;
ret = reset_control_reset(reset);
if (ret) {
dev_err(dev, "unable to reset device: %d\n", ret);
goto out_disable_clk;
}
rate = clk_get_rate(clk);
if (!rate) {
pll_clk = devm_clk_get(dev, "pll");

View File

@ -18,6 +18,7 @@
#include <linux/err.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/reset.h>
/* BCM 6338/6348 SPI core */
#define SPI_6348_RSET_SIZE 64
@ -493,6 +494,7 @@ static int bcm63xx_spi_probe(struct platform_device *pdev)
struct bcm63xx_spi *bs;
int ret;
u32 num_cs = BCM63XX_SPI_MAX_CS;
struct reset_control *reset;
if (dev->of_node) {
const struct of_device_id *match;
@ -529,6 +531,10 @@ static int bcm63xx_spi_probe(struct platform_device *pdev)
return PTR_ERR(clk);
}
reset = devm_reset_control_get_optional_exclusive(dev, NULL);
if (IS_ERR(reset))
return PTR_ERR(reset);
master = spi_alloc_master(dev, sizeof(*bs));
if (!master) {
dev_err(dev, "out of memory\n");
@ -579,6 +585,12 @@ static int bcm63xx_spi_probe(struct platform_device *pdev)
if (ret)
goto out_err;
ret = reset_control_reset(reset);
if (ret) {
dev_err(dev, "unable to reset device: %d\n", ret);
goto out_clk_disable;
}
bcm_spi_writeb(bs, SPI_INTR_CLEAR_ALL, SPI_INT_STATUS);
/* register and we are done */

View File

@ -174,7 +174,7 @@ int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
}
EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
/**
/*
* spi_bitbang_setup - default setup for per-word I/O loops
*/
int spi_bitbang_setup(struct spi_device *spi)
@ -208,7 +208,7 @@ int spi_bitbang_setup(struct spi_device *spi)
}
EXPORT_SYMBOL_GPL(spi_bitbang_setup);
/**
/*
* spi_bitbang_cleanup - default cleanup for per-word I/O loops
*/
void spi_bitbang_cleanup(struct spi_device *spi)
@ -427,7 +427,7 @@ int spi_bitbang_start(struct spi_bitbang *bitbang)
}
EXPORT_SYMBOL_GPL(spi_bitbang_start);
/**
/*
* spi_bitbang_stop - stops the task providing spi communication
*/
void spi_bitbang_stop(struct spi_bitbang *bitbang)

View File

@ -556,7 +556,7 @@ static int cdns_spi_probe(struct platform_device *pdev)
master->unprepare_transfer_hardware = cdns_unprepare_transfer_hardware;
master->set_cs = cdns_spi_chipselect;
master->auto_runtime_pm = true;
master->mode_bits = SPI_CPOL | SPI_CPHA;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
/* Set to default valid value */
master->max_speed_hz = clk_get_rate(xspi->ref_clk) / 4;

View File

@ -64,6 +64,7 @@ static int thunderx_spi_probe(struct pci_dev *pdev,
p->sys_freq = SYS_FREQ_DEFAULT;
dev_info(dev, "Set system clock to %u\n", p->sys_freq);
master->flags = SPI_MASTER_HALF_DUPLEX;
master->num_chipselect = 4;
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH |
SPI_LSB_FIRST | SPI_3WIRE;

View File

@ -387,7 +387,7 @@ static int mcfqspi_probe(struct platform_device *pdev)
status = PTR_ERR(mcfqspi->clk);
goto fail0;
}
clk_enable(mcfqspi->clk);
clk_prepare_enable(mcfqspi->clk);
master->bus_num = pdata->bus_num;
master->num_chipselect = pdata->num_chipselect;
@ -425,7 +425,7 @@ fail2:
pm_runtime_disable(&pdev->dev);
mcfqspi_cs_teardown(mcfqspi);
fail1:
clk_disable(mcfqspi->clk);
clk_disable_unprepare(mcfqspi->clk);
fail0:
spi_master_put(master);

View File

@ -236,7 +236,8 @@ static void davinci_spi_chipselect(struct spi_device *spi, int value)
/**
* davinci_spi_get_prescale - Calculates the correct prescale value
* @maxspeed_hz: the maximum rate the SPI clock can run at
* @dspi: the controller data
* @max_speed_hz: the maximum rate the SPI clock can run at
*
* This function calculates the prescale value that generates a clock rate
* less than or equal to the specified maximum.
@ -711,7 +712,7 @@ err_desc:
/**
* dummy_thread_fn - dummy thread function
* @irq: IRQ number for this SPI Master
* @context_data: structure for SPI Master controller davinci_spi
* @data: structure for SPI Master controller davinci_spi
*
* This is to satisfy the request_threaded_irq() API so that the irq
* handler is called in interrupt context.
@ -724,7 +725,7 @@ static irqreturn_t dummy_thread_fn(s32 irq, void *data)
/**
* davinci_spi_irq - Interrupt handler for SPI Master Controller
* @irq: IRQ number for this SPI Master
* @context_data: structure for SPI Master controller davinci_spi
* @data: structure for SPI Master controller davinci_spi
*
* ISR will determine that interrupt arrives either for READ or WRITE command.
* According to command it will do the appropriate action. It will check

View File

@ -10,7 +10,7 @@
*
* For more information about the SPI controller see documentation on Cirrus
* Logic web site:
* http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
* https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
*/
#include <linux/io.h>
@ -214,7 +214,7 @@ static void ep93xx_do_read(struct spi_master *master)
/**
* ep93xx_spi_read_write() - perform next RX/TX transfer
* @espi: ep93xx SPI controller struct
* @master: SPI master
*
* This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
* called several times, the whole transfer will be completed. Returns

View File

@ -11,7 +11,6 @@
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
@ -19,11 +18,9 @@
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/platform_data/spi-imx.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
@ -101,6 +98,7 @@ struct fsl_lpspi_data {
struct clk *clk_ipg;
struct clk *clk_per;
bool is_slave;
bool is_only_cs1;
bool is_first_byte;
void *rx_buf;
@ -122,8 +120,6 @@ struct fsl_lpspi_data {
bool usedma;
struct completion dma_rx_completion;
struct completion dma_tx_completion;
int chipselect[];
};
static const struct of_device_id fsl_lpspi_dt_ids[] = {
@ -224,20 +220,6 @@ static int lpspi_unprepare_xfer_hardware(struct spi_controller *controller)
return 0;
}
static int fsl_lpspi_prepare_message(struct spi_controller *controller,
struct spi_message *msg)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
struct spi_device *spi = msg->spi;
int gpio = fsl_lpspi->chipselect[spi->chip_select];
if (gpio_is_valid(gpio))
gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
return 0;
}
static void fsl_lpspi_write_tx_fifo(struct fsl_lpspi_data *fsl_lpspi)
{
u8 txfifo_cnt;
@ -276,10 +258,9 @@ static void fsl_lpspi_set_cmd(struct fsl_lpspi_data *fsl_lpspi)
temp |= fsl_lpspi->config.bpw - 1;
temp |= (fsl_lpspi->config.mode & 0x3) << 30;
temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
if (!fsl_lpspi->is_slave) {
temp |= fsl_lpspi->config.prescale << 27;
temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
/*
* Set TCR_CONT will keep SS asserted after current transfer.
* For the first transfer, clear TCR_CONTC to assert SS.
@ -440,7 +421,10 @@ static int fsl_lpspi_setup_transfer(struct spi_controller *controller,
fsl_lpspi->config.mode = spi->mode;
fsl_lpspi->config.bpw = t->bits_per_word;
fsl_lpspi->config.speed_hz = t->speed_hz;
fsl_lpspi->config.chip_select = spi->chip_select;
if (fsl_lpspi->is_only_cs1)
fsl_lpspi->config.chip_select = 1;
else
fsl_lpspi->config.chip_select = spi->chip_select;
if (!fsl_lpspi->config.speed_hz)
fsl_lpspi->config.speed_hz = spi->max_speed_hz;
@ -831,13 +815,10 @@ static int fsl_lpspi_init_rpm(struct fsl_lpspi_data *fsl_lpspi)
static int fsl_lpspi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_lpspi_data *fsl_lpspi;
struct spi_controller *controller;
struct spi_imx_master *lpspi_platform_info =
dev_get_platdata(&pdev->dev);
struct resource *res;
int i, ret, irq;
int ret, irq;
u32 temp;
bool is_slave;
@ -857,6 +838,8 @@ static int fsl_lpspi_probe(struct platform_device *pdev)
fsl_lpspi = spi_controller_get_devdata(controller);
fsl_lpspi->dev = &pdev->dev;
fsl_lpspi->is_slave = is_slave;
fsl_lpspi->is_only_cs1 = of_property_read_bool((&pdev->dev)->of_node,
"fsl,spi-only-use-cs1-sel");
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
controller->transfer_one = fsl_lpspi_transfer_one;
@ -867,35 +850,8 @@ static int fsl_lpspi_probe(struct platform_device *pdev)
controller->dev.of_node = pdev->dev.of_node;
controller->bus_num = pdev->id;
controller->slave_abort = fsl_lpspi_slave_abort;
ret = devm_spi_register_controller(&pdev->dev, controller);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_controller error.\n");
goto out_controller_put;
}
if (!fsl_lpspi->is_slave) {
for (i = 0; i < controller->num_chipselect; i++) {
int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
if (!gpio_is_valid(cs_gpio) && lpspi_platform_info)
cs_gpio = lpspi_platform_info->chipselect[i];
fsl_lpspi->chipselect[i] = cs_gpio;
if (!gpio_is_valid(cs_gpio))
continue;
ret = devm_gpio_request(&pdev->dev,
fsl_lpspi->chipselect[i],
DRIVER_NAME);
if (ret) {
dev_err(&pdev->dev, "can't get cs gpios\n");
goto out_controller_put;
}
}
controller->cs_gpios = fsl_lpspi->chipselect;
controller->prepare_message = fsl_lpspi_prepare_message;
}
if (!fsl_lpspi->is_slave)
controller->use_gpio_descriptors = true;
init_completion(&fsl_lpspi->xfer_done);
@ -954,10 +910,21 @@ static int fsl_lpspi_probe(struct platform_device *pdev)
if (ret < 0)
dev_err(&pdev->dev, "dma setup error %d, use pio\n", ret);
ret = devm_spi_register_controller(&pdev->dev, controller);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_controller error.\n");
goto out_pm_get;
}
pm_runtime_mark_last_busy(fsl_lpspi->dev);
pm_runtime_put_autosuspend(fsl_lpspi->dev);
return 0;
out_pm_get:
pm_runtime_put_noidle(fsl_lpspi->dev);
pm_runtime_dont_use_autosuspend(fsl_lpspi->dev);
pm_runtime_put_sync(fsl_lpspi->dev);
pm_runtime_disable(fsl_lpspi->dev);
out_controller_put:
spi_controller_put(controller);

View File

@ -15,7 +15,7 @@
* Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
* Suresh Gupta <suresh.gupta@nxp.com>
*
* Based on the original fsl-quadspi.c spi-nor driver:
* Based on the original fsl-quadspi.c SPI NOR driver:
* Author: Freescale Semiconductor, Inc.
*
*/

View File

@ -90,7 +90,7 @@ static void fsl_spi_change_mode(struct spi_device *spi)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
struct spi_mpc8xxx_cs *cs = spi->controller_state;
struct fsl_spi_reg *reg_base = mspi->reg_base;
struct fsl_spi_reg __iomem *reg_base = mspi->reg_base;
__be32 __iomem *mode = &reg_base->mode;
unsigned long flags;
@ -291,7 +291,7 @@ static int fsl_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
struct spi_transfer *t, unsigned int len)
{
u32 word;
struct fsl_spi_reg *reg_base = mspi->reg_base;
struct fsl_spi_reg __iomem *reg_base = mspi->reg_base;
mspi->count = len;
@ -309,7 +309,7 @@ static int fsl_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
bool is_dma_mapped)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
struct fsl_spi_reg *reg_base;
struct fsl_spi_reg __iomem *reg_base;
unsigned int len = t->len;
u8 bits_per_word;
int ret;
@ -440,7 +440,7 @@ static int fsl_spi_do_one_msg(struct spi_master *master,
static int fsl_spi_setup(struct spi_device *spi)
{
struct mpc8xxx_spi *mpc8xxx_spi;
struct fsl_spi_reg *reg_base;
struct fsl_spi_reg __iomem *reg_base;
int retval;
u32 hw_mode;
struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
@ -495,7 +495,7 @@ static void fsl_spi_cleanup(struct spi_device *spi)
static void fsl_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
{
struct fsl_spi_reg *reg_base = mspi->reg_base;
struct fsl_spi_reg __iomem *reg_base = mspi->reg_base;
/* We need handle RX first */
if (events & SPIE_NE) {
@ -530,7 +530,7 @@ static irqreturn_t fsl_spi_irq(s32 irq, void *context_data)
struct mpc8xxx_spi *mspi = context_data;
irqreturn_t ret = IRQ_NONE;
u32 events;
struct fsl_spi_reg *reg_base = mspi->reg_base;
struct fsl_spi_reg __iomem *reg_base = mspi->reg_base;
/* Get interrupt events(tx/rx) */
events = mpc8xxx_spi_read_reg(&reg_base->event);
@ -550,7 +550,7 @@ static irqreturn_t fsl_spi_irq(s32 irq, void *context_data)
static void fsl_spi_grlib_cs_control(struct spi_device *spi, bool on)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
struct fsl_spi_reg *reg_base = mpc8xxx_spi->reg_base;
struct fsl_spi_reg __iomem *reg_base = mpc8xxx_spi->reg_base;
u32 slvsel;
u16 cs = spi->chip_select;
@ -568,7 +568,7 @@ static void fsl_spi_grlib_probe(struct device *dev)
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
struct fsl_spi_reg *reg_base = mpc8xxx_spi->reg_base;
struct fsl_spi_reg __iomem *reg_base = mpc8xxx_spi->reg_base;
int mbits;
u32 capabilities;
@ -594,7 +594,7 @@ static struct spi_master *fsl_spi_probe(struct device *dev,
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master;
struct mpc8xxx_spi *mpc8xxx_spi;
struct fsl_spi_reg *reg_base;
struct fsl_spi_reg __iomem *reg_base;
u32 regval;
int ret = 0;

