linux/arch/powerpc/kvm/book3s_emulate.c

1071 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright SUSE Linux Products GmbH 2009
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#include <asm/kvm_ppc.h>
#include <asm/disassemble.h>
#include <asm/kvm_book3s.h>
#include <asm/reg.h>
#include <asm/switch_to.h>
#include <asm/time.h>
#include <asm/tm.h>
#include "book3s.h"
#include <asm/asm-prototypes.h>
#define OP_19_XOP_RFID 18
#define OP_19_XOP_RFI 50
#define OP_31_XOP_MFMSR 83
#define OP_31_XOP_MTMSR 146
#define OP_31_XOP_MTMSRD 178
#define OP_31_XOP_MTSR 210
#define OP_31_XOP_MTSRIN 242
#define OP_31_XOP_TLBIEL 274
/* Opcode is officially reserved, reuse it as sc 1 when sc 1 doesn't trap */
#define OP_31_XOP_FAKE_SC1 308
#define OP_31_XOP_SLBMTE 402
#define OP_31_XOP_SLBIE 434
#define OP_31_XOP_SLBIA 498
#define OP_31_XOP_MFSR 595
#define OP_31_XOP_MFSRIN 659
#define OP_31_XOP_DCBA 758
#define OP_31_XOP_SLBMFEV 851
#define OP_31_XOP_EIOIO 854
#define OP_31_XOP_SLBMFEE 915
#define OP_31_XOP_SLBFEE 979
#define OP_31_XOP_TBEGIN 654
#define OP_31_XOP_TABORT 910
#define OP_31_XOP_TRECLAIM 942
#define OP_31_XOP_TRCHKPT 1006
/* DCBZ is actually 1014, but we patch it to 1010 so we get a trap */
#define OP_31_XOP_DCBZ 1010
#define OP_LFS 48
#define OP_LFD 50
#define OP_STFS 52
#define OP_STFD 54
#define SPRN_GQR0 912
#define SPRN_GQR1 913
#define SPRN_GQR2 914
#define SPRN_GQR3 915
#define SPRN_GQR4 916
#define SPRN_GQR5 917
#define SPRN_GQR6 918
#define SPRN_GQR7 919
/* Book3S_32 defines mfsrin(v) - but that messes up our abstract
* function pointers, so let's just disable the define. */
#undef mfsrin
enum priv_level {
PRIV_PROBLEM = 0,
PRIV_SUPER = 1,
PRIV_HYPER = 2,
};
static bool spr_allowed(struct kvm_vcpu *vcpu, enum priv_level level)
{
/* PAPR VMs only access supervisor SPRs */
if (vcpu->arch.papr_enabled && (level > PRIV_SUPER))
return false;
/* Limit user space to its own small SPR set */
if ((kvmppc_get_msr(vcpu) & MSR_PR) && level > PRIV_PROBLEM)
return false;
return true;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void kvmppc_copyto_vcpu_tm(struct kvm_vcpu *vcpu)
{
memcpy(&vcpu->arch.gpr_tm[0], &vcpu->arch.regs.gpr[0],
sizeof(vcpu->arch.gpr_tm));
memcpy(&vcpu->arch.fp_tm, &vcpu->arch.fp,
sizeof(struct thread_fp_state));
memcpy(&vcpu->arch.vr_tm, &vcpu->arch.vr,
sizeof(struct thread_vr_state));
vcpu->arch.ppr_tm = vcpu->arch.ppr;
vcpu->arch.dscr_tm = vcpu->arch.dscr;
vcpu->arch.amr_tm = vcpu->arch.amr;
vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
vcpu->arch.tar_tm = vcpu->arch.tar;
vcpu->arch.lr_tm = vcpu->arch.regs.link;
vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
vcpu->arch.xer_tm = vcpu->arch.regs.xer;
vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
}
static inline void kvmppc_copyfrom_vcpu_tm(struct kvm_vcpu *vcpu)
{
memcpy(&vcpu->arch.regs.gpr[0], &vcpu->arch.gpr_tm[0],
sizeof(vcpu->arch.regs.gpr));
memcpy(&vcpu->arch.fp, &vcpu->arch.fp_tm,
sizeof(struct thread_fp_state));
memcpy(&vcpu->arch.vr, &vcpu->arch.vr_tm,
sizeof(struct thread_vr_state));
vcpu->arch.ppr = vcpu->arch.ppr_tm;
vcpu->arch.dscr = vcpu->arch.dscr_tm;
vcpu->arch.amr = vcpu->arch.amr_tm;
vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
vcpu->arch.tar = vcpu->arch.tar_tm;
vcpu->arch.regs.link = vcpu->arch.lr_tm;
vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
vcpu->arch.regs.xer = vcpu->arch.xer_tm;
vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
}
static void kvmppc_emulate_treclaim(struct kvm_vcpu *vcpu, int ra_val)
{
unsigned long guest_msr = kvmppc_get_msr(vcpu);
int fc_val = ra_val ? ra_val : 1;
uint64_t texasr;
/* CR0 = 0 | MSR[TS] | 0 */
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
<< CR0_SHIFT);
preempt_disable();
tm_enable();
texasr = mfspr(SPRN_TEXASR);
kvmppc_save_tm_pr(vcpu);
kvmppc_copyfrom_vcpu_tm(vcpu);
/* failure recording depends on Failure Summary bit */
if (!(texasr & TEXASR_FS)) {
texasr &= ~TEXASR_FC;
texasr |= ((u64)fc_val << TEXASR_FC_LG) | TEXASR_FS;
texasr &= ~(TEXASR_PR | TEXASR_HV);
if (kvmppc_get_msr(vcpu) & MSR_PR)
texasr |= TEXASR_PR;
if (kvmppc_get_msr(vcpu) & MSR_HV)
texasr |= TEXASR_HV;
vcpu->arch.texasr = texasr;
vcpu->arch.tfiar = kvmppc_get_pc(vcpu);
mtspr(SPRN_TEXASR, texasr);
mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
}
tm_disable();
/*
* treclaim need quit to non-transactional state.
*/
guest_msr &= ~(MSR_TS_MASK);
kvmppc_set_msr(vcpu, guest_msr);
preempt_enable();
if (vcpu->arch.shadow_fscr & FSCR_TAR)
mtspr(SPRN_TAR, vcpu->arch.tar);
}
static void kvmppc_emulate_trchkpt(struct kvm_vcpu *vcpu)
{
unsigned long guest_msr = kvmppc_get_msr(vcpu);
preempt_disable();
/*
* need flush FP/VEC/VSX to vcpu save area before
* copy.
*/
kvmppc_giveup_ext(vcpu, MSR_VSX);
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
kvmppc_copyto_vcpu_tm(vcpu);
kvmppc_save_tm_sprs(vcpu);
/*
* as a result of trecheckpoint. set TS to suspended.
*/
guest_msr &= ~(MSR_TS_MASK);
guest_msr |= MSR_TS_S;
kvmppc_set_msr(vcpu, guest_msr);
kvmppc_restore_tm_pr(vcpu);
preempt_enable();
}
/* emulate tabort. at guest privilege state */
void kvmppc_emulate_tabort(struct kvm_vcpu *vcpu, int ra_val)
{
/* currently we only emulate tabort. but no emulation of other
* tabort variants since there is no kernel usage of them at
* present.
*/
unsigned long guest_msr = kvmppc_get_msr(vcpu);
uint64_t org_texasr;
preempt_disable();
tm_enable();
org_texasr = mfspr(SPRN_TEXASR);
tm_abort(ra_val);
/* CR0 = 0 | MSR[TS] | 0 */
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
<< CR0_SHIFT);
vcpu->arch.texasr = mfspr(SPRN_TEXASR);
/* failure recording depends on Failure Summary bit,
* and tabort will be treated as nops in non-transactional
* state.
*/
if (!(org_texasr & TEXASR_FS) &&
MSR_TM_ACTIVE(guest_msr)) {
vcpu->arch.texasr &= ~(TEXASR_PR | TEXASR_HV);
if (guest_msr & MSR_PR)
vcpu->arch.texasr |= TEXASR_PR;
if (guest_msr & MSR_HV)
vcpu->arch.texasr |= TEXASR_HV;
vcpu->arch.tfiar = kvmppc_get_pc(vcpu);
}
tm_disable();
preempt_enable();
}
#endif
int kvmppc_core_emulate_op_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int inst, int *advance)
{
int emulated = EMULATE_DONE;
int rt = get_rt(inst);
int rs = get_rs(inst);
int ra = get_ra(inst);
int rb = get_rb(inst);
u32 inst_sc = 0x44000002;
switch (get_op(inst)) {
case 0:
emulated = EMULATE_FAIL;
if ((kvmppc_get_msr(vcpu) & MSR_LE) &&
(inst == swab32(inst_sc))) {
/*
* This is the byte reversed syscall instruction of our
* hypercall handler. Early versions of LE Linux didn't
* swap the instructions correctly and ended up in
* illegal instructions.
