linux/drivers/misc/eeprom/at24.c

746 lines
22 KiB
C
Raw Normal View History

/*
* at24.c - handle most I2C EEPROMs
*
* Copyright (C) 2005-2007 David Brownell
* Copyright (C) 2008 Wolfram Sang, Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <linux/property.h>
#include <linux/acpi.h>
#include <linux/i2c.h>
#include <linux/nvmem-provider.h>
#include <linux/regmap.h>
#include <linux/platform_data/at24.h>
#include <linux/pm_runtime.h>
#include <linux/gpio/consumer.h>
/*
* I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
* Differences between different vendor product lines (like Atmel AT24C or
* MicroChip 24LC, etc) won't much matter for typical read/write access.
* There are also I2C RAM chips, likewise interchangeable. One example
* would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
*
* However, misconfiguration can lose data. "Set 16-bit memory address"
* to a part with 8-bit addressing will overwrite data. Writing with too
* big a page size also loses data. And it's not safe to assume that the
* conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
* uses 0x51, for just one example.
*
* Accordingly, explicit board-specific configuration data should be used
* in almost all cases. (One partial exception is an SMBus used to access
* "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
*
* So this driver uses "new style" I2C driver binding, expecting to be
* told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
* similar kernel-resident tables; or, configuration data coming from
* a bootloader.
*
* Other than binding model, current differences from "eeprom" driver are
* that this one handles write access and isn't restricted to 24c02 devices.
* It also handles larger devices (32 kbit and up) with two-byte addresses,
* which won't work on pure SMBus systems.
*/
struct at24_client {
struct i2c_client *client;
struct regmap *regmap;
};
struct at24_data {
struct at24_platform_data chip;
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
*/
struct mutex lock;
unsigned int write_max;
unsigned int num_addresses;
unsigned int offset_adj;
struct nvmem_device *nvmem;
struct gpio_desc *wp_gpio;
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us, and we'll use them with SMBus calls.
*/
struct at24_client client[];
};
/*
* This parameter is to help this driver avoid blocking other drivers out
* of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
* clock, one 256 byte read takes about 1/43 second which is excessive;
* but the 1/170 second it takes at 400 kHz may be quite reasonable; and
* at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
*
* This value is forced to be a power of two so that writes align on pages.
*/
static unsigned int at24_io_limit = 128;
module_param_named(io_limit, at24_io_limit, uint, 0);
MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)");
/*
* Specs often allow 5 msec for a page write, sometimes 20 msec;
* it's important to recover from write timeouts.
*/
static unsigned int at24_write_timeout = 25;
module_param_named(write_timeout, at24_write_timeout, uint, 0);
MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)");
/*
* Both reads and writes fail if the previous write didn't complete yet. This
* macro loops a few times waiting at least long enough for one entire page
* write to work while making sure that at least one iteration is run before
* checking the break condition.
*
* It takes two parameters: a variable in which the future timeout in jiffies
* will be stored and a temporary variable holding the time of the last
* iteration of processing the request. Both should be unsigned integers
* holding at least 32 bits.
*/
#define at24_loop_until_timeout(tout, op_time) \
for (tout = jiffies + msecs_to_jiffies(at24_write_timeout), \
op_time = 0; \
op_time ? time_before(op_time, tout) : true; \
usleep_range(1000, 1500), op_time = jiffies)
struct at24_chip_data {
/*
* these fields mirror their equivalents in
* struct at24_platform_data
*/
u32 byte_len;
u8 flags;
};
#define AT24_CHIP_DATA(_name, _len, _flags) \
static const struct at24_chip_data _name = { \
.byte_len = _len, .flags = _flags, \
}
/* needs 8 addresses as A0-A2 are ignored */
AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR);
/* old variants can't be handled with this generic entry! */
AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs01, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs02, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24mac402, 48 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24mac602, 64 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY);
/* spd is a 24c02 in memory DIMMs */
AT24_CHIP_DATA(at24_data_spd, 2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO);
AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs04, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
/* 24rf08 quirk is handled at i2c-core */
AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs08, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs16, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24cs32, 16,
AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24cs64, 16,
AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16);
/* identical to 24c08 ? */
AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0);
static const struct i2c_device_id at24_ids[] = {
{ "24c00", (kernel_ulong_t)&at24_data_24c00 },
{ "24c01", (kernel_ulong_t)&at24_data_24c01 },
{ "24cs01", (kernel_ulong_t)&at24_data_24cs01 },
{ "24c02", (kernel_ulong_t)&at24_data_24c02 },
{ "24cs02", (kernel_ulong_t)&at24_data_24cs02 },
{ "24mac402", (kernel_ulong_t)&at24_data_24mac402 },
{ "24mac602", (kernel_ulong_t)&at24_data_24mac602 },
{ "spd", (kernel_ulong_t)&at24_data_spd },
{ "24c04", (kernel_ulong_t)&at24_data_24c04 },
{ "24cs04", (kernel_ulong_t)&at24_data_24cs04 },
{ "24c08", (kernel_ulong_t)&at24_data_24c08 },
{ "24cs08", (kernel_ulong_t)&at24_data_24cs08 },
{ "24c16", (kernel_ulong_t)&at24_data_24c16 },
{ "24cs16", (kernel_ulong_t)&at24_data_24cs16 },
{ "24c32", (kernel_ulong_t)&at24_data_24c32 },
{ "24cs32", (kernel_ulong_t)&at24_data_24cs32 },
{ "24c64", (kernel_ulong_t)&at24_data_24c64 },
{ "24cs64", (kernel_ulong_t)&at24_data_24cs64 },
{ "24c128", (kernel_ulong_t)&at24_data_24c128 },
{ "24c256", (kernel_ulong_t)&at24_data_24c256 },
{ "24c512", (kernel_ulong_t)&at24_data_24c512 },
{ "24c1024", (kernel_ulong_t)&at24_data_24c1024 },
{ "at24", 0 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);
static const struct of_device_id at24_of_match[] = {
{ .compatible = "atmel,24c00", .data = &at24_data_24c00 },
{ .compatible = "atmel,24c01", .data = &at24_data_24c01 },
{ .compatible = "atmel,24cs01", .data = &at24_data_24cs01 },
{ .compatible = "atmel,24c02", .data = &at24_data_24c02 },
{ .compatible = "atmel,24cs02", .data = &at24_data_24cs02 },
{ .compatible = "atmel,24mac402", .data = &at24_data_24mac402 },
{ .compatible = "atmel,24mac602", .data = &at24_data_24mac602 },
{ .compatible = "atmel,spd", .data = &at24_data_spd },
{ .compatible = "atmel,24c04", .data = &at24_data_24c04 },
{ .compatible = "atmel,24cs04", .data = &at24_data_24cs04 },
{ .compatible = "atmel,24c08", .data = &at24_data_24c08 },
{ .compatible = "atmel,24cs08", .data = &at24_data_24cs08 },
{ .compatible = "atmel,24c16", .data = &at24_data_24c16 },
{ .compatible = "atmel,24cs16", .data = &at24_data_24cs16 },
{ .compatible = "atmel,24c32", .data = &at24_data_24c32 },
{ .compatible = "atmel,24cs32", .data = &at24_data_24cs32 },
{ .compatible = "atmel,24c64", .data = &at24_data_24c64 },
{ .compatible = "atmel,24cs64", .data = &at24_data_24cs64 },
{ .compatible = "atmel,24c128", .data = &at24_data_24c128 },
{ .compatible = "atmel,24c256", .data = &at24_data_24c256 },
{ .compatible = "atmel,24c512", .data = &at24_data_24c512 },
{ .compatible = "atmel,24c1024", .data = &at24_data_24c1024 },
{ /* END OF LIST */ },
};
MODULE_DEVICE_TABLE(of, at24_of_match);
static const struct acpi_device_id at24_acpi_ids[] = {
{ "INT3499", (kernel_ulong_t)&at24_data_INT3499 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
/*
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*/
static struct at24_client *at24_translate_offset(struct at24_data *at24,
unsigned int *offset)
{
unsigned int i;
if (at24->chip.flags & AT24_FLAG_ADDR16) {
i = *offset >> 16;
*offset &= 0xffff;
} else {
i = *offset >> 8;
*offset &= 0xff;
}
return &at24->client[i];
}
static struct device *at24_base_client_dev(struct at24_data *at24)
{
return &at24->client[0].client->dev;
}
static size_t at24_adjust_read_count(struct at24_data *at24,
unsigned int offset, size_t count)
{
unsigned int bits;
size_t remainder;
/*
* In case of multi-address chips that don't rollover reads to
* the next slave address: truncate the count to the slave boundary,
* so that the read never straddles slaves.
*/
if (at24->chip.flags & AT24_FLAG_NO_RDROL) {
bits = (at24->chip.flags & AT24_FLAG_ADDR16) ? 16 : 8;
remainder = BIT(bits) - offset;
if (count > remainder)
count = remainder;
}
if (count > at24_io_limit)
count = at24_io_limit;
return count;
}
static ssize_t at24_regmap_read(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct at24_client *at24_client;
struct i2c_client *client;
struct regmap *regmap;
int ret;
at24_client = at24_translate_offset(at24, &offset);
regmap = at24_client->regmap;
client = at24_client->client;
count = at24_adjust_read_count(at24, offset, count);
/* adjust offset for mac and serial read ops */
offset += at24->offset_adj;
at24_loop_until_timeout(timeout, read_time) {
ret = regmap_bulk_read(regmap, offset, buf, count);
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, ret, jiffies);
if (!ret)
return count;
}
return -ETIMEDOUT;
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. These routines
* write at most one page.