View File

@ -51,7 +51,6 @@
/* M_CMD OP codes for SPI */
#define SPI_TX_ONLY 1
#define SPI_RX_ONLY 2
#define SPI_FULL_DUPLEX 3
#define SPI_TX_RX 7
#define SPI_CS_ASSERT 8
#define SPI_CS_DEASSERT 9
@ -63,13 +62,6 @@
#define TIMESTAMP_AFTER BIT(3)
#define POST_CMD_DELAY BIT(4)
enum spi_m_cmd_opcode {
CMD_NONE,
CMD_XFER,
CMD_CS,
CMD_CANCEL,
};
struct spi_geni_master {
struct geni_se se;
struct device *dev;
@ -81,11 +73,13 @@ struct spi_geni_master {
unsigned int tx_rem_bytes;
unsigned int rx_rem_bytes;
const struct spi_transfer *cur_xfer;
struct completion xfer_done;
struct completion cs_done;
struct completion cancel_done;
struct completion abort_done;
unsigned int oversampling;
spinlock_t lock;
enum spi_m_cmd_opcode cur_mcmd;
int irq;
bool cs_flag;
};
static int get_spi_clk_cfg(unsigned int speed_hz,
@ -122,24 +116,26 @@ static void handle_fifo_timeout(struct spi_master *spi,
struct spi_message *msg)
{
struct spi_geni_master *mas = spi_master_get_devdata(spi);
unsigned long time_left, flags;
unsigned long time_left;
struct geni_se *se = &mas->se;
spin_lock_irqsave(&mas->lock, flags);
reinit_completion(&mas->xfer_done);
mas->cur_mcmd = CMD_CANCEL;
geni_se_cancel_m_cmd(se);
spin_lock_irq(&mas->lock);
reinit_completion(&mas->cancel_done);
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
spin_unlock_irqrestore(&mas->lock, flags);
time_left = wait_for_completion_timeout(&mas->xfer_done, HZ);
mas->cur_xfer = NULL;
geni_se_cancel_m_cmd(se);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
if (time_left)
return;
spin_lock_irqsave(&mas->lock, flags);
reinit_completion(&mas->xfer_done);
spin_lock_irq(&mas->lock);
reinit_completion(&mas->abort_done);
geni_se_abort_m_cmd(se);
spin_unlock_irqrestore(&mas->lock, flags);
time_left = wait_for_completion_timeout(&mas->xfer_done, HZ);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
if (!time_left)
dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
}
@ -151,18 +147,24 @@ static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
struct geni_se *se = &mas->se;
unsigned long time_left;
reinit_completion(&mas->xfer_done);
pm_runtime_get_sync(mas->dev);
if (!(slv->mode & SPI_CS_HIGH))
set_flag = !set_flag;
mas->cur_mcmd = CMD_CS;
if (set_flag == mas->cs_flag)
return;
mas->cs_flag = set_flag;
pm_runtime_get_sync(mas->dev);
spin_lock_irq(&mas->lock);
reinit_completion(&mas->cs_done);
if (set_flag)
geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
else
geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->xfer_done, HZ);
time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
if (!time_left)
handle_fifo_timeout(spi, NULL);
@ -283,7 +285,7 @@ static int spi_geni_init(struct spi_geni_master *mas)
* Hardware programming guide suggests to configure
* RX FIFO RFR level to fifo_depth-2.
*/
geni_se_init(se, 0x0, mas->tx_fifo_depth - 2);
geni_se_init(se, mas->tx_fifo_depth / 2, mas->tx_fifo_depth - 2);
/* Transmit an entire FIFO worth of data per IRQ */
mas->tx_wm = 1;
ver = geni_se_get_qup_hw_version(se);
@ -307,6 +309,21 @@ static void setup_fifo_xfer(struct spi_transfer *xfer,
u32 spi_tx_cfg, len;
struct geni_se *se = &mas->se;
/*
* Ensure that our interrupt handler isn't still running from some
* prior command before we start messing with the hardware behind
* its back. We don't need to _keep_ the lock here since we're only
* worried about racing with out interrupt handler. The SPI core
* already handles making sure that we're not trying to do two
* transfers at once or setting a chip select and doing a transfer
* concurrently.
*
* NOTE: we actually _can't_ hold the lock here because possibly we
* might call clk_set_rate() which needs to be able to sleep.
*/
spin_lock_irq(&mas->lock);
spin_unlock_irq(&mas->lock);
spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
if (xfer->bits_per_word != mas->cur_bits_per_word) {
spi_setup_word_len(mas, mode, xfer->bits_per_word);
@ -340,12 +357,6 @@ static void setup_fifo_xfer(struct spi_transfer *xfer,
mas->tx_rem_bytes = 0;
mas->rx_rem_bytes = 0;
if (xfer->tx_buf && xfer->rx_buf)
m_cmd = SPI_FULL_DUPLEX;
else if (xfer->tx_buf)
m_cmd = SPI_TX_ONLY;
else if (xfer->rx_buf)
m_cmd = SPI_RX_ONLY;
spi_tx_cfg &= ~CS_TOGGLE;
@ -356,17 +367,24 @@ static void setup_fifo_xfer(struct spi_transfer *xfer,
len &= TRANS_LEN_MSK;
mas->cur_xfer = xfer;
if (m_cmd & SPI_TX_ONLY) {
if (xfer->tx_buf) {
m_cmd |= SPI_TX_ONLY;
mas->tx_rem_bytes = xfer->len;
writel(len, se->base + SE_SPI_TX_TRANS_LEN);
}
if (m_cmd & SPI_RX_ONLY) {
if (xfer->rx_buf) {
m_cmd |= SPI_RX_ONLY;
writel(len, se->base + SE_SPI_RX_TRANS_LEN);
mas->rx_rem_bytes = xfer->len;
}
writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
mas->cur_mcmd = CMD_XFER;
/*
* Lock around right before we start the transfer since our
* interrupt could come in at any time now.
*/
spin_lock_irq(&mas->lock);
geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
/*
@ -376,6 +394,7 @@ static void setup_fifo_xfer(struct spi_transfer *xfer,
*/
if (m_cmd & SPI_TX_ONLY)
writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
spin_unlock_irq(&mas->lock);
}
static int spi_geni_transfer_one(struct spi_master *spi,
@ -477,13 +496,17 @@ static irqreturn_t geni_spi_isr(int irq, void *data)
struct spi_geni_master *mas = spi_master_get_devdata(spi);
struct geni_se *se = &mas->se;
u32 m_irq;
unsigned long flags;
if (mas->cur_mcmd == CMD_NONE)
m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
if (!m_irq)
return IRQ_NONE;
spin_lock_irqsave(&mas->lock, flags);
m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
spin_lock(&mas->lock);
if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
geni_spi_handle_rx(mas);
@ -492,39 +515,57 @@ static irqreturn_t geni_spi_isr(int irq, void *data)
geni_spi_handle_tx(mas);
if (m_irq & M_CMD_DONE_EN) {
if (mas->cur_mcmd == CMD_XFER)
if (mas->cur_xfer) {
spi_finalize_current_transfer(spi);
else if (mas->cur_mcmd == CMD_CS)
complete(&mas->xfer_done);
mas->cur_mcmd = CMD_NONE;
/*
* If this happens, then a CMD_DONE came before all the Tx
* buffer bytes were sent out. This is unusual, log this
* condition and disable the WM interrupt to prevent the
* system from stalling due an interrupt storm.
* If this happens when all Rx bytes haven't been received, log
* the condition.
* The only known time this can happen is if bits_per_word != 8
* and some registers that expect xfer lengths in num spi_words
* weren't written correctly.
*/
if (mas->tx_rem_bytes) {
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
mas->tx_rem_bytes, mas->cur_bits_per_word);
mas->cur_xfer = NULL;
/*
* If this happens, then a CMD_DONE came before all the
* Tx buffer bytes were sent out. This is unusual, log
* this condition and disable the WM interrupt to
* prevent the system from stalling due an interrupt
* storm.
*
* If this happens when all Rx bytes haven't been
* received, log the condition. The only known time
* this can happen is if bits_per_word != 8 and some
* registers that expect xfer lengths in num spi_words
* weren't written correctly.
*/
if (mas->tx_rem_bytes) {
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
mas->tx_rem_bytes, mas->cur_bits_per_word);
}
if (mas->rx_rem_bytes)
dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
mas->rx_rem_bytes, mas->cur_bits_per_word);
} else {
complete(&mas->cs_done);
}
if (mas->rx_rem_bytes)
dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
mas->rx_rem_bytes, mas->cur_bits_per_word);
}
if ((m_irq & M_CMD_CANCEL_EN) || (m_irq & M_CMD_ABORT_EN)) {
mas->cur_mcmd = CMD_NONE;
complete(&mas->xfer_done);
}
if (m_irq & M_CMD_CANCEL_EN)
complete(&mas->cancel_done);
if (m_irq & M_CMD_ABORT_EN)
complete(&mas->abort_done);
/*
* It's safe or a good idea to Ack all of our our interrupts at the
* end of the function. Specifically:
* - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
* clearing Acks. Clearing at the end relies on nobody else having
* started a new transfer yet or else we could be clearing _their_
* done bit, but everyone grabs the spinlock before starting a new
* transfer.
* - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
* to be "latched level" interrupts so it's important to clear them
* _after_ you've handled the condition and always safe to do so
* since they'll re-assert if they're still happening.
*/
writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
spin_unlock_irqrestore(&mas->lock, flags);
spin_unlock(&mas->lock);
return IRQ_HANDLED;
}
@ -574,8 +615,12 @@ static int spi_geni_probe(struct platform_device *pdev)
spi->handle_err = handle_fifo_timeout;
spi->set_cs = spi_geni_set_cs;
init_completion(&mas->xfer_done);
init_completion(&mas->cs_done);
init_completion(&mas->cancel_done);
init_completion(&mas->abort_done);
spin_lock_init(&mas->lock);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
pm_runtime_enable(dev);
ret = spi_geni_init(mas);

View File

@ -9,7 +9,6 @@
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
@ -102,10 +101,6 @@ struct img_spfi {
bool rx_dma_busy;
};
struct img_spfi_device_data {
bool gpio_requested;
};
static inline u32 spfi_readl(struct img_spfi *spfi, u32 reg)
{
return readl(spfi->regs + reg);
@ -442,54 +437,6 @@ static int img_spfi_unprepare(struct spi_master *master,
return 0;
}
static int img_spfi_setup(struct spi_device *spi)
{
int ret = -EINVAL;
struct img_spfi_device_data *spfi_data = spi_get_ctldata(spi);
if (!spfi_data) {
spfi_data = kzalloc(sizeof(*spfi_data), GFP_KERNEL);
if (!spfi_data)
return -ENOMEM;
spfi_data->gpio_requested = false;
spi_set_ctldata(spi, spfi_data);
}
if (!spfi_data->gpio_requested) {
ret = gpio_request_one(spi->cs_gpio,
(spi->mode & SPI_CS_HIGH) ?
GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH,
dev_name(&spi->dev));
if (ret)
dev_err(&spi->dev, "can't request chipselect gpio %d\n",
spi->cs_gpio);
else
spfi_data->gpio_requested = true;
} else {
if (gpio_is_valid(spi->cs_gpio)) {
int mode = ((spi->mode & SPI_CS_HIGH) ?
GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH);
ret = gpio_direction_output(spi->cs_gpio, mode);
if (ret)
dev_err(&spi->dev, "chipselect gpio %d setup failed (%d)\n",
spi->cs_gpio, ret);
}
}
return ret;
}
static void img_spfi_cleanup(struct spi_device *spi)
{
struct img_spfi_device_data *spfi_data = spi_get_ctldata(spi);
if (spfi_data) {
if (spfi_data->gpio_requested)
gpio_free(spi->cs_gpio);
kfree(spfi_data);
spi_set_ctldata(spi, NULL);
}
}
static void img_spfi_config(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer)
{
@ -659,12 +606,11 @@ static int img_spfi_probe(struct platform_device *pdev)
master->max_speed_hz = max_speed_hz;
}
master->setup = img_spfi_setup;
master->cleanup = img_spfi_cleanup;
master->transfer_one = img_spfi_transfer_one;
master->prepare_message = img_spfi_prepare;
master->unprepare_message = img_spfi_unprepare;
master->handle_err = img_spfi_handle_err;
master->use_gpio_descriptors = true;
spfi->tx_ch = dma_request_chan(spfi->dev, "tx");
if (IS_ERR(spfi->tx_ch)) {