* Just always fail hypercalls on these broken systems.
*/
kvmppc_set_gpr(vcpu, 3, EV_UNIMPLEMENTED);
kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
emulated = EMULATE_DONE;
}
break;
case 19:
switch (get_xop(inst)) {
case OP_19_XOP_RFID:
case OP_19_XOP_RFI: {
unsigned long srr1 = kvmppc_get_srr1(vcpu);
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
unsigned long cur_msr = kvmppc_get_msr(vcpu);
/*
* add rules to fit in ISA specification regarding TM
* state transistion in TM disable/Suspended state,
* and target TM state is TM inactive(00) state. (the
* change should be suppressed).
*/
if (((cur_msr & MSR_TM) == 0) &&
((srr1 & MSR_TM) == 0) &&
MSR_TM_SUSPENDED(cur_msr) &&
!MSR_TM_ACTIVE(srr1))
srr1 |= MSR_TS_S;
#endif
kvmppc_set_pc(vcpu, kvmppc_get_srr0(vcpu));
kvmppc_set_msr(vcpu, srr1);
*advance = 0;
break;
}
default:
emulated = EMULATE_FAIL;
break;
}
break;
case 31:
switch (get_xop(inst)) {
case OP_31_XOP_MFMSR:
kvmppc_set_gpr(vcpu, rt, kvmppc_get_msr(vcpu));
break;
case OP_31_XOP_MTMSRD:
{
ulong rs_val = kvmppc_get_gpr(vcpu, rs);
if (inst & 0x10000) {
ulong new_msr = kvmppc_get_msr(vcpu);
new_msr &= ~(MSR_RI | MSR_EE);
new_msr |= rs_val & (MSR_RI | MSR_EE);
kvmppc_set_msr_fast(vcpu, new_msr);
} else
kvmppc_set_msr(vcpu, rs_val);
break;
}
case OP_31_XOP_MTMSR:
kvmppc_set_msr(vcpu, kvmppc_get_gpr(vcpu, rs));
break;
case OP_31_XOP_MFSR:
{
int srnum;
srnum = kvmppc_get_field(inst, 12 + 32, 15 + 32);
if (vcpu->arch.mmu.mfsrin) {
u32 sr;
sr = vcpu->arch.mmu.mfsrin(vcpu, srnum);
kvmppc_set_gpr(vcpu, rt, sr);
}
break;
}
case OP_31_XOP_MFSRIN:
{
int srnum;
srnum = (kvmppc_get_gpr(vcpu, rb) >> 28) & 0xf;
if (vcpu->arch.mmu.mfsrin) {
u32 sr;
sr = vcpu->arch.mmu.mfsrin(vcpu, srnum);
kvmppc_set_gpr(vcpu, rt, sr);
}
break;
}
case OP_31_XOP_MTSR:
vcpu->arch.mmu.mtsrin(vcpu,
(inst >> 16) & 0xf,
kvmppc_get_gpr(vcpu, rs));
break;
case OP_31_XOP_MTSRIN:
vcpu->arch.mmu.mtsrin(vcpu,
(kvmppc_get_gpr(vcpu, rb) >> 28) & 0xf,
kvmppc_get_gpr(vcpu, rs));
break;
case OP_31_XOP_TLBIE:
case OP_31_XOP_TLBIEL:
{
bool large = (inst & 0x00200000) ? true : false;
ulong addr = kvmppc_get_gpr(vcpu, rb);
vcpu->arch.mmu.tlbie(vcpu, addr, large);
break;
}
#ifdef CONFIG_PPC_BOOK3S_64
case OP_31_XOP_FAKE_SC1:
{
/* SC 1 papr hypercalls */
ulong cmd = kvmppc_get_gpr(vcpu, 3);
int i;
if ((kvmppc_get_msr(vcpu) & MSR_PR) ||
!vcpu->arch.papr_enabled) {
emulated = EMULATE_FAIL;
break;
}
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE)
break;
run->papr_hcall.nr = cmd;
for (i = 0; i < 9; ++i) {
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
run->papr_hcall.args[i] = gpr;
}
run->exit_reason = KVM_EXIT_PAPR_HCALL;
vcpu->arch.hcall_needed = 1;
emulated = EMULATE_EXIT_USER;
break;
}
#endif
case OP_31_XOP_EIOIO:
break;
case OP_31_XOP_SLBMTE:
if (!vcpu->arch.mmu.slbmte)
return EMULATE_FAIL;
vcpu->arch.mmu.slbmte(vcpu,
kvmppc_get_gpr(vcpu, rs),
kvmppc_get_gpr(vcpu, rb));
break;
case OP_31_XOP_SLBIE:
if (!vcpu->arch.mmu.slbie)
