linux/drivers/gpu/drm/ttm/ttm_bo.c

1769 lines
42 KiB
C
Raw Normal View History

/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#define pr_fmt(fmt) "[TTM] " fmt
#include <drm/ttm/ttm_module.h>
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/atomic.h>
#include <linux/reservation.h>
#define TTM_ASSERT_LOCKED(param)
#define TTM_DEBUG(fmt, arg...)
#define TTM_BO_HASH_ORDER 13
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
static void ttm_bo_global_kobj_release(struct kobject *kobj);
static struct attribute ttm_bo_count = {
.name = "bo_count",
.mode = S_IRUGO
};
static inline int ttm_mem_type_from_place(const struct ttm_place *place,
uint32_t *mem_type)
{
int i;
for (i = 0; i <= TTM_PL_PRIV5; i++)
if (place->flags & (1 << i)) {
*mem_type = i;
return 0;
}
return -EINVAL;
}
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
pr_err(" has_type: %d\n", man->has_type);
pr_err(" use_type: %d\n", man->use_type);
pr_err(" flags: 0x%08X\n", man->flags);
pr_err(" gpu_offset: 0x%08llX\n", man->gpu_offset);
pr_err(" size: %llu\n", man->size);
pr_err(" available_caching: 0x%08X\n", man->available_caching);
pr_err(" default_caching: 0x%08X\n", man->default_caching);
if (mem_type != TTM_PL_SYSTEM)
(*man->func->debug)(man, TTM_PFX);
}
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
int i, ret, mem_type;
pr_err("No space for %p (%lu pages, %luK, %luM)\n",
bo, bo->mem.num_pages, bo->mem.size >> 10,
bo->mem.size >> 20);
for (i = 0; i < placement->num_placement; i++) {
ret = ttm_mem_type_from_place(&placement->placement[i],
&mem_type);
if (ret)
return;
pr_err(" placement[%d]=0x%08X (%d)\n",
i, placement->placement[i].flags, mem_type);
ttm_mem_type_debug(bo->bdev, mem_type);
}
}
static ssize_t ttm_bo_global_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
return snprintf(buffer, PAGE_SIZE, "%lu\n",
(unsigned long) atomic_read(&glob->bo_count));
}
static struct attribute *ttm_bo_global_attrs[] = {
&ttm_bo_count,
NULL
};
static const struct sysfs_ops ttm_bo_global_ops = {
.show = &ttm_bo_global_show
};
static struct kobj_type ttm_bo_glob_kobj_type = {
.release = &ttm_bo_global_kobj_release,
.sysfs_ops = &ttm_bo_global_ops,
.default_attrs = ttm_bo_global_attrs
};
static inline uint32_t ttm_bo_type_flags(unsigned type)
{
return 1 << (type);
}
static void ttm_bo_release_list(struct kref *list_kref)
{
struct ttm_buffer_object *bo =
container_of(list_kref, struct ttm_buffer_object, list_kref);
struct ttm_bo_device *bdev = bo->bdev;
size_t acc_size = bo->acc_size;
BUG_ON(atomic_read(&bo->list_kref.refcount));
BUG_ON(atomic_read(&bo->kref.refcount));
BUG_ON(atomic_read(&bo->cpu_writers));
BUG_ON(bo->mem.mm_node != NULL);
BUG_ON(!list_empty(&bo->lru));
BUG_ON(!list_empty(&bo->ddestroy));
if (bo->ttm)
ttm_tt_destroy(bo->ttm);
atomic_dec(&bo->glob->bo_count);
if (bo->resv == &bo->ttm_resv)
reservation_object_fini(&bo->ttm_resv);
mutex_destroy(&bo->wu_mutex);
if (bo->destroy)
bo->destroy(bo);
else {
kfree(bo);
}
ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
}
void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
lockdep_assert_held(&bo->resv->lock.base);
if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
BUG_ON(!list_empty(&bo->lru));
list_add(&bo->lru, bdev->driver->lru_tail(bo));
kref_get(&bo->list_kref);
if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
list_add(&bo->swap, bdev->driver->swap_lru_tail(bo));
kref_get(&bo->list_kref);
}
}
}
EXPORT_SYMBOL(ttm_bo_add_to_lru);
int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
int put_count = 0;
if (bdev->driver->lru_removal)
bdev->driver->lru_removal(bo);
if (!list_empty(&bo->swap)) {
list_del_init(&bo->swap);
++put_count;
}
if (!list_empty(&bo->lru)) {
list_del_init(&bo->lru);
++put_count;
}
return put_count;
}
static void ttm_bo_ref_bug(struct kref *list_kref)
{
BUG();
}
void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
bool never_free)
{
kref_sub(&bo->list_kref, count,
(never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
}
void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
{
int put_count;
spin_lock(&bo->glob->lru_lock);
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&bo->glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
}
EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
int put_count = 0;
lockdep_assert_held(&bo->resv->lock.base);
if (bdev->driver->lru_removal)
bdev->driver->lru_removal(bo);
put_count = ttm_bo_del_from_lru(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
ttm_bo_add_to_lru(bo);
}
EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo)
{
return bo->bdev->man[bo->mem.mem_type].lru.prev;
}
EXPORT_SYMBOL(ttm_bo_default_lru_tail);
struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo)
{
return bo->glob->swap_lru.prev;
}
EXPORT_SYMBOL(ttm_bo_default_swap_lru_tail);
/*
* Call bo->mutex locked.