View File

@ -8,23 +8,23 @@
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/types.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/property.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/platform_data/spi-imx.h>
#define DRIVER_NAME "spi_imx"
@ -32,6 +32,8 @@ static bool use_dma = true;
module_param(use_dma, bool, 0644);
MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
#define MXC_RPM_TIMEOUT 2000 /* 2000ms */
#define MXC_CSPIRXDATA 0x00
#define MXC_CSPITXDATA 0x04
#define MXC_CSPICTRL 0x08
@ -224,7 +226,7 @@ static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
if (!use_dma)
if (!use_dma || master->fallback)
return false;
if (!master->dma_rx)
@ -723,7 +725,7 @@ static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
reg |= MX31_CSPICTRL_POL;
if (spi->mode & SPI_CS_HIGH)
reg |= MX31_CSPICTRL_SSPOL;
if (!gpio_is_valid(spi->cs_gpio))
if (!spi->cs_gpiod)
reg |= (spi->chip_select) <<
(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
MX31_CSPICTRL_CS_SHIFT);
@ -824,7 +826,7 @@ static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
reg |= MX21_CSPICTRL_POL;
if (spi->mode & SPI_CS_HIGH)
reg |= MX21_CSPICTRL_SSPOL;
if (!gpio_is_valid(spi->cs_gpio))
if (!spi->cs_gpiod)
reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
writel(reg, spi_imx->base + MXC_CSPICTRL);
@ -1056,20 +1058,6 @@ static const struct of_device_id spi_imx_dt_ids[] = {
};
MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
static void spi_imx_chipselect(struct spi_device *spi, int is_active)
{
int active = is_active != BITBANG_CS_INACTIVE;
int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH);
if (spi->mode & SPI_NO_CS)
return;
if (!gpio_is_valid(spi->cs_gpio))
return;
gpio_set_value(spi->cs_gpio, dev_is_lowactive ^ active);
}
static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
{
u32 ctrl;
@ -1364,11 +1352,12 @@ static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
ret = spi_imx_dma_configure(master);
if (ret)
return ret;
goto dma_failure_no_start;
if (!spi_imx->devtype_data->setup_wml) {
dev_err(spi_imx->dev, "No setup_wml()?\n");
return -EINVAL;
ret = -EINVAL;
goto dma_failure_no_start;
}
spi_imx->devtype_data->setup_wml(spi_imx);
@ -1379,8 +1368,10 @@ static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
rx->sgl, rx->nents, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx)
return -EINVAL;
if (!desc_rx) {
ret = -EINVAL;
goto dma_failure_no_start;
}
desc_rx->callback = spi_imx_dma_rx_callback;
desc_rx->callback_param = (void *)spi_imx;
@ -1425,6 +1416,10 @@ static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
}
return transfer->len;
/* fallback to pio */
dma_failure_no_start:
transfer->error |= SPI_TRANS_FAIL_NO_START;
return ret;
}
static int spi_imx_pio_transfer(struct spi_device *spi,
@ -1507,7 +1502,6 @@ static int spi_imx_transfer(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
int ret;
/* flush rxfifo before transfer */
while (spi_imx->devtype_data->rx_available(spi_imx))
@ -1516,21 +1510,8 @@ static int spi_imx_transfer(struct spi_device *spi,
if (spi_imx->slave_mode)
return spi_imx_pio_transfer_slave(spi, transfer);
/*
* fallback PIO mode if dma setup error happen, for example sdma
* firmware may not be updated as ERR009165 required.
*/
if (spi_imx->usedma) {
ret = spi_imx_dma_transfer(spi_imx, transfer);
if (ret != -EINVAL)
return ret;
spi_imx->devtype_data->disable_dma(spi_imx);
spi_imx->usedma = false;
spi_imx->dynamic_burst = spi_imx->devtype_data->dynamic_burst;
dev_dbg(&spi->dev, "Fallback to PIO mode\n");
}
if (spi_imx->usedma)
return spi_imx_dma_transfer(spi_imx, transfer);
return spi_imx_pio_transfer(spi, transfer);
}
@ -1540,15 +1521,6 @@ static int spi_imx_setup(struct spi_device *spi)
dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
spi->mode, spi->bits_per_word, spi->max_speed_hz);
if (spi->mode & SPI_NO_CS)
return 0;
if (gpio_is_valid(spi->cs_gpio))
gpio_direction_output(spi->cs_gpio,
spi->mode & SPI_CS_HIGH ? 0 : 1);
spi_imx_chipselect(spi, BITBANG_CS_INACTIVE);
return 0;
}
@ -1562,20 +1534,16 @@ spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
int ret;
ret = clk_enable(spi_imx->clk_per);
if (ret)
return ret;
ret = clk_enable(spi_imx->clk_ipg);
if (ret) {
clk_disable(spi_imx->clk_per);
ret = pm_runtime_get_sync(spi_imx->dev);
if (ret < 0) {
dev_err(spi_imx->dev, "failed to enable clock\n");
return ret;
}
ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
if (ret) {
clk_disable(spi_imx->clk_ipg);
clk_disable(spi_imx->clk_per);
pm_runtime_mark_last_busy(spi_imx->dev);
pm_runtime_put_autosuspend(spi_imx->dev);
}
return ret;
@ -1586,8 +1554,8 @@ spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
clk_disable(spi_imx->clk_ipg);
clk_disable(spi_imx->clk_per);
pm_runtime_mark_last_busy(spi_imx->dev);
pm_runtime_put_autosuspend(spi_imx->dev);
return 0;
}
@ -1606,20 +1574,14 @@ static int spi_imx_probe(struct platform_device *pdev)
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id =
of_match_device(spi_imx_dt_ids, &pdev->dev);
struct spi_imx_master *mxc_platform_info =
dev_get_platdata(&pdev->dev);
struct spi_master *master;
struct spi_imx_data *spi_imx;
struct resource *res;
int i, ret, irq, spi_drctl;
int ret, irq, spi_drctl;
const struct spi_imx_devtype_data *devtype_data = of_id ? of_id->data :
(struct spi_imx_devtype_data *)pdev->id_entry->driver_data;
bool slave_mode;
if (!np && !mxc_platform_info) {
dev_err(&pdev->dev, "can't get the platform data\n");
return -EINVAL;
}
u32 val;
slave_mode = devtype_data->has_slavemode &&
of_property_read_bool(np, "spi-slave");
@ -1642,6 +1604,7 @@ static int spi_imx_probe(struct platform_device *pdev)
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
master->bus_num = np ? -1 : pdev->id;
master->use_gpio_descriptors = true;
spi_imx = spi_master_get_devdata(master);
spi_imx->bitbang.master = master;
@ -1650,28 +1613,17 @@ static int spi_imx_probe(struct platform_device *pdev)
spi_imx->devtype_data = devtype_data;
/* Get number of chip selects, either platform data or OF */
if (mxc_platform_info) {
master->num_chipselect = mxc_platform_info->num_chipselect;
if (mxc_platform_info->chipselect) {
master->cs_gpios = devm_kcalloc(&master->dev,
master->num_chipselect, sizeof(int),
GFP_KERNEL);
if (!master->cs_gpios)
return -ENOMEM;
/*
* Get number of chip selects from device properties. This can be
* coming from device tree or boardfiles, if it is not defined,
* a default value of 3 chip selects will be used, as all the legacy
* board files have <= 3 chip selects.
*/
if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
master->num_chipselect = val;
else
master->num_chipselect = 3;
for (i = 0; i < master->num_chipselect; i++)
master->cs_gpios[i] = mxc_platform_info->chipselect[i];
}
} else {
u32 num_cs;
if (!of_property_read_u32(np, "num-cs", &num_cs))
master->num_chipselect = num_cs;
/* If not preset, default value of 1 is used */
}
spi_imx->bitbang.chipselect = spi_imx_chipselect;
spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
spi_imx->bitbang.master->setup = spi_imx_setup;
@ -1722,13 +1674,15 @@ static int spi_imx_probe(struct platform_device *pdev)
goto out_master_put;
}
ret = clk_prepare_enable(spi_imx->clk_per);
if (ret)
goto out_master_put;
pm_runtime_enable(spi_imx->dev);
pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
pm_runtime_use_autosuspend(spi_imx->dev);
ret = clk_prepare_enable(spi_imx->clk_ipg);
if (ret)
goto out_put_per;
ret = pm_runtime_get_sync(spi_imx->dev);
if (ret < 0) {
dev_err(spi_imx->dev, "failed to enable clock\n");
goto out_runtime_pm_put;
}
spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
/*
@ -1738,7 +1692,7 @@ static int spi_imx_probe(struct platform_device *pdev)
if (spi_imx->devtype_data->has_dmamode) {
ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
if (ret == -EPROBE_DEFER)
goto out_clk_put;
goto out_runtime_pm_put;
if (ret < 0)
dev_err(&pdev->dev, "dma setup error %d, use pio\n",
@ -1753,38 +1707,20 @@ static int spi_imx_probe(struct platform_device *pdev)
ret = spi_bitbang_start(&spi_imx->bitbang);
if (ret) {
dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
goto out_clk_put;
}
/* Request GPIO CS lines, if any */
if (!spi_imx->slave_mode && master->cs_gpios) {
for (i = 0; i < master->num_chipselect; i++) {
if (!gpio_is_valid(master->cs_gpios[i]))
continue;
ret = devm_gpio_request(&pdev->dev,
master->cs_gpios[i],
DRIVER_NAME);
if (ret) {
dev_err(&pdev->dev, "Can't get CS GPIO %i\n",
master->cs_gpios[i]);
goto out_spi_bitbang;
}
}
goto out_runtime_pm_put;
}
dev_info(&pdev->dev, "probed\n");
clk_disable(spi_imx->clk_ipg);
clk_disable(spi_imx->clk_per);
pm_runtime_mark_last_busy(spi_imx->dev);
pm_runtime_put_autosuspend(spi_imx->dev);
return ret;
out_spi_bitbang:
spi_bitbang_stop(&spi_imx->bitbang);
out_clk_put:
clk_disable_unprepare(spi_imx->clk_ipg);
out_put_per:
clk_disable_unprepare(spi_imx->clk_per);
out_runtime_pm_put:
pm_runtime_dont_use_autosuspend(spi_imx->dev);
pm_runtime_put_sync(spi_imx->dev);
pm_runtime_disable(spi_imx->dev);
out_master_put:
spi_master_put(master);
@ -1799,30 +1735,82 @@ static int spi_imx_remove(struct platform_device *pdev)
spi_bitbang_stop(&spi_imx->bitbang);
ret = clk_enable(spi_imx->clk_per);
if (ret)
return ret;
ret = clk_enable(spi_imx->clk_ipg);
if (ret) {
clk_disable(spi_imx->clk_per);
ret = pm_runtime_get_sync(spi_imx->dev);
if (ret < 0) {
dev_err(spi_imx->dev, "failed to enable clock\n");
return ret;
}
writel(0, spi_imx->base + MXC_CSPICTRL);
clk_disable_unprepare(spi_imx->clk_ipg);
clk_disable_unprepare(spi_imx->clk_per);
pm_runtime_dont_use_autosuspend(spi_imx->dev);
pm_runtime_put_sync(spi_imx->dev);
pm_runtime_disable(spi_imx->dev);
spi_imx_sdma_exit(spi_imx);
spi_master_put(master);
return 0;
}
static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct spi_imx_data *spi_imx;
int ret;
spi_imx = spi_master_get_devdata(master);
ret = clk_prepare_enable(spi_imx->clk_per);
if (ret)
return ret;
ret = clk_prepare_enable(spi_imx->clk_ipg);
if (ret) {
clk_disable_unprepare(spi_imx->clk_per);
return ret;
}
return 0;
}
static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct spi_imx_data *spi_imx;
spi_imx = spi_master_get_devdata(master);
clk_disable_unprepare(spi_imx->clk_per);
clk_disable_unprepare(spi_imx->clk_ipg);
return 0;
}
static int __maybe_unused spi_imx_suspend(struct device *dev)
{
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused spi_imx_resume(struct device *dev)
{
pinctrl_pm_select_default_state(dev);
return 0;
}
static const struct dev_pm_ops imx_spi_pm = {
SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
spi_imx_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
};
static struct platform_driver spi_imx_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = spi_imx_dt_ids,
},
.pm = &imx_spi_pm,
},
.id_table = spi_imx_devtype,
.probe = spi_imx_probe,
.remove = spi_imx_remove,