return EMULATE_FAIL;
vcpu->arch.mmu.slbie(vcpu,
kvmppc_get_gpr(vcpu, rb));
break;
case OP_31_XOP_SLBIA:
if (!vcpu->arch.mmu.slbia)
return EMULATE_FAIL;
vcpu->arch.mmu.slbia(vcpu);
break;
case OP_31_XOP_SLBFEE:
if (!(inst & 1) || !vcpu->arch.mmu.slbfee) {
return EMULATE_FAIL;
} else {
ulong b, t;
ulong cr = kvmppc_get_cr(vcpu) & ~CR0_MASK;
b = kvmppc_get_gpr(vcpu, rb);
if (!vcpu->arch.mmu.slbfee(vcpu, b, &t))
cr |= 2 << CR0_SHIFT;
kvmppc_set_gpr(vcpu, rt, t);
/* copy XER[SO] bit to CR0[SO] */
cr |= (vcpu->arch.regs.xer & 0x80000000) >>
(31 - CR0_SHIFT);
kvmppc_set_cr(vcpu, cr);
}
break;
case OP_31_XOP_SLBMFEE:
if (!vcpu->arch.mmu.slbmfee) {
emulated = EMULATE_FAIL;
} else {
ulong t, rb_val;
rb_val = kvmppc_get_gpr(vcpu, rb);
t = vcpu->arch.mmu.slbmfee(vcpu, rb_val);
kvmppc_set_gpr(vcpu, rt, t);
}
break;
case OP_31_XOP_SLBMFEV:
if (!vcpu->arch.mmu.slbmfev) {
emulated = EMULATE_FAIL;
} else {
ulong t, rb_val;
rb_val = kvmppc_get_gpr(vcpu, rb);
t = vcpu->arch.mmu.slbmfev(vcpu, rb_val);
kvmppc_set_gpr(vcpu, rt, t);
}
break;
case OP_31_XOP_DCBA:
/* Gets treated as NOP */
break;
case OP_31_XOP_DCBZ:
{
ulong rb_val = kvmppc_get_gpr(vcpu, rb);
ulong ra_val = 0;
ulong addr, vaddr;
u32 zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
u32 dsisr;
int r;
if (ra)
ra_val = kvmppc_get_gpr(vcpu, ra);
addr = (ra_val + rb_val) & ~31ULL;
if (!(kvmppc_get_msr(vcpu) & MSR_SF))
addr &= 0xffffffff;
vaddr = addr;
r = kvmppc_st(vcpu, &addr, 32, zeros, true);
if ((r == -ENOENT) || (r == -EPERM)) {
*advance = 0;
kvmppc_set_dar(vcpu, vaddr);
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 04:52:43 +00:00
vcpu->arch.fault_dar = vaddr;
dsisr = DSISR_ISSTORE;
if (r == -ENOENT)
dsisr |= DSISR_NOHPTE;
else if (r == -EPERM)
dsisr |= DSISR_PROTFAULT;
kvmppc_set_dsisr(vcpu, dsisr);
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 04:52:43 +00:00
vcpu->arch.fault_dsisr = dsisr;
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_STORAGE);
}
break;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
case OP_31_XOP_TBEGIN:
{
if (!cpu_has_feature(CPU_FTR_TM))
break;
if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
emulated = EMULATE_AGAIN;
break;
}
if (!(kvmppc_get_msr(vcpu) & MSR_PR)) {
preempt_disable();
vcpu->arch.regs.ccr = (CR0_TBEGIN_FAILURE |
(vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)));
vcpu->arch.texasr = (TEXASR_FS | TEXASR_EXACT |
(((u64)(TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
<< TEXASR_FC_LG));
if ((inst >> 21) & 0x1)
vcpu->arch.texasr |= TEXASR_ROT;
if (kvmppc_get_msr(vcpu) & MSR_HV)
vcpu->arch.texasr |= TEXASR_HV;
vcpu->arch.tfhar = kvmppc_get_pc(vcpu) + 4;
vcpu->arch.tfiar = kvmppc_get_pc(vcpu);
kvmppc_restore_tm_sprs(vcpu);
preempt_enable();
} else
emulated = EMULATE_FAIL;
break;
}
case OP_31_XOP_TABORT:
{
ulong guest_msr = kvmppc_get_msr(vcpu);
unsigned long ra_val = 0;
if (!cpu_has_feature(CPU_FTR_TM))
break;
if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