*/
static size_t at24_adjust_write_count(struct at24_data *at24,
unsigned int offset, size_t count)
{
unsigned int next_page;
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
return count;
}
static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct at24_client *at24_client;
struct i2c_client *client;
struct regmap *regmap;
int ret;
at24_client = at24_translate_offset(at24, &offset);
regmap = at24_client->regmap;
client = at24_client->client;
count = at24_adjust_write_count(at24, offset, count);
at24_loop_until_timeout(timeout, write_time) {
ret = regmap_bulk_write(regmap, offset, buf, count);
dev_dbg(&client->dev, "write %zu@%d --> %d (%ld)\n",
count, offset, ret, jiffies);
if (!ret)
return count;
}
return -ETIMEDOUT;
}
static int at24_read(void *priv, unsigned int off, void *val, size_t count)
{
struct at24_data *at24;
struct device *dev;
char *buf = val;
int ret;
at24 = priv;
dev = at24_base_client_dev(at24);
if (unlikely(!count))
return count;
if (off + count > at24->chip.byte_len)
return -EINVAL;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ret = at24_regmap_read(at24, buf, off, count);
if (ret < 0) {
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
return ret;
}
buf += ret;
off += ret;
count -= ret;
}
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
return 0;
}
static int at24_write(void *priv, unsigned int off, void *val, size_t count)
{
struct at24_data *at24;
struct device *dev;
char *buf = val;
int ret;
at24 = priv;
dev = at24_base_client_dev(at24);
if (unlikely(!count))
return -EINVAL;
if (off + count > at24->chip.byte_len)
return -EINVAL;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
/*
* Write data to chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
gpiod_set_value_cansleep(at24->wp_gpio, 0);
while (count) {
ret = at24_regmap_write(at24, buf, off, count);
if (ret < 0) {
gpiod_set_value_cansleep(at24->wp_gpio, 1);
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
return ret;
}
buf += ret;
off += ret;
count -= ret;
}
gpiod_set_value_cansleep(at24->wp_gpio, 1);
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
return 0;
}
static void at24_properties_to_pdata(struct device *dev,
struct at24_platform_data *chip)
{
int err;
u32 val;
if (device_property_present(dev, "read-only"))
chip->flags |= AT24_FLAG_READONLY;
if (device_property_present(dev, "no-read-rollover"))
chip->flags |= AT24_FLAG_NO_RDROL;
err = device_property_read_u32(dev, "size", &val);
if (!err)
chip->byte_len = val;
err = device_property_read_u32(dev, "pagesize", &val);
if (!err) {
chip->page_size = val;
} else {
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via platform_data
* is recommended anyhow.
*/
chip->page_size = 1;
}
}
static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len)
{
if (flags & AT24_FLAG_MAC) {
/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
return 0xa0 - byte_len;
} else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) {
/*
* For 16 bit address pointers, the word address must contain
* a '10' sequence in bits 11 and 10 regardless of the
* intended position of the address pointer.
*/
return 0x0800;
} else if (flags & AT24_FLAG_SERIAL) {
/*
* Otherwise the word address must begin with a '10' sequence,
* regardless of the intended address.
*/
return 0x0080;
} else {
return 0;
}
}
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct regmap_config regmap_config = { };
struct nvmem_config nvmem_config = { };
const struct at24_chip_data *cd = NULL;
struct at24_platform_data pdata = { };
struct device *dev = &client->dev;
unsigned int i, num_addresses;
struct at24_data *at24;
size_t at24_size;
bool writable;
u8 test_byte;
int err;
if (dev->platform_data) {
pdata = *(struct at24_platform_data *)dev->platform_data;
} else {
/*
* The I2C core allows OF nodes compatibles to match against the
* I2C device ID table as a fallback, so check not only if an OF
* node is present but also if it matches an OF device ID entry.