View File

@ -15,7 +15,6 @@
#include <linux/completion.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
@ -50,8 +49,6 @@
#define LTQ_SPI_RXCNT 0x84
#define LTQ_SPI_DMACON 0xec
#define LTQ_SPI_IRNEN 0xf4
#define LTQ_SPI_IRNICR 0xf8
#define LTQ_SPI_IRNCR 0xfc
#define LTQ_SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
#define LTQ_SPI_CLC_SMC_M (0xFF << LTQ_SPI_CLC_SMC_S)
@ -61,9 +58,7 @@
#define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
#define LTQ_SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
#define LTQ_SPI_ID_TXFS_M (0x3F << LTQ_SPI_ID_TXFS_S)
#define LTQ_SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
#define LTQ_SPI_ID_RXFS_M (0x3F << LTQ_SPI_ID_RXFS_S)
#define LTQ_SPI_ID_MOD_S 8 /* Module ID */
#define LTQ_SPI_ID_MOD_M (0xff << LTQ_SPI_ID_MOD_S)
#define LTQ_SPI_ID_CFG_S 5 /* DMA interface support */
@ -126,19 +121,15 @@
LTQ_SPI_WHBSTATE_CLRTUE)
#define LTQ_SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
#define LTQ_SPI_RXFCON_RXFITL_M (0x3F << LTQ_SPI_RXFCON_RXFITL_S)
#define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
#define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
#define LTQ_SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
#define LTQ_SPI_TXFCON_TXFITL_M (0x3F << LTQ_SPI_TXFCON_TXFITL_S)
#define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
#define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
#define LTQ_SPI_FSTAT_RXFFL_S 0
#define LTQ_SPI_FSTAT_RXFFL_M (0x3f << LTQ_SPI_FSTAT_RXFFL_S)
#define LTQ_SPI_FSTAT_TXFFL_S 8
#define LTQ_SPI_FSTAT_TXFFL_M (0x3f << LTQ_SPI_FSTAT_TXFFL_S)
#define LTQ_SPI_GPOCON_ISCSBN_S 8
#define LTQ_SPI_GPOCON_INVOUTN_S 0
@ -158,9 +149,16 @@
#define LTQ_SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
#define LTQ_SPI_IRNEN_ALL 0x1F
struct lantiq_ssc_spi;
struct lantiq_ssc_hwcfg {
unsigned int irnen_r;
unsigned int irnen_t;
int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
unsigned int irnen_r;
unsigned int irnen_t;
unsigned int irncr;
unsigned int irnicr;
bool irq_ack;
u32 fifo_size_mask;
};
struct lantiq_ssc_spi {
@ -184,6 +182,7 @@ struct lantiq_ssc_spi {
unsigned int tx_fifo_size;
unsigned int rx_fifo_size;
unsigned int base_cs;
unsigned int fdx_tx_level;
};
static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
@ -209,16 +208,18 @@ static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
{
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
return (fstat & LTQ_SPI_FSTAT_TXFFL_M) >> LTQ_SPI_FSTAT_TXFFL_S;
return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
}
static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
{
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
return fstat & LTQ_SPI_FSTAT_RXFFL_M;
return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
}
static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
@ -391,7 +392,7 @@ static int lantiq_ssc_setup(struct spi_device *spidev)
u32 gpocon;
/* GPIOs are used for CS */
if (gpio_is_valid(spidev->cs_gpio))
if (spidev->cs_gpiod)
return 0;
dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
@ -481,6 +482,7 @@ static void tx_fifo_write(struct lantiq_ssc_spi *spi)
u32 data;
unsigned int tx_free = tx_fifo_free(spi);
spi->fdx_tx_level = 0;
while (spi->tx_todo && tx_free) {
switch (spi->bits_per_word) {
case 2 ... 8:
@ -509,6 +511,7 @@ static void tx_fifo_write(struct lantiq_ssc_spi *spi)
lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
tx_free--;
spi->fdx_tx_level++;
}
}
@ -520,6 +523,13 @@ static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
u32 data;
unsigned int rx_fill = rx_fifo_level(spi);
/*
* Wait until all expected data to be shifted in.
* Otherwise, rx overrun may occur.
*/
while (rx_fill != spi->fdx_tx_level)
rx_fill = rx_fifo_level(spi);
while (rx_fill) {
data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
@ -613,6 +623,13 @@ static void rx_request(struct lantiq_ssc_spi *spi)
static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
unsigned long flags;
spin_lock_irqsave(&spi->lock, flags);
if (hwcfg->irq_ack)
lantiq_ssc_writel(spi, val, hwcfg->irncr);
if (spi->tx) {
if (spi->rx && spi->rx_todo)
@ -635,10 +652,12 @@ static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
}
}
spin_unlock_irqrestore(&spi->lock, flags);
return IRQ_HANDLED;
completed:
queue_work(spi->wq, &spi->work);
spin_unlock_irqrestore(&spi->lock, flags);
return IRQ_HANDLED;
}
@ -646,11 +665,18 @@ completed:
static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
unsigned long flags;
if (!(stat & LTQ_SPI_STAT_ERRORS))
return IRQ_NONE;
spin_lock_irqsave(&spi->lock, flags);
if (hwcfg->irq_ack)
lantiq_ssc_writel(spi, val, hwcfg->irncr);
if (stat & LTQ_SPI_STAT_RUE)
dev_err(spi->dev, "receive underflow error\n");
if (stat & LTQ_SPI_STAT_TUE)
@ -671,6 +697,25 @@ static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
if (spi->master->cur_msg)
spi->master->cur_msg->status = -EIO;
queue_work(spi->wq, &spi->work);
spin_unlock_irqrestore(&spi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
if (!(val & LTQ_SPI_IRNEN_ALL))
return IRQ_NONE;
if (val & LTQ_SPI_IRNEN_E)
return lantiq_ssc_err_interrupt(irq, data);
if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
return lantiq_ssc_xmit_interrupt(irq, data);
return IRQ_HANDLED;
}
@ -775,20 +820,84 @@ static int lantiq_ssc_transfer_one(struct spi_master *master,
return transfer_start(spi, spidev, t);
}
static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
{
int irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
}
static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
{
int irq, err;
irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
0, LTQ_SPI_RX_IRQ_NAME, spi);
if (err)
return err;
irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
0, LTQ_SPI_TX_IRQ_NAME, spi);
if (err)
return err;
irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
0, LTQ_SPI_ERR_IRQ_NAME, spi);
return err;
}
static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
.irnen_r = LTQ_SPI_IRNEN_R_XWAY,
.irnen_t = LTQ_SPI_IRNEN_T_XWAY,
.cfg_irq = lantiq_cfg_irq,
.irnen_r = LTQ_SPI_IRNEN_R_XWAY,
.irnen_t = LTQ_SPI_IRNEN_T_XWAY,
.irnicr = 0xF8,
.irncr = 0xFC,
.fifo_size_mask = GENMASK(5, 0),
.irq_ack = false,
};
static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
.irnen_r = LTQ_SPI_IRNEN_R_XRX,
.irnen_t = LTQ_SPI_IRNEN_T_XRX,
.cfg_irq = lantiq_cfg_irq,
.irnen_r = LTQ_SPI_IRNEN_R_XRX,
.irnen_t = LTQ_SPI_IRNEN_T_XRX,
.irnicr = 0xF8,
.irncr = 0xFC,
.fifo_size_mask = GENMASK(5, 0),
.irq_ack = false,
};
static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
.cfg_irq = intel_lgm_cfg_irq,
.irnen_r = LTQ_SPI_IRNEN_R_XRX,
.irnen_t = LTQ_SPI_IRNEN_T_XRX,
.irnicr = 0xFC,
.irncr = 0xF8,
.fifo_size_mask = GENMASK(7, 0),
.irq_ack = true,
};
static const struct of_device_id lantiq_ssc_match[] = {
{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
{ .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
{},
};
MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
@ -800,9 +909,9 @@ static int lantiq_ssc_probe(struct platform_device *pdev)
struct lantiq_ssc_spi *spi;
const struct lantiq_ssc_hwcfg *hwcfg;
const struct of_device_id *match;
int err, rx_irq, tx_irq, err_irq;
u32 id, supports_dma, revision;
unsigned int num_cs;
int err;
match = of_match_device(lantiq_ssc_match, dev);
if (!match) {
@ -811,18 +920,6 @@ static int lantiq_ssc_probe(struct platform_device *pdev)
}
hwcfg = match->data;
rx_irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
if (rx_irq < 0)
return -ENXIO;
tx_irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
if (tx_irq < 0)
return -ENXIO;
err_irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
if (err_irq < 0)
return -ENXIO;
master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
if (!master)
return -ENOMEM;
@ -838,18 +935,7 @@ static int lantiq_ssc_probe(struct platform_device *pdev)
goto err_master_put;
}
err = devm_request_irq(dev, rx_irq, lantiq_ssc_xmit_interrupt,
0, LTQ_SPI_RX_IRQ_NAME, spi);
if (err)
goto err_master_put;
err = devm_request_irq(dev, tx_irq, lantiq_ssc_xmit_interrupt,
0, LTQ_SPI_TX_IRQ_NAME, spi);
if (err)
goto err_master_put;
err = devm_request_irq(dev, err_irq, lantiq_ssc_err_interrupt,
0, LTQ_SPI_ERR_IRQ_NAME, spi);
err = hwcfg->cfg_irq(pdev, spi);
if (err)
goto err_master_put;
@ -888,6 +974,7 @@ static int lantiq_ssc_probe(struct platform_device *pdev)
master->dev.of_node = pdev->dev.of_node;
master->num_chipselect = num_cs;
master->use_gpio_descriptors = true;
master->setup = lantiq_ssc_setup;
master->set_cs = lantiq_ssc_set_cs;
master->handle_err = lantiq_ssc_handle_err;
@ -907,8 +994,8 @@ static int lantiq_ssc_probe(struct platform_device *pdev)
INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
spi->tx_fifo_size = (id & LTQ_SPI_ID_TXFS_M) >> LTQ_SPI_ID_TXFS_S;
spi->rx_fifo_size = (id & LTQ_SPI_ID_RXFS_M) >> LTQ_SPI_ID_RXFS_S;
spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
revision = id & LTQ_SPI_ID_REV_M;

View File

@ -885,10 +885,10 @@ static int spi_test_run_iter(struct spi_device *spi,
/**
* spi_test_execute_msg - default implementation to run a test
*
* spi: @spi_device on which to run the @spi_message
* test: the test to execute, which already contains @msg
* tx: the tx buffer allocated for the test sequence
* rx: the rx buffer allocated for the test sequence
* @spi: @spi_device on which to run the @spi_message
* @test: the test to execute, which already contains @msg
* @tx: the tx buffer allocated for the test sequence
* @rx: the rx buffer allocated for the test sequence
*
* Returns: error code of spi_sync as well as basic error checking
*/
@ -957,10 +957,10 @@ EXPORT_SYMBOL_GPL(spi_test_execute_msg);
* including all the relevant iterations on:
* length and buffer alignment
*
* spi: the spi_device to send the messages to
* test: the test which we need to execute
* tx: the tx buffer allocated for the test sequence
* rx: the rx buffer allocated for the test sequence
* @spi: the spi_device to send the messages to
* @test: the test which we need to execute
* @tx: the tx buffer allocated for the test sequence
* @rx: the rx buffer allocated for the test sequence
*
* Returns: status code of spi_sync or other failures
*/

View File

@ -156,6 +156,12 @@ bool spi_mem_default_supports_op(struct spi_mem *mem,
op->data.dir == SPI_MEM_DATA_OUT))
return false;
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
return false;
if (op->cmd.nbytes != 1)
return false;
return true;
}
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
@ -170,7 +176,7 @@ static bool spi_mem_buswidth_is_valid(u8 buswidth)
static int spi_mem_check_op(const struct spi_mem_op *op)
{
if (!op->cmd.buswidth)
if (!op->cmd.buswidth || !op->cmd.nbytes)
return -EINVAL;
if ((op->addr.nbytes && !op->addr.buswidth) ||
@ -306,8 +312,7 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
return ret;
}
tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
op->dummy.nbytes;
tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
/*
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
@ -322,7 +327,7 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
tmpbuf[0] = op->cmd.opcode;
xfers[xferpos].tx_buf = tmpbuf;
xfers[xferpos].len = sizeof(op->cmd.opcode);
xfers[xferpos].len = op->cmd.nbytes;
xfers[xferpos].tx_nbits = op->cmd.buswidth;
spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++;
@ -424,8 +429,7 @@ int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
return ctlr->mem_ops->adjust_op_size(mem, op);
if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
len = sizeof(op->cmd.opcode) + op->addr.nbytes +
op->dummy.nbytes;
len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
if (len > spi_max_transfer_size(mem->spi))
return -EINVAL;

View File

@ -362,8 +362,6 @@ static void meson_spicc_setup_xfer(struct meson_spicc_device *spicc,
static void meson_spicc_reset_fifo(struct meson_spicc_device *spicc)
{
u32 data;
if (spicc->data->has_oen)
writel_bits_relaxed(SPICC_ENH_MAIN_CLK_AO,
SPICC_ENH_MAIN_CLK_AO,
@ -373,7 +371,7 @@ static void meson_spicc_reset_fifo(struct meson_spicc_device *spicc)
spicc->base + SPICC_TESTREG);
while (meson_spicc_rxready(spicc))
data = readl_relaxed(spicc->base + SPICC_RXDATA);
readl_relaxed(spicc->base + SPICC_RXDATA);
if (spicc->data->has_oen)
writel_bits_relaxed(SPICC_ENH_MAIN_CLK_AO, 0,

View File

@ -70,7 +70,7 @@
* @master: the SPI master
* @regmap: regmap for device registers
* @clk: input clock of the built-in baud rate generator
* @device: the device structure
* @dev: the device structure
*/
struct meson_spifc {
struct spi_master *master;

View File

@ -171,6 +171,9 @@ static const struct of_device_id mtk_spi_of_match[] = {
{ .compatible = "mediatek,mt8183-spi",
.data = (void *)&mt8183_compat,
},
{ .compatible = "mediatek,mt8192-spi",
.data = (void *)&mt6765_compat,
},
{}
};
MODULE_DEVICE_TABLE(of, mtk_spi_of_match);