emulated = EMULATE_AGAIN;
break;
}
/* only emulate for privilege guest, since problem state
* guest can run with TM enabled and we don't expect to
* trap at here for that case.
*/
WARN_ON(guest_msr & MSR_PR);
if (ra)
ra_val = kvmppc_get_gpr(vcpu, ra);
kvmppc_emulate_tabort(vcpu, ra_val);
break;
}
case OP_31_XOP_TRECLAIM:
{
ulong guest_msr = kvmppc_get_msr(vcpu);
unsigned long ra_val = 0;
if (!cpu_has_feature(CPU_FTR_TM))
break;
if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
emulated = EMULATE_AGAIN;
break;
}
/* generate interrupts based on priorities */
if (guest_msr & MSR_PR) {
/* Privileged Instruction type Program Interrupt */
kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
emulated = EMULATE_AGAIN;
break;
}
if (!MSR_TM_ACTIVE(guest_msr)) {
/* TM bad thing interrupt */
kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
emulated = EMULATE_AGAIN;
break;
}
if (ra)
ra_val = kvmppc_get_gpr(vcpu, ra);
kvmppc_emulate_treclaim(vcpu, ra_val);
break;
}
case OP_31_XOP_TRCHKPT:
{
ulong guest_msr = kvmppc_get_msr(vcpu);
unsigned long texasr;
if (!cpu_has_feature(CPU_FTR_TM))
break;
if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
emulated = EMULATE_AGAIN;
break;
}
/* generate interrupt based on priorities */
if (guest_msr & MSR_PR) {
/* Privileged Instruction type Program Intr */
kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
emulated = EMULATE_AGAIN;
break;
}
tm_enable();
texasr = mfspr(SPRN_TEXASR);
tm_disable();
if (MSR_TM_ACTIVE(guest_msr) ||
!(texasr & (TEXASR_FS))) {
/* TM bad thing interrupt */
kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
emulated = EMULATE_AGAIN;
break;
}
kvmppc_emulate_trchkpt(vcpu);
break;
}
#endif
default:
emulated = EMULATE_FAIL;
}
break;
default:
emulated = EMULATE_FAIL;
}
if (emulated == EMULATE_FAIL)
emulated = kvmppc_emulate_paired_single(run, vcpu);
return emulated;
}
void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat, bool upper,
u32 val)
{
if (upper) {
/* Upper BAT */
u32 bl = (val >> 2) & 0x7ff;
bat->bepi_mask = (~bl << 17);
bat->bepi = val & 0xfffe0000;
bat->vs = (val & 2) ? 1 : 0;
bat->vp = (val & 1) ? 1 : 0;
bat->raw = (bat->raw & 0xffffffff00000000ULL) | val;
} else {
/* Lower BAT */
bat->brpn = val & 0xfffe0000;
bat->wimg = (val >> 3) & 0xf;
bat->pp = val & 3;
bat->raw = (bat->raw & 0x00000000ffffffffULL) | ((u64)val << 32);
}
}
static struct kvmppc_bat *kvmppc_find_bat(struct kvm_vcpu *vcpu, int sprn)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
struct kvmppc_bat *bat;
switch (sprn) {
case SPRN_IBAT0U ... SPRN_IBAT3L:
bat = &vcpu_book3s->ibat[(sprn - SPRN_IBAT0U) / 2];
break;
case SPRN_IBAT4U ... SPRN_IBAT7L:
bat = &vcpu_book3s->ibat[4 + ((sprn - SPRN_IBAT4U) / 2)];
break;
case SPRN_DBAT0U ... SPRN_DBAT3L:
bat = &vcpu_book3s->dbat[(sprn - SPRN_DBAT0U) / 2];
break;
case SPRN_DBAT4U ... SPRN_DBAT7L:
bat = &vcpu_book3s->dbat[4 + ((sprn - SPRN_DBAT4U) / 2)];
break;
default:
BUG();
}
return bat;
}
