/* * at24.c - handle most I2C EEPROMs * * Copyright (C) 2005-2007 David Brownell * Copyright (C) 2008 Wolfram Sang, Pengutronix * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable. * Differences between different vendor product lines (like Atmel AT24C or * MicroChip 24LC, etc) won't much matter for typical read/write access. * There are also I2C RAM chips, likewise interchangeable. One example * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes). * * However, misconfiguration can lose data. "Set 16-bit memory address" * to a part with 8-bit addressing will overwrite data. Writing with too * big a page size also loses data. And it's not safe to assume that the * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC * uses 0x51, for just one example. * * Accordingly, explicit board-specific configuration data should be used * in almost all cases. (One partial exception is an SMBus used to access * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.) * * So this driver uses "new style" I2C driver binding, expecting to be * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or * similar kernel-resident tables; or, configuration data coming from * a bootloader. * * Other than binding model, current differences from "eeprom" driver are * that this one handles write access and isn't restricted to 24c02 devices. * It also handles larger devices (32 kbit and up) with two-byte addresses, * which won't work on pure SMBus systems. */ struct at24_client { struct i2c_client *client; struct regmap *regmap; }; struct at24_data { struct at24_platform_data chip; /* * Lock protects against activities from other Linux tasks, * but not from changes by other I2C masters. */ struct mutex lock; unsigned int write_max; unsigned int num_addresses; unsigned int offset_adj; struct nvmem_device *nvmem; struct gpio_desc *wp_gpio; /* * Some chips tie up multiple I2C addresses; dummy devices reserve * them for us, and we'll use them with SMBus calls. */ struct at24_client client[]; }; /* * This parameter is to help this driver avoid blocking other drivers out * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C * clock, one 256 byte read takes about 1/43 second which is excessive; * but the 1/170 second it takes at 400 kHz may be quite reasonable; and * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible. * * This value is forced to be a power of two so that writes align on pages. */ static unsigned int at24_io_limit = 128; module_param_named(io_limit, at24_io_limit, uint, 0); MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)"); /* * Specs often allow 5 msec for a page write, sometimes 20 msec; * it's important to recover from write timeouts. */ static unsigned int at24_write_timeout = 25; module_param_named(write_timeout, at24_write_timeout, uint, 0); MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)"); /* * Both reads and writes fail if the previous write didn't complete yet. This * macro loops a few times waiting at least long enough for one entire page * write to work while making sure that at least one iteration is run before * checking the break condition. * * It takes two parameters: a variable in which the future timeout in jiffies * will be stored and a temporary variable holding the time of the last * iteration of processing the request. Both should be unsigned integers * holding at least 32 bits. */ #define at24_loop_until_timeout(tout, op_time) \ for (tout = jiffies + msecs_to_jiffies(at24_write_timeout), \ op_time = 0; \ op_time ? time_before(op_time, tout) : true; \ usleep_range(1000, 1500), op_time = jiffies) struct at24_chip_data { /* * these fields mirror their equivalents in * struct at24_platform_data */ u32 byte_len; u8 flags; }; #define AT24_CHIP_DATA(_name, _len, _flags) \ static const struct at24_chip_data _name = { \ .byte_len = _len, .flags = _flags, \ } /* needs 8 addresses as A0-A2 are ignored */ AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR); /* old variants can't be handled with this generic entry! */ AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0); AT24_CHIP_DATA(at24_data_24cs01, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0); AT24_CHIP_DATA(at24_data_24cs02, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24mac402, 48 / 8, AT24_FLAG_MAC | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24mac602, 64 / 8, AT24_FLAG_MAC | AT24_FLAG_READONLY); /* spd is a 24c02 in memory DIMMs */ AT24_CHIP_DATA(at24_data_spd, 2048 / 8, AT24_FLAG_READONLY | AT24_FLAG_IRUGO); AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0); AT24_CHIP_DATA(at24_data_24cs04, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); /* 24rf08 quirk is handled at i2c-core */ AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0); AT24_CHIP_DATA(at24_data_24cs08, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0); AT24_CHIP_DATA(at24_data_24cs16, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24cs32, 16, AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24cs64, 16, AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16); /* identical to 24c08 ? */ AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0); static const struct i2c_device_id at24_ids[] = { { "24c00", (kernel_ulong_t)&at24_data_24c00 }, { "24c01", (kernel_ulong_t)&at24_data_24c01 }, { "24cs01", (kernel_ulong_t)&at24_data_24cs01 }, { "24c02", (kernel_ulong_t)&at24_data_24c02 }, { "24cs02", (kernel_ulong_t)&at24_data_24cs02 }, { "24mac402", (kernel_ulong_t)&at24_data_24mac402 }, { "24mac602", (kernel_ulong_t)&at24_data_24mac602 }, { "spd", (kernel_ulong_t)&at24_data_spd }, { "24c04", (kernel_ulong_t)&at24_data_24c04 }, { "24cs04", (kernel_ulong_t)&at24_data_24cs04 }, { "24c08", (kernel_ulong_t)&at24_data_24c08 }, { "24cs08", (kernel_ulong_t)&at24_data_24cs08 }, { "24c16", (kernel_ulong_t)&at24_data_24c16 }, { "24cs16", (kernel_ulong_t)&at24_data_24cs16 }, { "24c32", (kernel_ulong_t)&at24_data_24c32 }, { "24cs32", (kernel_ulong_t)&at24_data_24cs32 }, { "24c64", (kernel_ulong_t)&at24_data_24c64 }, { "24cs64", (kernel_ulong_t)&at24_data_24cs64 }, { "24c128", (kernel_ulong_t)&at24_data_24c128 }, { "24c256", (kernel_ulong_t)&at24_data_24c256 }, { "24c512", (kernel_ulong_t)&at24_data_24c512 }, { "24c1024", (kernel_ulong_t)&at24_data_24c1024 }, { "at24", 0 }, { /* END OF LIST */ } }; MODULE_DEVICE_TABLE(i2c, at24_ids); static const struct of_device_id at24_of_match[] = { { .compatible = "atmel,24c00", .data = &at24_data_24c00 }, { .compatible = "atmel,24c01", .data = &at24_data_24c01 }, { .compatible = "atmel,24cs01", .data = &at24_data_24cs01 }, { .compatible = "atmel,24c02", .data = &at24_data_24c02 }, { .compatible = "atmel,24cs02", .data = &at24_data_24cs02 }, { .compatible = "atmel,24mac402", .data = &at24_data_24mac402 }, { .compatible = "atmel,24mac602", .data = &at24_data_24mac602 }, { .compatible = "atmel,spd", .data = &at24_data_spd }, { .compatible = "atmel,24c04", .data = &at24_data_24c04 }, { .compatible = "atmel,24cs04", .data = &at24_data_24cs04 }, { .compatible = "atmel,24c08", .data = &at24_data_24c08 }, { .compatible = "atmel,24cs08", .data = &at24_data_24cs08 }, { .compatible = "atmel,24c16", .data = &at24_data_24c16 }, { .compatible = "atmel,24cs16", .data = &at24_data_24cs16 }, { .compatible = "atmel,24c32", .data = &at24_data_24c32 }, { .compatible = "atmel,24cs32", .data = &at24_data_24cs32 }, { .compatible = "atmel,24c64", .data = &at24_data_24c64 }, { .compatible = "atmel,24cs64", .data = &at24_data_24cs64 }, { .compatible = "atmel,24c128", .data = &at24_data_24c128 }, { .compatible = "atmel,24c256", .data = &at24_data_24c256 }, { .compatible = "atmel,24c512", .data = &at24_data_24c512 }, { .compatible = "atmel,24c1024", .data = &at24_data_24c1024 }, { /* END OF LIST */ }, }; MODULE_DEVICE_TABLE(of, at24_of_match); static