View File

@ -195,7 +195,7 @@ static int mtk_nor_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
}
}
len = MTK_NOR_PRG_MAX_SIZE - sizeof(op->cmd.opcode) - op->addr.nbytes -
len = MTK_NOR_PRG_MAX_SIZE - op->cmd.nbytes - op->addr.nbytes -
op->dummy.nbytes;
if (op->data.nbytes > len)
op->data.nbytes = len;
@ -211,6 +211,12 @@ static bool mtk_nor_supports_op(struct spi_mem *mem,
if (op->cmd.buswidth != 1)
return false;
/* DTR ops not supported. */
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
return false;
if (op->cmd.nbytes != 1)
return false;
if ((op->addr.nbytes == 3) || (op->addr.nbytes == 4)) {
if ((op->data.dir == SPI_MEM_DATA_IN) && mtk_nor_match_read(op))
return true;
@ -219,7 +225,7 @@ static bool mtk_nor_supports_op(struct spi_mem *mem,
(op->dummy.buswidth == 0) &&
(op->data.buswidth == 1);
}
len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
if ((len > MTK_NOR_PRG_MAX_SIZE) ||
((op->data.nbytes) && (len == MTK_NOR_PRG_MAX_SIZE)))
return false;

View File

@ -356,6 +356,7 @@ static int mxic_spi_mem_exec_op(struct spi_mem *mem,
int nio = 1, i, ret;
u32 ss_ctrl;
u8 addr[8];
u8 opcode = op->cmd.opcode;
ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
if (ret)
@ -393,7 +394,7 @@ static int mxic_spi_mem_exec_op(struct spi_mem *mem,
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
ret = mxic_spi_data_xfer(mxic, &op->cmd.opcode, NULL, 1);
ret = mxic_spi_data_xfer(mxic, &opcode, NULL, 1);
if (ret)
goto out;

View File

@ -1,6 +1,7 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2019 Nuvoton Technology corporation.
#include <linux/bits.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
@ -177,7 +178,6 @@ enum {
#define MAP_SIZE_16MB 0x1000000
#define MAP_SIZE_8MB 0x800000
#define NUM_BITS_IN_BYTE 8
#define FIU_DRD_MAX_DUMMY_NUMBER 3
#define NPCM_MAX_CHIP_NUM 4
#define CHUNK_SIZE 16
@ -252,8 +252,8 @@ static void npcm_fiu_set_drd(struct npcm_fiu_spi *fiu,
fiu->drd_op.addr.buswidth = op->addr.buswidth;
regmap_update_bits(fiu->regmap, NPCM_FIU_DRD_CFG,
NPCM_FIU_DRD_CFG_DBW,
((op->dummy.nbytes * ilog2(op->addr.buswidth))
/ NUM_BITS_IN_BYTE) << NPCM_FIU_DRD_DBW_SHIFT);
((op->dummy.nbytes * ilog2(op->addr.buswidth)) / BITS_PER_BYTE)
<< NPCM_FIU_DRD_DBW_SHIFT);
fiu->drd_op.dummy.nbytes = op->dummy.nbytes;
regmap_update_bits(fiu->regmap, NPCM_FIU_DRD_CFG,
NPCM_FIU_DRD_CFG_RDCMD, op->cmd.opcode);

View File

@ -10,8 +10,6 @@
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/reset.h>
#include <asm/unaligned.h>
@ -344,16 +342,9 @@ static int npcm_pspi_probe(struct platform_device *pdev)
struct npcm_pspi *priv;
struct spi_master *master;
unsigned long clk_hz;
struct device_node *np = pdev->dev.of_node;
int num_cs, i;
int csgpio;
int irq;
int ret;
num_cs = of_gpio_named_count(np, "cs-gpios");
if (num_cs < 0)
return num_cs;
master = spi_alloc_master(&pdev->dev, sizeof(*priv));
if (!master)
return -ENOMEM;
@ -418,24 +409,7 @@ static int npcm_pspi_probe(struct platform_device *pdev)
npcm_pspi_prepare_transfer_hardware;
master->unprepare_transfer_hardware =
npcm_pspi_unprepare_transfer_hardware;
master->num_chipselect = num_cs;
for (i = 0; i < num_cs; i++) {
csgpio = of_get_named_gpio(np, "cs-gpios", i);
if (csgpio < 0) {
dev_err(&pdev->dev, "failed to get csgpio#%u\n", i);
goto out_disable_clk;
}
dev_dbg(&pdev->dev, "csgpio#%u = %d\n", i, csgpio);
ret = devm_gpio_request_one(&pdev->dev, csgpio,
GPIOF_OUT_INIT_HIGH, DRIVER_NAME);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to configure csgpio#%u %d\n"
, i, csgpio);
goto out_disable_clk;
}
}
master->use_gpio_descriptors = true;
/* set to default clock rate */
npcm_pspi_set_baudrate(priv, NPCM_PSPI_DEFAULT_CLK);

View File

@ -2,7 +2,7 @@
/*
* OpenCores tiny SPI master driver
*
* http://opencores.org/project,tiny_spi
* https://opencores.org/project,tiny_spi
*
* Copyright (C) 2011 Thomas Chou <thomas@wytron.com.tw>
*

View File

@ -19,7 +19,6 @@
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>

View File

@ -443,7 +443,7 @@ static void uwire_cleanup(struct spi_device *spi)
static void uwire_off(struct uwire_spi *uwire)
{
uwire_write_reg(UWIRE_SR3, 0);
clk_disable(uwire->ck);
clk_disable_unprepare(uwire->ck);
spi_master_put(uwire->bitbang.master);
}
@ -475,7 +475,7 @@ static int uwire_probe(struct platform_device *pdev)
spi_master_put(master);
return status;
}
clk_enable(uwire->ck);
clk_prepare_enable(uwire->ck);
if (cpu_is_omap7xx())
uwire_idx_shift = 1;

View File

@ -27,7 +27,6 @@
#include <linux/iopoll.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/platform_data/spi-omap2-mcspi.h>
@ -1043,16 +1042,6 @@ static int omap2_mcspi_setup(struct spi_device *spi)
spi->controller_state = cs;
/* Link this to context save list */
list_add_tail(&cs->node, &ctx->cs);
if (gpio_is_valid(spi->cs_gpio)) {
ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
if (ret) {
dev_err(&spi->dev, "failed to request gpio\n");
return ret;
}
gpio_direction_output(spi->cs_gpio,
!(spi->mode & SPI_CS_HIGH));
}
}
ret = pm_runtime_get_sync(mcspi->dev);
@ -1080,9 +1069,6 @@ static void omap2_mcspi_cleanup(struct spi_device *spi)
kfree(cs);
}
if (gpio_is_valid(spi->cs_gpio))
gpio_free(spi->cs_gpio);
}
static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
@ -1152,7 +1138,7 @@ static int omap2_mcspi_transfer_one(struct spi_master *master,
omap2_mcspi_set_enable(spi, 0);
if (gpio_is_valid(spi->cs_gpio))
if (spi->cs_gpiod)
omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
if (par_override ||
@ -1241,7 +1227,7 @@ out:
omap2_mcspi_set_enable(spi, 0);
if (gpio_is_valid(spi->cs_gpio))
if (spi->cs_gpiod)
omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
if (mcspi->fifo_depth > 0 && t)
@ -1431,6 +1417,7 @@ static int omap2_mcspi_probe(struct platform_device *pdev)
master->dev.of_node = node;
master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
master->use_gpio_descriptors = true;
platform_set_drvdata(pdev, master);

View File

@ -708,7 +708,7 @@ static int orion_spi_probe(struct platform_device *pdev)
/*
* Only map one page for direct access. This is enough for the
* simple TX transfer which only writes to the first word.
* This needs to get extended for the direct SPI-NOR / SPI-NAND
* This needs to get extended for the direct SPI NOR / SPI NAND
* support, once this gets implemented.
*/
dir_acc = &spi->child[cs].direct_access;

View File

@ -298,7 +298,7 @@ enum ssp_reading {
READING_U32
};
/**
/*
* The type of writing going on on this chip
*/
enum ssp_writing {
@ -317,6 +317,7 @@ enum ssp_writing {
* @extended_cr: 32 bit wide control register 0 with extra
* features and extra features in CR1 as found in the ST variants
* @pl023: supports a subset of the ST extensions called "PL023"
* @loopback: supports loopback mode
* @internal_cs_ctrl: supports chip select control register
*/
struct vendor_data {
@ -353,11 +354,14 @@ struct vendor_data {
* @read: the type of read currently going on
* @write: the type of write currently going on
* @exp_fifo_level: expected FIFO level
* @rx_lev_trig: receive FIFO watermark level which triggers IRQ
* @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
* @dma_rx_channel: optional channel for RX DMA
* @dma_tx_channel: optional channel for TX DMA
* @sgt_rx: scattertable for the RX transfer
* @sgt_tx: scattertable for the TX transfer
* @dummypage: a dummy page used for driving data on the bus with DMA
* @dma_running: indicates whether DMA is in operation
* @cur_cs: current chip select (gpio)
* @chipselects: list of chipselects (gpios)
*/
@ -662,7 +666,7 @@ static void load_ssp_default_config(struct pl022 *pl022)
writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}
/**
/*
* This will write to TX and read from RX according to the parameters
* set in pl022.
*/
@ -1237,6 +1241,8 @@ static inline void pl022_dma_remove(struct pl022 *pl022)
/**
* pl022_interrupt_handler - Interrupt handler for SSP controller
* @irq: IRQ number
* @dev_id: Local device data
*
* This function handles interrupts generated for an interrupt based transfer.
* If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
@ -1334,7 +1340,7 @@ static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
return IRQ_HANDLED;
}
/**
/*
* This sets up the pointers to memory for the next message to
* send out on the SPI bus.
*/

View File

@ -28,11 +28,9 @@
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
@ -127,8 +125,6 @@ struct ppc4xx_spi {
const unsigned char *tx;
unsigned char *rx;
int *gpios;
struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
struct spi_master *master;
struct device *dev;
@ -260,27 +256,6 @@ static int spi_ppc4xx_setup(struct spi_device *spi)
return 0;
}
static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
{
struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
unsigned int cs = spi->chip_select;
unsigned int cspol;
/*
* If there are no chip selects at all, or if this is the special
* case of a non-existent (dummy) chip select, do nothing.
*/
if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
return;
cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
if (value == BITBANG_CS_INACTIVE)
cspol = !cspol;
gpio_set_value(hw->gpios[cs], cspol);
}
static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
{
struct ppc4xx_spi *hw;
@ -359,19 +334,6 @@ static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
}
static void free_gpios(struct ppc4xx_spi *hw)
{
if (hw->master->num_chipselect) {
int i;
for (i = 0; i < hw->master->num_chipselect; i++)
if (gpio_is_valid(hw->gpios[i]))
gpio_free(hw->gpios[i]);
kfree(hw->gpios);
hw->gpios = NULL;
}
}
/*
* platform_device layer stuff...
*/
@ -385,7 +347,6 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
struct device *dev = &op->dev;
struct device_node *opbnp;
int ret;
int num_gpios;
const unsigned int *clk;
master = spi_alloc_master(dev, sizeof *hw);
@ -399,74 +360,32 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
init_completion(&hw->done);
/*
* A count of zero implies a single SPI device without any chip-select.
* Note that of_gpio_count counts all gpios assigned to this spi master.
* This includes both "null" gpio's and real ones.
*/
num_gpios = of_gpio_count(np);
if (num_gpios > 0) {
int i;
hw->gpios = kcalloc(num_gpios, sizeof(*hw->gpios), GFP_KERNEL);
if (!hw->gpios) {
ret = -ENOMEM;
goto free_master;
}
for (i = 0; i < num_gpios; i++) {
int gpio;
enum of_gpio_flags flags;
gpio = of_get_gpio_flags(np, i, &flags);
hw->gpios[i] = gpio;
if (gpio_is_valid(gpio)) {
/* Real CS - set the initial state. */
ret = gpio_request(gpio, np->name);
if (ret < 0) {
dev_err(dev,
"can't request gpio #%d: %d\n",
i, ret);
goto free_gpios;
}
gpio_direction_output(gpio,
!!(flags & OF_GPIO_ACTIVE_LOW));
} else if (gpio == -EEXIST) {
; /* No CS, but that's OK. */
} else {
dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
ret = -EINVAL;
goto free_gpios;
}
}
}
/* Setup the state for the bitbang driver */
bbp = &hw->bitbang;
bbp->master = hw->master;
bbp->setup_transfer = spi_ppc4xx_setupxfer;
bbp->chipselect = spi_ppc4xx_chipsel;
bbp->txrx_bufs = spi_ppc4xx_txrx;
bbp->use_dma = 0;
bbp->master->setup = spi_ppc4xx_setup;
bbp->master->cleanup = spi_ppc4xx_cleanup;
bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
bbp->master->use_gpio_descriptors = true;
/*
* The SPI core will count the number of GPIO descriptors to figure
* out the number of chip selects available on the platform.
*/
bbp->master->num_chipselect = 0;
/* the spi->mode bits understood by this driver: */
bbp->master->mode_bits =
SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
/* this many pins in all GPIO controllers */
bbp->master->num_chipselect = num_gpios > 0 ? num_gpios : 0;
/* Get the clock for the OPB */
opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
if (opbnp == NULL) {
dev_err(dev, "OPB: cannot find node\n");
ret = -ENODEV;
goto free_gpios;
goto free_master;
}
/* Get the clock (Hz) for the OPB */
clk = of_get_property(opbnp, "clock-frequency", NULL);
@ -474,7 +393,7 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
dev_err(dev, "OPB: no clock-frequency property set\n");
of_node_put(opbnp);
ret = -ENODEV;
goto free_gpios;
goto free_master;
}
hw->opb_freq = *clk;
hw->opb_freq >>= 2;
@ -483,7 +402,7 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
ret = of_address_to_resource(np, 0, &resource);
if (ret) {
dev_err(dev, "error while parsing device node resource\n");
goto free_gpios;
goto free_master;
}
hw->mapbase = resource.start;
hw->mapsize = resource_size(&resource);
@ -492,7 +411,7 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
dev_err(dev, "too small to map registers\n");
ret = -EINVAL;
goto free_gpios;
goto free_master;
}
/* Request IRQ */
@ -501,7 +420,7 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
0, "spi_ppc4xx_of", (void *)hw);
if (ret) {
dev_err(dev, "unable to allocate interrupt\n");
goto free_gpios;
goto free_master;
}
if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
@ -538,8 +457,6 @@ map_io_error:
release_mem_region(hw->mapbase, hw->mapsize);
request_mem_error:
free_irq(hw->irqnum, hw);
free_gpios:
free_gpios(hw);
free_master:
spi_master_put(master);
@ -556,7 +473,6 @@ static int spi_ppc4xx_of_remove(struct platform_device *op)
release_mem_region(hw->mapbase, hw->mapsize);
free_irq(hw->irqnum, hw);
iounmap(hw->regs);
free_gpios(hw);
spi_master_put(master);
return 0;
}