int kvmppc_core_emulate_mtspr_pr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
{
int emulated = EMULATE_DONE;
switch (sprn) {
case SPRN_SDR1:
if (!spr_allowed(vcpu, PRIV_HYPER))
goto unprivileged;
to_book3s(vcpu)->sdr1 = spr_val;
break;
case SPRN_DSISR:
kvmppc_set_dsisr(vcpu, spr_val);
break;
case SPRN_DAR:
kvmppc_set_dar(vcpu, spr_val);
break;
case SPRN_HIOR:
to_book3s(vcpu)->hior = spr_val;
break;
case SPRN_IBAT0U ... SPRN_IBAT3L:
case SPRN_IBAT4U ... SPRN_IBAT7L:
case SPRN_DBAT0U ... SPRN_DBAT3L:
case SPRN_DBAT4U ... SPRN_DBAT7L:
{
struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn);
kvmppc_set_bat(vcpu, bat, !(sprn % 2), (u32)spr_val);
/* BAT writes happen so rarely that we're ok to flush
* everything here */
kvmppc_mmu_pte_flush(vcpu, 0, 0);
kvmppc_mmu_flush_segments(vcpu);
break;
}
case SPRN_HID0:
to_book3s(vcpu)->hid[0] = spr_val;
break;
case SPRN_HID1:
to_book3s(vcpu)->hid[1] = spr_val;
break;
case SPRN_HID2:
to_book3s(vcpu)->hid[2] = spr_val;
break;
case SPRN_HID2_GEKKO:
to_book3s(vcpu)->hid[2] = spr_val;
/* HID2.PSE controls paired single on gekko */
switch (vcpu->arch.pvr) {
case 0x00080200: /* lonestar 2.0 */
case 0x00088202: /* lonestar 2.2 */
case 0x70000100: /* gekko 1.0 */
case 0x00080100: /* gekko 2.0 */
case 0x00083203: /* gekko 2.3a */
case 0x00083213: /* gekko 2.3b */
case 0x00083204: /* gekko 2.4 */
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
case 0x00087200: /* broadway */
if (vcpu->arch.hflags & BOOK3S_HFLAG_NATIVE_PS) {
/* Native paired singles */
} else if (spr_val & (1 << 29)) { /* HID2.PSE */
vcpu->arch.hflags |= BOOK3S_HFLAG_PAIRED_SINGLE;
kvmppc_giveup_ext(vcpu, MSR_FP);
} else {
vcpu->arch.hflags &= ~BOOK3S_HFLAG_PAIRED_SINGLE;
}
break;
}
break;
case SPRN_HID4:
case SPRN_HID4_GEKKO:
to_book3s(vcpu)->hid[4] = spr_val;
break;
case SPRN_HID5:
to_book3s(vcpu)->hid[5] = spr_val;
/* guest HID5 set can change is_dcbz32 */
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(mfmsr() & MSR_HV))
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
break;
case SPRN_GQR0:
case SPRN_GQR1:
case SPRN_GQR2:
case SPRN_GQR3:
case SPRN_GQR4:
case SPRN_GQR5:
case SPRN_GQR6:
case SPRN_GQR7:
to_book3s(vcpu)->gqr[sprn - SPRN_GQR0] = spr_val;
break;
#ifdef CONFIG_PPC_BOOK3S_64
case SPRN_FSCR:
kvmppc_set_fscr(vcpu, spr_val);
break;
case SPRN_BESCR:
vcpu->arch.bescr = spr_val;
break;
case SPRN_EBBHR:
vcpu->arch.ebbhr = spr_val;
break;
case SPRN_EBBRR:
vcpu->arch.ebbrr = spr_val;
break;
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
case SPRN_TFHAR:
case SPRN_TEXASR:
case SPRN_TFIAR:
if (!cpu_has_feature(CPU_FTR_TM))
break;
if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
emulated = EMULATE_AGAIN;
break;
}
if (MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)) &&
!((MSR_TM_SUSPENDED(kvmppc_get_msr(vcpu))) &&
(sprn == SPRN_TFHAR))) {
/* it is illegal to mtspr() TM regs in
* other than non-transactional state, with
* the exception of TFHAR in suspend state.