const struct acpi_device_id at24_acpi_ids[] = { { "INT3499", (kernel_ulong_t)&at24_data_INT3499 }, { /* END OF LIST */ } }; MODULE_DEVICE_TABLE(acpi, at24_acpi_ids); /* * This routine supports chips which consume multiple I2C addresses. It * computes the addressing information to be used for a given r/w request. * Assumes that sanity checks for offset happened at sysfs-layer. * * Slave address and byte offset derive from the offset. Always * set the byte address; on a multi-master board, another master * may have changed the chip's "current" address pointer. */ static struct at24_client *at24_translate_offset(struct at24_data *at24, unsigned int *offset) { unsigned int i; if (at24->chip.flags & AT24_FLAG_ADDR16) { i = *offset >> 16; *offset &= 0xffff; } else { i = *offset >> 8; *offset &= 0xff; } return &at24->client[i]; } static struct device *at24_base_client_dev(struct at24_data *at24) { return &at24->client[0].client->dev; } static size_t at24_adjust_read_count(struct at24_data *at24, unsigned int offset, size_t count) { unsigned int bits; size_t remainder; /* * In case of multi-address chips that don't rollover reads to * the next slave address: truncate the count to the slave boundary, * so that the read never straddles slaves. */ if (at24->chip.flags & AT24_FLAG_NO_RDROL) { bits = (at24->chip.flags & AT24_FLAG_ADDR16) ? 16 : 8; remainder = BIT(bits) - offset; if (count > remainder) count = remainder; } if (count > at24_io_limit) count = at24_io_limit; return count; } static ssize_t at24_regmap_read(struct at24_data *at24, char *buf, unsigned int offset, size_t count) { unsigned long timeout, read_time; struct at24_client *at24_client; struct i2c_client *client; struct regmap *regmap; int ret; at24_client = at24_translate_offset(at24, &offset); regmap = at24_client->regmap; client = at24_client->client; count = at24_adjust_read_count(at24, offset, count); /* adjust offset for mac and serial read ops */ offset += at24->offset_adj; at24_loop_until_timeout(timeout, read_time) { ret = regmap_bulk_read(regmap, offset, buf, count); dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n", count, offset, ret, jiffies); if (!ret) return count; } return -ETIMEDOUT; } /* * Note that if the hardware write-protect pin is pulled high, the whole * chip is normally write protected. But there are plenty of product * variants here, including OTP fuses and partial chip protect. * * We only use page mode writes; the alternative is sloooow. These routines * write at most one page. */ static size_t at24_adjust_write_count(struct at24_data *at24, unsigned int offset, size_t count) { unsigned int next_page; /* write_max is at most a page */ if (count > at24->write_max) count = at24->write_max; /* Never roll over backwards, to the start of this page */ next_page = roundup(offset + 1, at24->chip.page_size); if (offset + count > next_page) count = next_page - offset; return count; } static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf, unsigned int offset, size_t count) { unsigned long timeout, write_time; struct at24_client *at24_client; struct i2c_client *client; struct regmap *regmap; int ret; at24_client = at24_translate_offset(at24, &offset); regmap = at24_client->regmap; client = at24_client->client; count = at24_adjust_write_count(at24, offset, count); at24_loop_until_timeout(timeout, write_time) { ret = regmap_bulk_write(regmap, offset, buf, count); dev_dbg(&client->dev, "write %zu@%d --> %d (%ld)\n", count, offset, ret, jiffies); if (!ret) return count; } return -ETIMEDOUT; } static int at24_read(void *priv, unsigned int off, void *val, size_t count) { struct at24_data *at24; struct device *dev; char *buf = val; int ret; at24 = priv; dev = at24_base_client_dev(at24); if (unlikely(!count)) return count; if (off + count > at24->chip.byte_len) return -EINVAL; ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } /* * Read