View File

@ -1432,6 +1432,7 @@ static void cleanup(struct spi_device *spi)
kfree(chip);
}
#ifdef CONFIG_ACPI
static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
{ "INT33C0", LPSS_LPT_SSP },
{ "INT33C1", LPSS_LPT_SSP },
@ -1442,6 +1443,7 @@ static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
{ },
};
MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
#endif
/*
* PCI IDs of compound devices that integrate both host controller and private

View File

@ -39,8 +39,9 @@
#define ROCKCHIP_SPI_RISR 0x0034
#define ROCKCHIP_SPI_ICR 0x0038
#define ROCKCHIP_SPI_DMACR 0x003c
#define ROCKCHIP_SPI_DMATDLR 0x0040
#define ROCKCHIP_SPI_DMARDLR 0x0044
#define ROCKCHIP_SPI_DMATDLR 0x0040
#define ROCKCHIP_SPI_DMARDLR 0x0044
#define ROCKCHIP_SPI_VERSION 0x0048
#define ROCKCHIP_SPI_TXDR 0x0400
#define ROCKCHIP_SPI_RXDR 0x0800
@ -156,6 +157,8 @@
#define ROCKCHIP_SPI_MAX_TRANLEN 0xffff
#define ROCKCHIP_SPI_MAX_CS_NUM 2
#define ROCKCHIP_SPI_VER2_TYPE1 0x05EC0002
#define ROCKCHIP_SPI_VER2_TYPE2 0x00110002
struct rockchip_spi {
struct device *dev;
@ -206,17 +209,17 @@ static inline void wait_for_idle(struct rockchip_spi *rs)
static u32 get_fifo_len(struct rockchip_spi *rs)
{
u32 fifo;
u32 ver;
for (fifo = 2; fifo < 32; fifo++) {
writel_relaxed(fifo, rs->regs + ROCKCHIP_SPI_TXFTLR);
if (fifo != readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFTLR))
break;
ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
switch (ver) {
case ROCKCHIP_SPI_VER2_TYPE1:
case ROCKCHIP_SPI_VER2_TYPE2:
return 64;
default:
return 32;
}
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_TXFTLR);
return (fifo == 31) ? 0 : fifo;
}
static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
@ -288,7 +291,7 @@ static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
{
u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
u32 rx_left = rs->rx_left - words;
u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
/* the hardware doesn't allow us to change fifo threshold
* level while spi is enabled, so instead make sure to leave
@ -384,6 +387,19 @@ static void rockchip_spi_dma_txcb(void *data)
spi_finalize_current_transfer(ctlr);
}
static u32 rockchip_spi_calc_burst_size(u32 data_len)
{
u32 i;
/* burst size: 1, 2, 4, 8 */
for (i = 1; i < 8; i <<= 1) {
if (data_len & i)
break;
}
return i;
}
static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
struct spi_controller *ctlr, struct spi_transfer *xfer)
{
@ -397,7 +413,8 @@ static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
.direction = DMA_DEV_TO_MEM,
.src_addr = rs->dma_addr_rx,
.src_addr_width = rs->n_bytes,
.src_maxburst = 1,
.src_maxburst = rockchip_spi_calc_burst_size(xfer->len /
rs->n_bytes),
};
dmaengine_slave_config(ctlr->dma_rx, &rxconf);
@ -525,7 +542,8 @@ static void rockchip_spi_config(struct rockchip_spi *rs,
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
writel_relaxed(rs->fifo_len / 2, rs->regs + ROCKCHIP_SPI_DMATDLR);
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_DMARDLR);
writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
rs->regs + ROCKCHIP_SPI_DMARDLR);
writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
/* the hardware only supports an even clock divisor, so

216
drivers/spi/spi-rpc-if.c Normal file
View File

@ -0,0 +1,216 @@
// SPDX-License-Identifier: GPL-2.0
//
// RPC-IF SPI/QSPI/Octa driver
//
// Copyright (C) 2018 ~ 2019 Renesas Solutions Corp.
// Copyright (C) 2019 Macronix International Co., Ltd.
// Copyright (C) 2019 - 2020 Cogent Embedded, Inc.
//
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <memory/renesas-rpc-if.h>
#include <asm/unaligned.h>
static void rpcif_spi_mem_prepare(struct spi_device *spi_dev,
const struct spi_mem_op *spi_op,
u64 *offs, size_t *len)
{
struct rpcif *rpc = spi_controller_get_devdata(spi_dev->controller);
struct rpcif_op rpc_op = { };
rpc_op.cmd.opcode = spi_op->cmd.opcode;
rpc_op.cmd.buswidth = spi_op->cmd.buswidth;
if (spi_op->addr.nbytes) {
rpc_op.addr.buswidth = spi_op->addr.buswidth;
rpc_op.addr.nbytes = spi_op->addr.nbytes;
rpc_op.addr.val = spi_op->addr.val;
}
if (spi_op->dummy.nbytes) {
rpc_op.dummy.buswidth = spi_op->dummy.buswidth;
rpc_op.dummy.ncycles = spi_op->dummy.nbytes * 8 /
spi_op->dummy.buswidth;
}
if (spi_op->data.nbytes || (offs && len)) {
rpc_op.data.buswidth = spi_op->data.buswidth;
rpc_op.data.nbytes = spi_op->data.nbytes;
switch (spi_op->data.dir) {
case SPI_MEM_DATA_IN:
rpc_op.data.dir = RPCIF_DATA_IN;
rpc_op.data.buf.in = spi_op->data.buf.in;
break;
case SPI_MEM_DATA_OUT:
rpc_op.data.dir = RPCIF_DATA_OUT;
rpc_op.data.buf.out = spi_op->data.buf.out;
break;
case SPI_MEM_NO_DATA:
rpc_op.data.dir = RPCIF_NO_DATA;
break;
}
} else {
rpc_op.data.dir = RPCIF_NO_DATA;
}
rpcif_prepare(rpc, &rpc_op, offs, len);
}
static bool rpcif_spi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->data.buswidth > 4 || op->addr.buswidth > 4 ||
op->dummy.buswidth > 4 || op->cmd.buswidth > 4 ||
op->addr.nbytes > 4)
return false;
return true;
}
static ssize_t rpcif_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct rpcif *rpc =
spi_controller_get_devdata(desc->mem->spi->controller);
if (offs + desc->info.offset + len > U32_MAX)
return -EINVAL;
rpcif_spi_mem_prepare(desc->mem->spi, &desc->info.op_tmpl, &offs, &len);
return rpcif_dirmap_read(rpc, offs, len, buf);
}
static int rpcif_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
struct rpcif *rpc =
spi_controller_get_devdata(desc->mem->spi->controller);
if (desc->info.offset + desc->info.length > U32_MAX)
return -ENOTSUPP;
if (!rpcif_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
return -ENOTSUPP;
if (!rpc->dirmap && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN)
return -ENOTSUPP;
if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT)
return -ENOTSUPP;
return 0;
}
static int rpcif_spi_mem_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct rpcif *rpc =
spi_controller_get_devdata(mem->spi->controller);
rpcif_spi_mem_prepare(mem->spi, op, NULL, NULL);
return rpcif_manual_xfer(rpc);
}
static const struct spi_controller_mem_ops rpcif_spi_mem_ops = {
.supports_op = rpcif_spi_mem_supports_op,
.exec_op = rpcif_spi_mem_exec_op,
.dirmap_create = rpcif_spi_mem_dirmap_create,
.dirmap_read = rpcif_spi_mem_dirmap_read,
};
static int rpcif_spi_probe(struct platform_device *pdev)
{
struct device *parent = pdev->dev.parent;
struct spi_controller *ctlr;
struct rpcif *rpc;
int error;
ctlr = spi_alloc_master(&pdev->dev, sizeof(*rpc));
if (!ctlr)
return -ENOMEM;
rpc = spi_controller_get_devdata(ctlr);
rpcif_sw_init(rpc, parent);
platform_set_drvdata(pdev, ctlr);
ctlr->dev.of_node = parent->of_node;
rpcif_enable_rpm(rpc);
ctlr->num_chipselect = 1;
ctlr->mem_ops = &rpcif_spi_mem_ops;
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_TX_QUAD | SPI_RX_QUAD;
ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
rpcif_hw_init(rpc, false);
error = spi_register_controller(ctlr);
if (error) {
dev_err(&pdev->dev, "spi_register_controller failed\n");
goto err_put_ctlr;
}
return 0;
err_put_ctlr:
rpcif_disable_rpm(rpc);
spi_controller_put(ctlr);
return error;
}
static int rpcif_spi_remove(struct platform_device *pdev)
{
struct spi_controller *ctlr = platform_get_drvdata(pdev);
struct rpcif *rpc = spi_controller_get_devdata(ctlr);
spi_unregister_controller(ctlr);
rpcif_disable_rpm(rpc);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int rpcif_spi_suspend(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
return spi_controller_suspend(ctlr);
}
static int rpcif_spi_resume(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
return spi_controller_resume(ctlr);
}
static SIMPLE_DEV_PM_OPS(rpcif_spi_pm_ops, rpcif_spi_suspend, rpcif_spi_resume);
#define DEV_PM_OPS (&rpcif_spi_pm_ops)
#else
#define DEV_PM_OPS NULL
#endif
static struct platform_driver rpcif_spi_driver = {
.probe = rpcif_spi_probe,
.remove = rpcif_spi_remove,
.driver = {
.name = "rpc-if-spi",
.pm = DEV_PM_OPS,
},
};
module_platform_driver(rpcif_spi_driver);
MODULE_DESCRIPTION("Renesas RPC-IF SPI driver");
MODULE_LICENSE("GPL v2");

View File

@ -130,9 +130,11 @@ struct s3c64xx_spi_dma_data {
* @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
* @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
* @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
* @quirks: Bitmask of known quirks
* @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
* @clk_from_cmu: True, if the controller does not include a clock mux and
* prescaler unit.
* @clk_ioclk: True if clock is present on this device
*
* The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
* differ in some aspects such as the size of the fifo and spi bus clock
@ -154,6 +156,7 @@ struct s3c64xx_spi_port_config {
* @clk: Pointer to the spi clock.
* @src_clk: Pointer to the clock used to generate SPI signals.
* @ioclk: Pointer to the i/o clock between master and slave
* @pdev: Pointer to device's platform device data
* @master: Pointer to the SPI Protocol master.
* @cntrlr_info: Platform specific data for the controller this driver manages.
* @lock: Controller specific lock.
@ -166,7 +169,11 @@ struct s3c64xx_spi_port_config {
* @xfer_completion: To indicate completion of xfer task.
* @cur_mode: Stores the active configuration of the controller.
* @cur_bpw: Stores the active bits per word settings.
* @cur_speed: Stores the active xfer clock speed.
* @cur_speed: Current clock speed
* @rx_dma: Local receive DMA data (e.g. chan and direction)
* @tx_dma: Local transmit DMA data (e.g. chan and direction)
* @port_conf: Local SPI port configuartion data
* @port_id: Port identification number
*/
struct s3c64xx_spi_driver_data {
void __iomem *regs;

View File

@ -198,7 +198,7 @@ static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
{
return SUN4I_FIFO_DEPTH - 1;
return SUN4I_MAX_XFER_SIZE - 1;
}
static int sun4i_spi_transfer_one(struct spi_master *master,