*/
kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
emulated = EMULATE_AGAIN;
break;
}
tm_enable();
if (sprn == SPRN_TFHAR)
mtspr(SPRN_TFHAR, spr_val);
else if (sprn == SPRN_TEXASR)
mtspr(SPRN_TEXASR, spr_val);
else
mtspr(SPRN_TFIAR, spr_val);
tm_disable();
break;
#endif
#endif
case SPRN_ICTC:
case SPRN_THRM1:
case SPRN_THRM2:
case SPRN_THRM3:
case SPRN_CTRLF:
case SPRN_CTRLT:
case SPRN_L2CR:
case SPRN_DSCR:
case SPRN_MMCR0_GEKKO:
case SPRN_MMCR1_GEKKO:
case SPRN_PMC1_GEKKO:
case SPRN_PMC2_GEKKO:
case SPRN_PMC3_GEKKO:
case SPRN_PMC4_GEKKO:
case SPRN_WPAR_GEKKO:
case SPRN_MSSSR0:
case SPRN_DABR:
#ifdef CONFIG_PPC_BOOK3S_64
case SPRN_MMCRS:
case SPRN_MMCRA:
case SPRN_MMCR0:
case SPRN_MMCR1:
case SPRN_MMCR2:
case SPRN_UMMCR2:
#endif
break;
unprivileged:
default:
pr_info_ratelimited("KVM: invalid SPR write: %d\n", sprn);
if (sprn & 0x10) {
if (kvmppc_get_msr(vcpu) & MSR_PR) {
kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
emulated = EMULATE_AGAIN;
}
} else {
if ((kvmppc_get_msr(vcpu) & MSR_PR) || sprn == 0) {
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
emulated = EMULATE_AGAIN;
}
}
break;
}
return emulated;
}
int kvmppc_core_emulate_mfspr_pr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
{
int emulated = EMULATE_DONE;
switch (sprn) {
case SPRN_IBAT0U ... SPRN_IBAT3L:
case SPRN_IBAT4U ... SPRN_IBAT7L:
case SPRN_DBAT0U ... SPRN_DBAT3L:
case SPRN_DBAT4U ... SPRN_DBAT7L:
{
struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn);
if (sprn % 2)
*spr_val = bat->raw >> 32;
else
*spr_val = bat->raw;
break;
}
case SPRN_SDR1:
if (!spr_allowed(vcpu, PRIV_HYPER))
goto unprivileged;
*spr_val = to_book3s(vcpu)->sdr1;
break;
case SPRN_DSISR:
*spr_val = kvmppc_get_dsisr(vcpu);
break;
case SPRN_DAR:
*spr_val = kvmppc_get_dar(vcpu);
break;
case SPRN_HIOR:
*spr_val = to_book3s(vcpu)->hior;
break;
case SPRN_HID0:
*spr_val = to_book3s(vcpu)->hid[0];
break;
case SPRN_HID1:
*spr_val = to_book3s(vcpu)->hid[1];
break;
case SPRN_HID2:
case SPRN_HID2_GEKKO:
*spr_val = to_book3s(vcpu)->hid[2];
break;
case SPRN_HID4:
case SPRN_HID4_GEKKO:
*spr_val = to_book3s(vcpu)->hid[4];
break;
case SPRN_HID5:
*spr_val = to_book3s(vcpu)->hid[5];
break;
case SPRN_CFAR:
case SPRN_DSCR:
*spr_val = 0;
break;
case SPRN_PURR:
/*
* On exit we would have updated purr
*/
*spr_val = vcpu->arch.purr;
break;
case SPRN_SPURR:
/*
* On exit we would have updated spurr
*/
*spr_val = vcpu->arch.spurr;
break;
case SPRN_VTB:
*spr_val = to_book3s(vcpu)->vtb;
break;
case SPRN_IC:
*spr_val = vcpu->arch.ic;