*/
if (dev->of_node && of_match_device(at24_of_match, dev)) {
cd = of_device_get_match_data(dev);
} else if (id) {
cd = (void *)id->driver_data;
} else {
const struct acpi_device_id *aid;
aid = acpi_match_device(at24_acpi_ids, dev);
if (aid)
cd = (void *)aid->driver_data;
}
if (!cd)
return -ENODEV;
pdata.byte_len = cd->byte_len;
pdata.flags = cd->flags;
at24_properties_to_pdata(dev, &pdata);
}
if (!pdata.page_size) {
dev_err(dev, "page_size must not be 0!\n");
return -EINVAL;
}
if (!is_power_of_2(pdata.page_size))
dev_warn(dev, "page_size looks suspicious (no power of 2)!\n");
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C) &&
!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK))
pdata.page_size = 1;
if (pdata.flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(pdata.byte_len,
(pdata.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
regmap_config.val_bits = 8;
regmap_config.reg_bits = (pdata.flags & AT24_FLAG_ADDR16) ? 16 : 8;
regmap_config.disable_locking = true;
at24_size = sizeof(*at24) + num_addresses * sizeof(struct at24_client);
at24 = devm_kzalloc(dev, at24_size, GFP_KERNEL);
if (!at24)
return -ENOMEM;
mutex_init(&at24->lock);
at24->chip = pdata;
at24->num_addresses = num_addresses;
at24->offset_adj = at24_get_offset_adj(pdata.flags, pdata.byte_len);
at24->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_HIGH);
if (IS_ERR(at24->wp_gpio))
return PTR_ERR(at24->wp_gpio);
at24->client[0].client = client;
at24->client[0].regmap = devm_regmap_init_i2c(client, &regmap_config);
if (IS_ERR(at24->client[0].regmap))
return PTR_ERR(at24->client[0].regmap);
if ((pdata.flags & AT24_FLAG_SERIAL) && (pdata.flags & AT24_FLAG_MAC)) {
dev_err(dev,
"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
return -EINVAL;
}
writable = !(pdata.flags & AT24_FLAG_READONLY);
if (writable) {
at24->write_max = min_t(unsigned int,
pdata.page_size, at24_io_limit);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C) &&
at24->write_max > I2C_SMBUS_BLOCK_MAX)
at24->write_max = I2C_SMBUS_BLOCK_MAX;
}
/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
at24->client[i].client = i2c_new_dummy(client->adapter,
client->addr + i);
if (!at24->client[i].client) {
dev_err(dev, "address 0x%02x unavailable\n",
client->addr + i);
err = -EADDRINUSE;
goto err_clients;
}
at24->client[i].regmap = devm_regmap_init_i2c(
at24->client[i].client,
&regmap_config);
if (IS_ERR(at24->client[i].regmap)) {
err = PTR_ERR(at24->client[i].regmap);
goto err_clients;
}
}
i2c_set_clientdata(client, at24);
/* enable runtime pm */
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
/*
* Perform a one-byte test read to verify that the
* chip is functional.
*/
err = at24_read(at24, 0, &test_byte, 1);
pm_runtime_idle(dev);
if (err) {
err = -ENODEV;
goto err_clients;
}
nvmem_config.name = dev_name(dev);
nvmem_config.dev = dev;
nvmem_config.read_only = !writable;
nvmem_config.root_only = true;
nvmem_config.owner = THIS_MODULE;
nvmem_config.compat = true;
nvmem_config.base_dev = dev;
nvmem_config.reg_read = at24_read;
nvmem_config.reg_write = at24_write;
nvmem_config.priv = at24;
nvmem_config.stride = 1;
nvmem_config.word_size = 1;
nvmem_config.size = pdata.byte_len;
at24->nvmem = nvmem_register(&nvmem_config);
if (IS_ERR(at24->nvmem)) {
err = PTR_ERR(at24->nvmem);
goto err_clients;
}
dev_info(dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
pdata.byte_len, client->name,
writable ? "writable" : "read-only", at24->write_max);
/* export data to kernel code */
if (pdata.setup)
pdata.setup(at24->nvmem, pdata.context);
return 0;
err_clients:
for (i = 1; i < num_addresses; i++)
if (at24->client[i].client)
i2c_unregister_device(at24->client[i].client);
pm_runtime_disable(dev);
return err;
}
static int at24_remove(struct i2c_client *client)
{
struct at24_data *at24;
int i;
at24 = i2c_get_clientdata(client);
nvmem_unregister(at24->nvmem);
for (i = 1; i < at24->num_addresses; i++)
i2c_unregister_device(at24->client[i].client);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
return 0;
}
static struct i2c_driver at24_driver = {
.driver = {
.name = "at24",
.of_match_table = at24_of_match,
.acpi_match_table = ACPI_PTR(at24_acpi_ids),
},
.probe = at24_probe,
.remove = at24_remove,
.id_table = at24_ids,
};
static int __init at24_init(void)
{
if (!at24_io_limit) {
pr_err("at24: at24_io_limit must not be 0!\n");
return -EINVAL;
}
at24_io_limit = rounddown_pow_of_two(at24_io_limit);
return i2c_add_driver(&at24_driver);
}
module_init(at24_init);
static void __exit at24_exit(void)
{
i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);
MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");