View File

@ -7,6 +7,7 @@
* Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
@ -58,10 +59,8 @@
#define SUN6I_FIFO_CTL_TF_RST BIT(31)
#define SUN6I_FIFO_STA_REG 0x1c
#define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
#define SUN6I_FIFO_STA_RF_CNT_BITS 0
#define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
#define SUN6I_FIFO_STA_TF_CNT_BITS 16
#define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0)
#define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16)
#define SUN6I_CLK_CTL_REG 0x24
#define SUN6I_CLK_CTL_CDR2_MASK 0xff
@ -73,13 +72,10 @@
#define SUN6I_MAX_XFER_SIZE 0xffffff
#define SUN6I_BURST_CNT_REG 0x30
#define SUN6I_BURST_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
#define SUN6I_XMIT_CNT_REG 0x34
#define SUN6I_XMIT_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
#define SUN6I_BURST_CTL_CNT_REG 0x38
#define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
#define SUN6I_TXDATA_REG 0x200
#define SUN6I_RXDATA_REG 0x300
@ -109,21 +105,18 @@ static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
writel(value, sspi->base_addr + reg);
}
static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
{
u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
}
static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
{
u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
}
static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
{
u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
reg |= mask;
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
}
static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
@ -134,18 +127,13 @@ static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
}
static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
{
u32 reg, cnt;
u32 len;
u8 byte;
/* See how much data is available */
reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
if (len > cnt)
len = cnt;
len = sun6i_spi_get_rx_fifo_count(sspi);
while (len--) {
byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
@ -154,15 +142,16 @@ static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
}
}
static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
{
u32 cnt;
int len;
u8 byte;
/* See how much data we can fit */
cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
len = min3(len, (int)cnt, sspi->len);
len = min((int)cnt, sspi->len);
while (len--) {
byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
@ -201,7 +190,7 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
unsigned int start, end, tx_time;
unsigned int trig_level;
unsigned int tx_len = 0;
unsigned int tx_len = 0, rx_len = 0;
int ret = 0;
u32 reg;
@ -256,10 +245,12 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
* If it's a TX only transfer, we don't want to fill the RX
* FIFO with bogus data
*/
if (sspi->rx_buf)
if (sspi->rx_buf) {
reg &= ~SUN6I_TFR_CTL_DHB;
else
rx_len = tfr->len;
} else {
reg |= SUN6I_TFR_CTL_DHB;
}
/* We want to control the chip select manually */
reg |= SUN6I_TFR_CTL_CS_MANUAL;
@ -291,9 +282,11 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
} else {
div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
reg = SUN6I_CLK_CTL_CDR1(div);
tfr->effective_speed_hz = mclk_rate / (1 << div);
}
sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
@ -303,20 +296,22 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
tx_len = tfr->len;
/* Setup the counters */
sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
SUN6I_BURST_CTL_CNT_STC(tx_len));
sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
/* Fill the TX FIFO */
sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
sun6i_spi_fill_fifo(sspi);
/* Enable the interrupts */
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
SUN6I_INT_CTL_RF_RDY);
reg = SUN6I_INT_CTL_TC;
if (rx_len > sspi->fifo_depth)
reg |= SUN6I_INT_CTL_RF_RDY;
if (tx_len > sspi->fifo_depth)
sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
reg |= SUN6I_INT_CTL_TF_ERQ;
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
/* Start the transfer */
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
@ -333,10 +328,8 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
dev_name(&spi->dev), tfr->len, tfr->speed_hz,
jiffies_to_msecs(end - start), tx_time);
ret = -ETIMEDOUT;
goto out;
}
out:
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
return ret;
@ -350,14 +343,14 @@ static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
/* Transfer complete */
if (status & SUN6I_INT_CTL_TC) {
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
sun6i_spi_drain_fifo(sspi);
complete(&sspi->done);
return IRQ_HANDLED;
}
/* Receive FIFO 3/4 full */
if (status & SUN6I_INT_CTL_RF_RDY) {
sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
sun6i_spi_drain_fifo(sspi);
/* Only clear the interrupt _after_ draining the FIFO */
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
return IRQ_HANDLED;
@ -365,7 +358,7 @@ static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
/* Transmit FIFO 3/4 empty */
if (status & SUN6I_INT_CTL_TF_ERQ) {
sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
sun6i_spi_fill_fifo(sspi);
if (!sspi->len)
/* nothing left to transmit */

View File

@ -2,7 +2,7 @@
/*
* TI QSPI driver
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
* Copyright (C) 2013 Texas Instruments Incorporated - https://www.ti.com
* Author: Sourav Poddar <sourav.poddar@ti.com>
*/

View File

@ -122,6 +122,7 @@ struct pch_spi_dma_ctrl {
/**
* struct pch_spi_data - Holds the SPI channel specific details
* @io_remap_addr: The remapped PCI base address
* @io_base_addr: Base address
* @master: Pointer to the SPI master structure
* @work: Reference to work queue handler
* @wait: Wait queue for waking up upon receiving an
@ -138,8 +139,8 @@ struct pch_spi_dma_ctrl {
* transfer
* @rx_index: Receive data count; for bookkeeping during
* transfer
* @tx_buff: Buffer for data to be transmitted
* @rx_index: Buffer for Received data
* @pkt_tx_buff: Buffer for data to be transmitted
* @pkt_rx_buff: Buffer for received data
* @n_curnt_chip: The chip number that this SPI driver currently
* operates on
* @current_chip: Reference to the current chip that this SPI
@ -151,7 +152,10 @@ struct pch_spi_dma_ctrl {
* @board_dat: Reference to the SPI device data structure
* @plat_dev: platform_device structure
* @ch: SPI channel number
* @dma: Local DMA information
* @use_dma: True if DMA is to be used
* @irq_reg_sts: Status of IRQ registration
* @save_total_len: Save length while data is being transferred
*/
struct pch_spi_data {
void __iomem *io_remap_addr;
@ -1631,64 +1635,37 @@ static void pch_spi_remove(struct pci_dev *pdev)
kfree(pd_dev_save);
}
#ifdef CONFIG_PM
static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
static int __maybe_unused pch_spi_suspend(struct device *dev)
{
int retval;
struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
dev_dbg(dev, "%s ENTRY\n", __func__);
pd_dev_save->board_dat->suspend_sts = true;
/* save config space */
retval = pci_save_state(pdev);
if (retval == 0) {
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
} else {
dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
}
return retval;
return 0;
}
static int pch_spi_resume(struct pci_dev *pdev)
static int __maybe_unused pch_spi_resume(struct device *dev)
{
int retval;
struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
dev_dbg(dev, "%s ENTRY\n", __func__);
retval = pci_enable_device(pdev);
if (retval < 0) {
dev_err(&pdev->dev,
"%s pci_enable_device failed\n", __func__);
} else {
pci_enable_wake(pdev, PCI_D3hot, 0);
/* set suspend status to false */
pd_dev_save->board_dat->suspend_sts = false;
/* set suspend status to false */
pd_dev_save->board_dat->suspend_sts = false;
}
return retval;
return 0;
}
#else
#define pch_spi_suspend NULL
#define pch_spi_resume NULL
#endif
static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
static struct pci_driver pch_spi_pcidev_driver = {
.name = "pch_spi",
.id_table = pch_spi_pcidev_id,
.probe = pch_spi_probe,
.remove = pch_spi_remove,
.suspend = pch_spi_suspend,
.resume = pch_spi_resume,
.driver.pm = &pch_spi_pm_ops,
};
static int __init pch_spi_init(void)

View File

@ -119,6 +119,7 @@
/**
* struct zynq_qspi - Defines qspi driver instance
* @dev: Pointer to the this device's information
* @regs: Virtual address of the QSPI controller registers
* @refclk: Pointer to the peripheral clock
* @pclk: Pointer to the APB clock
@ -316,7 +317,7 @@ static void zynq_qspi_chipselect(struct spi_device *spi, bool assert)
/**
* zynq_qspi_config_op - Configure QSPI controller for specified transfer
* @xqspi: Pointer to the zynq_qspi structure
* @qspi: Pointer to the spi_device structure
* @spi: Pointer to the spi_device structure
*
* Sets the operational mode of QSPI controller for the next QSPI transfer and
* sets the requested clock frequency.
@ -527,20 +528,21 @@ static int zynq_qspi_exec_mem_op(struct spi_mem *mem,
struct zynq_qspi *xqspi = spi_controller_get_devdata(mem->spi->master);
int err = 0, i;
u8 *tmpbuf;
u8 opcode = op->cmd.opcode;
dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth);
zynq_qspi_chipselect(mem->spi, true);
zynq_qspi_config_op(xqspi, mem->spi);
if (op->cmd.opcode) {
if (op->cmd.nbytes) {
reinit_completion(&xqspi->data_completion);
xqspi->txbuf = (u8 *)&op->cmd.opcode;
xqspi->txbuf = &opcode;
xqspi->rxbuf = NULL;
xqspi->tx_bytes = sizeof(op->cmd.opcode);
xqspi->rx_bytes = sizeof(op->cmd.opcode);
xqspi->tx_bytes = op->cmd.nbytes;
xqspi->rx_bytes = op->cmd.nbytes;
zynq_qspi_write_op(xqspi, ZYNQ_QSPI_FIFO_DEPTH, true);
zynq_qspi_write(xqspi, ZYNQ_QSPI_IEN_OFFSET,
ZYNQ_QSPI_IXR_RXTX_MASK);

View File

@ -197,8 +197,8 @@ static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
/**
* zynqmp_gqspi_selectslave: For selection of slave device
* @instanceptr: Pointer to the zynqmp_qspi structure
* @flashcs: For chip select
* @flashbus: To check which bus is selected- upper or lower
* @slavecs: For chip select
* @slavebus: To check which bus is selected- upper or lower
*/
static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
u8 slavecs, u8 slavebus)
@ -892,7 +892,7 @@ static int zynqmp_qspi_start_transfer(struct spi_master *master,
/**
* zynqmp_qspi_suspend: Suspend method for the QSPI driver
* @_dev: Address of the platform_device structure
* @dev: Address of the platform_device structure
*
* This function stops the QSPI driver queue and disables the QSPI controller
*

View File

@ -778,6 +778,17 @@ static void spi_set_cs(struct spi_device *spi, bool enable)
{
bool enable1 = enable;
/*
* Avoid calling into the driver (or doing delays) if the chip select
* isn't actually changing from the last time this was called.
*/
if ((spi->controller->last_cs_enable == enable) &&
(spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
return;
spi->controller->last_cs_enable = enable;
spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
if (!spi->controller->set_cs_timing) {
if (enable1)
spi_delay_exec(&spi->controller->cs_setup, NULL);
@ -982,6 +993,8 @@ static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
}
ctlr->cur_msg_mapped = false;
return 0;
}
#else /* !CONFIG_HAS_DMA */
@ -1234,8 +1247,17 @@ static int spi_transfer_one_message(struct spi_controller *ctlr,
if (xfer->tx_buf || xfer->rx_buf) {
reinit_completion(&ctlr->xfer_completion);
fallback_pio:
ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
if (ret < 0) {
if (ctlr->cur_msg_mapped &&
(xfer->error & SPI_TRANS_FAIL_NO_START)) {
__spi_unmap_msg(ctlr, msg);
ctlr->fallback = true;
xfer->error &= ~SPI_TRANS_FAIL_NO_START;
goto fallback_pio;
}
SPI_STATISTICS_INCREMENT_FIELD(statm,
errors);
SPI_STATISTICS_INCREMENT_FIELD(stats,
@ -1314,6 +1336,14 @@ void spi_finalize_current_transfer(struct spi_controller *ctlr)
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
static void spi_idle_runtime_pm(struct spi_controller *ctlr)
{
if (ctlr->auto_runtime_pm) {
pm_runtime_mark_last_busy(ctlr->dev.parent);
pm_runtime_put_autosuspend(ctlr->dev.parent);
}
}
/**
* __spi_pump_messages - function which processes spi message queue
* @ctlr: controller to process queue for
@ -1346,7 +1376,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
/* If another context is idling the device then defer */
if (ctlr->idling) {
kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
spin_unlock_irqrestore(&ctlr->queue_lock, flags);
return;
}
@ -1358,10 +1388,17 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
return;
}
/* Only do teardown in the thread */
/* Defer any non-atomic teardown to the thread */
if (!in_kthread) {
kthread_queue_work(&ctlr->kworker,
&ctlr->pump_messages);
if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
!ctlr->unprepare_transfer_hardware) {
spi_idle_runtime_pm(ctlr);
ctlr->busy = false;
trace_spi_controller_idle(ctlr);
} else {
kthread_queue_work(ctlr->kworker,
&ctlr->pump_messages);
}
spin_unlock_irqrestore(&ctlr->queue_lock, flags);
return;
}
@ -1378,10 +1415,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
ctlr->unprepare_transfer_hardware(ctlr))
dev_err(&ctlr->dev,
"failed to unprepare transfer hardware\n");
if (ctlr->auto_runtime_pm) {
pm_runtime_mark_last_busy(ctlr->dev.parent);
pm_runtime_put_autosuspend(ctlr->dev.parent);
}
spi_idle_runtime_pm(ctlr);
trace_spi_controller_idle(ctlr);
spin_lock_irqsave(&ctlr->queue_lock, flags);
@ -1596,7 +1630,7 @@ static void spi_set_thread_rt(struct spi_controller *ctlr)
dev_info(&ctlr->dev,
"will run message pump with realtime priority\n");
sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
sched_setscheduler(ctlr->kworker->task, SCHED_FIFO, &param);
}
static int spi_init_queue(struct spi_controller *ctlr)
@ -1604,13 +1638,12 @@ static int spi_init_queue(struct spi_controller *ctlr)
ctlr->running = false;
ctlr->busy = false;
kthread_init_worker(&ctlr->kworker);
ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
"%s", dev_name(&ctlr->dev));
if (IS_ERR(ctlr->kworker_task)) {
dev_err(&ctlr->dev, "failed to create message pump task\n");
return PTR_ERR(ctlr->kworker_task);
ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
if (IS_ERR(ctlr->kworker)) {
dev_err(&ctlr->dev, "failed to create message pump kworker\n");
return PTR_ERR(ctlr->kworker);
}
kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
/*
@ -1693,7 +1726,8 @@ void spi_finalize_current_message(struct spi_controller *ctlr)
spin_lock_irqsave(&ctlr->queue_lock, flags);
ctlr->cur_msg = NULL;
ctlr->cur_msg_prepared = false;
kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ctlr->fallback = false;
kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
spin_unlock_irqrestore(&ctlr->queue_lock, flags);
trace_spi_message_done(mesg);
@ -1719,7 +1753,7 @@ static int spi_start_queue(struct spi_controller *ctlr)
ctlr->cur_msg = NULL;
spin_unlock_irqrestore(&ctlr->queue_lock, flags);
kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
return 0;
}
@ -1775,8 +1809,7 @@ static int spi_destroy_queue(struct spi_controller *ctlr)
return ret;
}
kthread_flush_worker(&ctlr->kworker);
kthread_stop(ctlr->kworker_task);
kthread_destroy_worker(ctlr->kworker);
return 0;
}
@ -1799,7 +1832,7 @@ static int __spi_queued_transfer(struct spi_device *spi,
list_add_tail(&msg->queue, &ctlr->queue);
if (!ctlr->busy && need_pump)
kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
spin_unlock_irqrestore(&ctlr->queue_lock, flags);
return 0;