data from chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ mutex_lock(&at24->lock); while (count) { ret = at24_regmap_read(at24, buf, off, count); if (ret < 0) { mutex_unlock(&at24->lock); pm_runtime_put(dev); return ret; } buf += ret; off += ret; count -= ret; } mutex_unlock(&at24->lock); pm_runtime_put(dev); return 0; } static int at24_write(void *priv, unsigned int off, void *val, size_t count) { struct at24_data *at24; struct device *dev; char *buf = val; int ret; at24 = priv; dev = at24_base_client_dev(at24); if (unlikely(!count)) return -EINVAL; if (off + count > at24->chip.byte_len) return -EINVAL; ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } /* * Write data to chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ mutex_lock(&at24->lock); gpiod_set_value_cansleep(at24->wp_gpio, 0); while (count) { ret = at24_regmap_write(at24, buf, off, count); if (ret < 0) { gpiod_set_value_cansleep(at24->wp_gpio, 1); mutex_unlock(&at24->lock); pm_runtime_put(dev); return ret; } buf += ret; off += ret; count -= ret; } gpiod_set_value_cansleep(at24->wp_gpio, 1); mutex_unlock(&at24->lock); pm_runtime_put(dev); return 0; } static void at24_properties_to_pdata(struct device *dev, struct at24_platform_data *chip) { int err; u32 val; if (device_property_present(dev, "read-only")) chip->flags |= AT24_FLAG_READONLY; if (device_property_present(dev, "no-read-rollover")) chip->flags |= AT24_FLAG_NO_RDROL; err = device_property_read_u32(dev, "size", &val); if (!err) chip->byte_len = val; err = device_property_read_u32(dev, "pagesize", &val); if (!err) { chip->page_size = val; } else { /* * This is slow, but we can't know all eeproms, so we better * play safe. Specifying custom eeprom-types via platform_data * is recommended anyhow. */ chip->page_size = 1; } } static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len) { if (flags & AT24_FLAG_MAC) { /* EUI-48 starts from 0x9a, EUI-64 from 0x98 */ return 0xa0 - byte_len; } else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) { /* * For 16 bit address pointers, the word address must contain * a '10' sequence in bits 11 and 10 regardless of the * intended position of the address pointer. */ return 0x0800; } else if (flags & AT24_FLAG_SERIAL) { /* * Otherwise the word address must begin with a '10' sequence, * regardless of the intended address. */ return 0x0080; } else { return 0; } } static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct regmap_config regmap_config = { }; struct nvmem_config nvmem_config = { }; const struct at24_chip_data *cd = NULL; struct at24_platform_data pdata = { }; struct device *dev = &client->dev; unsigned int i, num_addresses; struct at24_data *at24; size_t at24_size; bool writable; u8 test_byte; int err; if (dev->platform_data) { pdata = *(struct at24_platform_data *)dev->platform_data; } else { /* * The I2C core allows OF nodes compatibles to match against the * I2C device ID table as a fallback, so check not only if an OF * node is present but also if it matches an OF device ID entry. */ if (dev->of_node && of_match_device(at24_of_match, dev)) { cd = of_device_get_match_data(dev); } else if (id) { cd = (void *)id->driver_data; } else { const struct acpi_device_id *aid; aid = acpi_match_device(at24_acpi_ids, dev); if (aid) cd = (void *)aid->driver_data; } if (!cd) return -ENODEV; pdata.byte_len = cd->byte_len; pdata.flags = cd->flags; at24_properties_to_pdata(dev, &pdata); } if (!pdata.page_size) { dev_err(dev, "page_size must not be 0!\n"); return -EINVAL; } if (!is_power_of_2(pdata.page_size)) dev_warn(dev, "page_size looks suspicious (no power of 2)!\n"); if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C) && !i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) pdata.page_size = 1; if (pdata.flags & AT24_FLAG_TAKE8ADDR) num_addresses = 8; else num_addresses = DIV_ROUND_UP(pdata.byte_len, (pdata.flags & AT24_FLAG_ADDR16) ? 