break;
case SPRN_GQR0:
case SPRN_GQR1:
case SPRN_GQR2:
case SPRN_GQR3:
case SPRN_GQR4:
case SPRN_GQR5:
case SPRN_GQR6:
case SPRN_GQR7:
*spr_val = to_book3s(vcpu)->gqr[sprn - SPRN_GQR0];
break;
#ifdef CONFIG_PPC_BOOK3S_64
case SPRN_FSCR:
*spr_val = vcpu->arch.fscr;
break;
case SPRN_BESCR:
*spr_val = vcpu->arch.bescr;
break;
case SPRN_EBBHR:
*spr_val = vcpu->arch.ebbhr;
break;
case SPRN_EBBRR:
*spr_val = vcpu->arch.ebbrr;
break;
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
case SPRN_TFHAR:
case SPRN_TEXASR:
case SPRN_TFIAR:
if (!cpu_has_feature(CPU_FTR_TM))
break;
if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
emulated = EMULATE_AGAIN;
break;
}
tm_enable();
if (sprn == SPRN_TFHAR)
*spr_val = mfspr(SPRN_TFHAR);
else if (sprn == SPRN_TEXASR)
*spr_val = mfspr(SPRN_TEXASR);
else if (sprn == SPRN_TFIAR)
*spr_val = mfspr(SPRN_TFIAR);
tm_disable();
break;
#endif
#endif
case SPRN_THRM1:
case SPRN_THRM2:
case SPRN_THRM3:
case SPRN_CTRLF:
case SPRN_CTRLT:
case SPRN_L2CR:
case SPRN_MMCR0_GEKKO:
case SPRN_MMCR1_GEKKO:
case SPRN_PMC1_GEKKO:
case SPRN_PMC2_GEKKO:
case SPRN_PMC3_GEKKO:
case SPRN_PMC4_GEKKO:
case SPRN_WPAR_GEKKO:
case SPRN_MSSSR0:
case SPRN_DABR:
#ifdef CONFIG_PPC_BOOK3S_64
case SPRN_MMCRS:
case SPRN_MMCRA:
case SPRN_MMCR0:
case SPRN_MMCR1:
case SPRN_MMCR2:
case SPRN_UMMCR2:
case SPRN_TIR:
#endif
*spr_val = 0;
break;
default:
unprivileged:
pr_info_ratelimited("KVM: invalid SPR read: %d\n", sprn);
if (sprn & 0x10) {
if (kvmppc_get_msr(vcpu) & MSR_PR) {
kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
emulated = EMULATE_AGAIN;
}
} else {
if ((kvmppc_get_msr(vcpu) & MSR_PR) || sprn == 0 ||
sprn == 4 || sprn == 5 || sprn == 6) {
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
emulated = EMULATE_AGAIN;
}
}
break;
}
return emulated;
}
u32 kvmppc_alignment_dsisr(struct kvm_vcpu *vcpu, unsigned int inst)
{
return make_dsisr(inst);
}
ulong kvmppc_alignment_dar(struct kvm_vcpu *vcpu, unsigned int inst)
{
#ifdef CONFIG_PPC_BOOK3S_64
/*
* Linux's fix_alignment() assumes that DAR is valid, so can we
*/
return vcpu->arch.fault_dar;
#else
ulong dar = 0;
ulong ra = get_ra(inst);
ulong rb = get_rb(inst);
switch (get_op(inst)) {
case OP_LFS:
case OP_LFD:
case OP_STFD:
case OP_STFS:
if (ra)
dar = kvmppc_get_gpr(vcpu, ra);
dar += (s32)((s16)inst);
break;
case 31:
if (ra)
dar = kvmppc_get_gpr(vcpu, ra);
dar += kvmppc_get_gpr(vcpu, rb);
break;
default:
printk(KERN_INFO "KVM: Unaligned instruction 0x%x\n", inst);
break;
}
return dar;
#endif
}