*/
static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
int ret = 0;
uint32_t page_flags = 0;
TTM_ASSERT_LOCKED(&bo->mutex);
bo->ttm = NULL;
if (bdev->need_dma32)
page_flags |= TTM_PAGE_FLAG_DMA32;
switch (bo->type) {
case ttm_bo_type_device:
if (zero_alloc)
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
case ttm_bo_type_kernel:
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags, glob->dummy_read_page);
if (unlikely(bo->ttm == NULL))
ret = -ENOMEM;
break;
case ttm_bo_type_sg:
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags | TTM_PAGE_FLAG_SG,
glob->dummy_read_page);
if (unlikely(bo->ttm == NULL)) {
ret = -ENOMEM;
break;
}
bo->ttm->sg = bo->sg;
break;
default:
pr_err("Illegal buffer object type\n");
ret = -EINVAL;
break;
}
return ret;
}
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem,
bool evict, bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
int ret = 0;
if (old_is_pci || new_is_pci ||
((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
ret = ttm_mem_io_lock(old_man, true);
if (unlikely(ret != 0))
goto out_err;
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(old_man);
}
/*
* Create and bind a ttm if required.
*/
if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (bo->ttm == NULL) {
bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
ret = ttm_bo_add_ttm(bo, zero);
if (ret)
goto out_err;
}
ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_bind(bo->ttm, mem);
if (ret)
goto out_err;
}
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
bo->mem = *mem;
mem->mm_node = NULL;
goto moved;
}
}
2012-01-25 05:34:22 +00:00
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
else if (bdev->driver->move)
ret = bdev->driver->move(bo, evict, interruptible,
no_wait_gpu, mem);
else
ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
2012-01-25 05:34:22 +00:00
if (ret) {
if (bdev->driver->move_notify) {
struct ttm_mem_reg tmp_mem = *mem;
*mem = bo->mem;
bo->mem = tmp_mem;
bdev->driver->move_notify(bo, mem);
bo->mem = *mem;
*mem = tmp_mem;
2012-01-25 05:34:22 +00:00
}
2012-01-25 05:34:22 +00:00
goto out_err;
}
moved:
if (bo->evicted) {
drm/ttm: don't oops if no invalidate_caches() A few of the simpler TTM drivers (cirrus, ast, mgag200) do not implement this function. Yet can end up somehow with an evicted bo: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [< (null)>] (null) PGD 16e761067 PUD 16e6cf067 PMD 0 Oops: 0010 [#1] SMP Modules linked in: bnep bluetooth rfkill fuse ip6t_rpfilter ip6t_REJECT ipt_REJECT xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter ip_tables sg btrfs zlib_deflate raid6_pq xor dm_queue_length iTCO_wdt iTCO_vendor_support coretemp kvm dcdbas dm_service_time microcode serio_raw pcspkr lpc_ich mfd_core i7core_edac edac_core ses enclosure ipmi_si ipmi_msghandler shpchp acpi_power_meter mperf nfsd auth_rpcgss nfs_acl lockd uinput sunrpc dm_multipath xfs libcrc32c ata_generic pata_acpi sr_mod cdrom sd_mod usb_storage mgag200 syscopyarea sysfillrect sysimgblt i2c_algo_bit lpfc drm_kms_helper ttm crc32c_intel ata_piix bfa drm ixgbe libata i2c_core mdio crc_t10dif ptp crct10dif_common pps_core scsi_transport_fc dca scsi_tgt megaraid_sas bnx2 dm_mirror dm_region_hash dm_log