View File

@ -224,6 +224,11 @@ static int spidev_message(struct spidev_data *spidev,
for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
n;
n--, k_tmp++, u_tmp++) {
/* Ensure that also following allocations from rx_buf/tx_buf will meet
* DMA alignment requirements.
*/
unsigned int len_aligned = ALIGN(u_tmp->len, ARCH_KMALLOC_MINALIGN);
k_tmp->len = u_tmp->len;
total += k_tmp->len;
@ -239,17 +244,17 @@ static int spidev_message(struct spidev_data *spidev,
if (u_tmp->rx_buf) {
/* this transfer needs space in RX bounce buffer */
rx_total += k_tmp->len;
rx_total += len_aligned;
if (rx_total > bufsiz) {
status = -EMSGSIZE;
goto done;
}
k_tmp->rx_buf = rx_buf;
rx_buf += k_tmp->len;
rx_buf += len_aligned;
}
if (u_tmp->tx_buf) {
/* this transfer needs space in TX bounce buffer */
tx_total += k_tmp->len;
tx_total += len_aligned;
if (tx_total > bufsiz) {
status = -EMSGSIZE;
goto done;
@ -259,7 +264,7 @@ static int spidev_message(struct spidev_data *spidev,
(uintptr_t) u_tmp->tx_buf,
u_tmp->len))
goto done;
tx_buf += k_tmp->len;
tx_buf += len_aligned;
}
k_tmp->cs_change = !!u_tmp->cs_change;
@ -293,16 +298,16 @@ static int spidev_message(struct spidev_data *spidev,
goto done;
/* copy any rx data out of bounce buffer */
rx_buf = spidev->rx_buffer;
for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
n;
n--, k_tmp++, u_tmp++) {
if (u_tmp->rx_buf) {
if (copy_to_user((u8 __user *)
(uintptr_t) u_tmp->rx_buf, rx_buf,
(uintptr_t) u_tmp->rx_buf, k_tmp->rx_buf,
u_tmp->len)) {
status = -EFAULT;
goto done;
}
rx_buf += u_tmp->len;
}
}
status = total;

View File

@ -1,33 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __MACH_SPI_H_
#define __MACH_SPI_H_
/*
* struct spi_imx_master - device.platform_data for SPI controller devices.
* @chipselect: Array of chipselects for this master or NULL. Numbers >= 0
* mean GPIO pins, -ENOENT means internal CSPI chipselect
* matching the position in the array. E.g., if chipselect[1] =
* -ENOENT then a SPI slave using chip select 1 will use the
* native SS1 line of the CSPI. Omitting the array will use
* all native chip selects.
* Normally you want to use gpio based chip selects as the CSPI
* module tries to be intelligent about when to assert the
* chipselect: The CSPI module deasserts the chipselect once it
* runs out of input data. The other problem is that it is not
* possible to mix between high active and low active chipselects
* on one single bus using the internal chipselects.
* Unfortunately, on some SoCs, Freescale decided to put some
* chipselects on dedicated pins which are not usable as gpios,
* so we have to support the internal chipselects.
*
* @num_chipselect: If @chipselect is specified, ARRAY_SIZE(chipselect),
* otherwise the number of native chip selects.
*/
struct spi_imx_master {
int *chipselect;
int num_chipselect;
};
#endif /* __MACH_SPI_H_*/

View File

@ -0,0 +1,29 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Header File for Altera SPI Driver.
*/
#ifndef __LINUX_SPI_ALTERA_H
#define __LINUX_SPI_ALTERA_H
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
/**
* struct altera_spi_platform_data - Platform data of the Altera SPI driver
* @mode_bits: Mode bits of SPI master.
* @num_chipselect: Number of chipselects.
* @bits_per_word_mask: bitmask of supported bits_per_word for transfers.
* @num_devices: Number of devices that shall be added when the driver
* is probed.
* @devices: The devices to add.
*/
struct altera_spi_platform_data {
u16 mode_bits;
u16 num_chipselect;
u32 bits_per_word_mask;
u16 num_devices;
struct spi_board_info *devices;
};
#endif /* __LINUX_SPI_ALTERA_H */

View File

@ -17,6 +17,7 @@
{ \
.buswidth = __buswidth, \
.opcode = __opcode, \
.nbytes = 1, \
}
#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \
@ -69,11 +70,15 @@ enum spi_mem_data_dir {
/**
* struct spi_mem_op - describes a SPI memory operation
* @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
* sent MSB-first.
* @cmd.buswidth: number of IO lines used to transmit the command
* @cmd.opcode: operation opcode
* @cmd.dtr: whether the command opcode should be sent in DTR mode or not
* @addr.nbytes: number of address bytes to send. Can be zero if the operation
* does not need to send an address
* @addr.buswidth: number of IO lines used to transmit the address cycles
* @addr.dtr: whether the address should be sent in DTR mode or not
* @addr.val: address value. This value is always sent MSB first on the bus.
* Note that only @addr.nbytes are taken into account in this
* address value, so users should make sure the value fits in the
@ -81,7 +86,9 @@ enum spi_mem_data_dir {
* @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
* be zero if the operation does not require dummy bytes
* @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
* @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
* @data.buswidth: number of IO lanes used to send/receive the data
* @data.dtr: whether the data should be sent in DTR mode or not
* @data.dir: direction of the transfer
* @data.nbytes: number of data bytes to send/receive. Can be zero if the
* operation does not involve transferring data
@ -90,23 +97,28 @@ enum spi_mem_data_dir {
*/
struct spi_mem_op {
struct {
u8 nbytes;
u8 buswidth;
u8 opcode;
u8 dtr : 1;
u16 opcode;
} cmd;
struct {
u8 nbytes;
u8 buswidth;
u8 dtr : 1;
u64 val;
} addr;
struct {
u8 nbytes;
u8 buswidth;
u8 dtr : 1;
} dummy;
struct {
u8 buswidth;
u8 dtr : 1;
enum spi_mem_data_dir dir;
unsigned int nbytes;
union {

View File

@ -329,6 +329,7 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* every chipselect is connected to a slave.
* @dma_alignment: SPI controller constraint on DMA buffers alignment.
* @mode_bits: flags understood by this controller driver
* @buswidth_override_bits: flags to override for this controller driver
* @bits_per_word_mask: A mask indicating which values of bits_per_word are
* supported by the driver. Bit n indicates that a bits_per_word n+1 is
* supported. If set, the SPI core will reject any transfer with an
@ -358,8 +359,7 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* @cleanup: frees controller-specific state
* @can_dma: determine whether this controller supports DMA
* @queued: whether this controller is providing an internal message queue
* @kworker: thread struct for message pump
* @kworker_task: pointer to task for message pump kworker thread
* @kworker: pointer to thread struct for message pump
* @pump_messages: work struct for scheduling work to the message pump
* @queue_lock: spinlock to syncronise access to message queue
* @queue: message queue
@ -368,6 +368,8 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* @cur_msg_prepared: spi_prepare_message was called for the currently
* in-flight message
* @cur_msg_mapped: message has been mapped for DMA
* @last_cs_enable: was enable true on the last call to set_cs.
* @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
* @xfer_completion: used by core transfer_one_message()
* @busy: message pump is busy
* @running: message pump is running
@ -447,6 +449,8 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* If the driver does not set this, the SPI core takes the snapshot as
* close to the driver hand-over as possible.
* @irq_flags: Interrupt enable state during PTP system timestamping
* @fallback: fallback to pio if dma transfer return failure with
* SPI_TRANS_FAIL_NO_START.
*
* Each SPI controller can communicate with one or more @spi_device
* children. These make a small bus, sharing MOSI, MISO and SCK signals
@ -589,8 +593,7 @@ struct spi_controller {
* Over time we expect SPI drivers to be phased over to this API.
*/
bool queued;
struct kthread_worker kworker;
struct task_struct *kworker_task;
struct kthread_worker *kworker;
struct kthread_work pump_messages;
spinlock_t queue_lock;
struct list_head queue;
@ -602,6 +605,9 @@ struct spi_controller {
bool auto_runtime_pm;
bool cur_msg_prepared;
bool cur_msg_mapped;
bool last_cs_enable;
bool last_cs_mode_high;
bool fallback;
struct completion xfer_completion;
size_t max_dma_len;
@ -841,12 +847,8 @@ extern void spi_res_release(struct spi_controller *ctlr,
* processed the word, i.e. the "pre" timestamp should be taken before
* transmitting the "pre" word, and the "post" timestamp after receiving
* transmit confirmation from the controller for the "post" word.
* @timestamped_pre: Set by the SPI controller driver to denote it has acted
* upon the @ptp_sts request. Not set when the SPI core has taken care of
* the task. SPI device drivers are free to print a warning if this comes
* back unset and they need the better resolution.
* @timestamped_post: See above. The reason why both exist is that these
* booleans are also used to keep state in the core SPI logic.
* @timestamped: true if the transfer has been timestamped
* @error: Error status logged by spi controller driver.
*
* SPI transfers always write the same number of bytes as they read.
* Protocol drivers should always provide @rx_buf and/or @tx_buf.
@ -940,6 +942,9 @@ struct spi_transfer {
bool timestamped;
struct list_head transfer_list;
#define SPI_TRANS_FAIL_NO_START BIT(0)
u16 error;
};
/**
@ -962,7 +967,7 @@ struct spi_transfer {
* each represented by a struct spi_transfer. The sequence is "atomic"
* in the sense that no other spi_message may use that SPI bus until that
* sequence completes. On some systems, many such sequences can execute as
* as single programmed DMA transfer. On all systems, these messages are
* a single programmed DMA transfer. On all systems, these messages are
* queued, and might complete after transactions to other devices. Messages
* sent to a given spi_device are always executed in FIFO order.
*
@ -1225,7 +1230,7 @@ extern int spi_bus_unlock(struct spi_controller *ctlr);
*
* For more specific semantics see spi_sync().
*
* Return: Return: zero on success, else a negative error code.
* Return: zero on success, else a negative error code.
*/
static inline int
spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,

View File

@ -0,0 +1,87 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Renesas RPC-IF core driver
*
* Copyright (C) 2018~2019 Renesas Solutions Corp.
* Copyright (C) 2019 Macronix International Co., Ltd.
* Copyright (C) 2019-2020 Cogent Embedded, Inc.
*/
#ifndef __RENESAS_RPC_IF_H
#define __RENESAS_RPC_IF_H
#include <linux/types.h>
enum rpcif_data_dir {
RPCIF_NO_DATA,
RPCIF_DATA_IN,
RPCIF_DATA_OUT,
};
struct rpcif_op {
struct {
u8 buswidth;
u8 opcode;
bool ddr;
} cmd, ocmd;
struct {
u8 nbytes;
u8 buswidth;
bool ddr;
u64 val;
} addr;
struct {
u8 ncycles;
u8 buswidth;
} dummy;
struct {
u8 nbytes;
u8 buswidth;
bool ddr;
u32 val;
} option;
struct {
u8 buswidth;
unsigned int nbytes;
enum rpcif_data_dir dir;
bool ddr;
union {
void *in;
const void *out;
} buf;
} data;
};
struct rpcif {
struct device *dev;
void __iomem *dirmap;
struct regmap *regmap;
struct reset_control *rstc;
size_t size;
enum rpcif_data_dir dir;
u8 bus_size;
void *buffer;
u32 xferlen;
u32 smcr;
u32 smadr;
u32 command; /* DRCMR or SMCMR */
u32 option; /* DROPR or SMOPR */
u32 enable; /* DRENR or SMENR */
u32 dummy; /* DRDMCR or SMDMCR */
u32 ddr; /* DRDRENR or SMDRENR */
};
int rpcif_sw_init(struct rpcif *rpc, struct device *dev);
void rpcif_hw_init(struct rpcif *rpc, bool hyperflash);
void rpcif_enable_rpm(struct rpcif *rpc);
void rpcif_disable_rpm(struct rpcif *rpc);
void rpcif_prepare(struct rpcif *rpc, const struct rpcif_op *op, u64 *offs,
size_t *len);
int rpcif_manual_xfer(struct rpcif *rpc);
ssize_t rpcif_dirmap_read(struct rpcif *rpc, u64 offs, size_t len, void *buf);
#endif // __RENESAS_RPC_IF_H