65536 : 256); regmap_config.val_bits = 8; regmap_config.reg_bits = (pdata.flags & AT24_FLAG_ADDR16) ? 16 : 8; regmap_config.disable_locking = true; at24_size = sizeof(*at24) + num_addresses * sizeof(struct at24_client); at24 = devm_kzalloc(dev, at24_size, GFP_KERNEL); if (!at24) return -ENOMEM; mutex_init(&at24->lock); at24->chip = pdata; at24->num_addresses = num_addresses; at24->offset_adj = at24_get_offset_adj(pdata.flags, pdata.byte_len); at24->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_HIGH); if (IS_ERR(at24->wp_gpio)) return PTR_ERR(at24->wp_gpio); at24->client[0].client = client; at24->client[0].regmap = devm_regmap_init_i2c(client, ®map_config); if (IS_ERR(at24->client[0].regmap)) return PTR_ERR(at24->client[0].regmap); if ((pdata.flags & AT24_FLAG_SERIAL) && (pdata.flags & AT24_FLAG_MAC)) { dev_err(dev, "invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC."); return -EINVAL; } writable = !(pdata.flags & AT24_FLAG_READONLY); if (writable) { at24->write_max = min_t(unsigned int, pdata.page_size, at24_io_limit); if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C) && at24->write_max > I2C_SMBUS_BLOCK_MAX) at24->write_max = I2C_SMBUS_BLOCK_MAX; } /* use dummy devices for multiple-address chips */ for (i = 1; i < num_addresses; i++) { at24->client[i].client = i2c_new_dummy(client->adapter, client->addr + i); if (!at24->client[i].client) { dev_err(dev, "address 0x%02x unavailable\n", client->addr + i); err = -EADDRINUSE; goto err_clients; } at24->client[i].regmap = devm_regmap_init_i2c( at24->client[i].client, ®map_config); if (IS_ERR(at24->client[i].regmap)) { err = PTR_ERR(at24->client[i].regmap); goto err_clients; } } i2c_set_clientdata(client, at24); /* enable runtime pm */ pm_runtime_set_active(dev); pm_runtime_enable(dev); /* * Perform a one-byte test read to verify that the * chip is functional. */ err = at24_read(at24, 0, &test_byte, 1); pm_runtime_idle(dev); if (err) { err = -ENODEV; goto err_clients; } nvmem_config.name = dev_name(dev); nvmem_config.dev = dev; nvmem_config.read_only = !writable; nvmem_config.root_only = true; nvmem_config.owner = THIS_MODULE; nvmem_config.compat = true; nvmem_config.base_dev = dev; nvmem_config.reg_read = at24_read; nvmem_config.reg_write = at24_write; nvmem_config.priv = at24; nvmem_config.stride = 1; nvmem_config.word_size = 1; nvmem_config.size = pdata.byte_len; at24->nvmem = nvmem_register(&nvmem_config); if (IS_ERR(at24->nvmem)) { err = PTR_ERR(at24->nvmem); goto err_clients; } dev_info(dev, "%u byte %s EEPROM, %s, %u bytes/write\n", pdata.byte_len, client->name, writable ? "writable" : "read-only", at24->write_max); /* export data to kernel code */ if (pdata.setup) pdata.setup(at24->nvmem, pdata.context); return 0; err_clients: for (i = 1; i < num_addresses; i++) if (at24->client[i].client) i2c_unregister_device(at24->client[i].client); pm_runtime_disable(dev); return err; } static int at24_remove(struct i2c_client *client) { struct at24_data *at24; int i; at24 = i2c_get_clientdata(client); nvmem_unregister(at24->nvmem); for (i = 1; i < at24->num_addresses; i++) i2c_unregister_device(at24->client[i].client); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); return 0; } static struct i2c_driver at24_driver = { .driver = { .name = "at24", .of_match_table = at24_of_match, .acpi_match_table = ACPI_PTR(at24_acpi_ids), }, .probe = at24_probe, .remove = at24_remove, .id_table = at24_ids, }; static int __init at24_init(void) { if (!at24_io_limit) { pr_err("at24: at24_io_limit must not be 0!\n"); return -EINVAL; } at24_io_limit = rounddown_pow_of_two(at24_io_limit); return i2c_add_driver(&at24_driver); } module_init(at24_init); static void __exit at24_exit(void) { i2c_del_driver(&at24_driver); } module_exit(at24_exit); MODULE_DESCRIPTION("Driver for most I2C EEPROMs"); MODULE_AUTHOR("David Brownell and Wolfram Sang"); MODULE_LICENSE("GPL");