dm_mod CPU: 16 PID: 2572 Comm: X Not tainted 3.10.0-86.el7.x86_64 #1 Hardware name: Dell Inc. PowerEdge R810/0H235N, BIOS 0.3.0 11/14/2009 task: ffff8801799dabc0 ti: ffff88016c884000 task.ti: ffff88016c884000 RIP: 0010:[<0000000000000000>] [< (null)>] (null) RSP: 0018:ffff88016c885ad8 EFLAGS: 00010202 RAX: ffffffffa04e94c0 RBX: ffff880178937a20 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000240004 RDI: ffff880178937a00 RBP: ffff88016c885b60 R08: 00000000000171a0 R09: ffff88007cf171a0 R10: ffffea0005842540 R11: ffffffff810487b9 R12: ffff880178937b30 R13: ffff880178937a00 R14: ffff88016c885b78 R15: ffff880179929400 FS: 00007f81ba2ef980(0000) GS:ffff88007cf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000016e763000 CR4: 00000000000007e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: ffffffffa0306fae ffff8801799295c0 0000000000260004 0000000000000001 ffff88016c885b60 ffffffffa0307669 00ff88007cf17738 ffff88017cf17700 ffff880178937a00 ffff880100000000 ffff880100000000 0000000079929400 Call Trace: [<ffffffffa0306fae>] ? ttm_bo_handle_move_mem+0x54e/0x5b0 [ttm] [<ffffffffa0307669>] ? ttm_bo_mem_space+0x169/0x340 [ttm] [<ffffffffa0307bd7>] ttm_bo_move_buffer+0x117/0x130 [ttm] [<ffffffff81130001>] ? perf_event_init_context+0x141/0x220 [<ffffffffa0307cb1>] ttm_bo_validate+0xc1/0x130 [ttm] [<ffffffffa04e7377>] mgag200_bo_pin+0x87/0xc0 [mgag200] [<ffffffffa04e56c4>] mga_crtc_cursor_set+0x474/0xbb0 [mgag200] [<ffffffff811971d2>] ? __mem_cgroup_commit_charge+0x152/0x3b0 [<ffffffff815c4182>] ? mutex_lock+0x12/0x2f [<ffffffffa0201433>] drm_mode_cursor_common+0x123/0x170 [drm] [<ffffffffa0205231>] drm_mode_cursor_ioctl+0x41/0x50 [drm] [<ffffffffa01f5ca2>] drm_ioctl+0x502/0x630 [drm] [<ffffffff815cbab4>] ? __do_page_fault+0x1f4/0x510 [<ffffffff8101cb68>] ? __restore_xstate_sig+0x218/0x4f0 [<ffffffff811b4445>] do_vfs_ioctl+0x2e5/0x4d0 [<ffffffff8124488e>] ? file_has_perm+0x8e/0xa0 [<ffffffff811b46b1>] SyS_ioctl+0x81/0xa0 [<ffffffff815d05d9>] system_call_fastpath+0x16/0x1b Code: Bad RIP value. RIP [< (null)>] (null) RSP <ffff88016c885ad8> CR2: 0000000000000000 Signed-off-by: Rob Clark <rclark@redhat.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com> Cc: stable@vger.kernel.org
2014-03-12 14:59:37 +00:00
if (bdev->driver->invalidate_caches) {
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
if (ret)
pr_err("Can not flush read caches\n");
}
bo->evicted = false;
}
if (bo->mem.mm_node) {
bo->offset = (bo->mem.start << PAGE_SHIFT) +
bdev->man[bo->mem.mem_type].gpu_offset;
bo->cur_placement = bo->mem.placement;
} else
bo->offset = 0;
return 0;
out_err:
new_man = &bdev->man[bo->mem.mem_type];
if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
return ret;
}
/**
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->driver->move_notify)
bo->bdev->driver->move_notify(bo, NULL);
if (bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
ttm_bo_mem_put(bo, &bo->mem);
ww_mutex_unlock (&bo->resv->lock);
}
static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
{
struct reservation_object_list *fobj;
struct fence *fence;
int i;
fobj = reservation_object_get_list(bo->resv);
fence = reservation_object_get_excl(bo->resv);
if (fence && !fence->ops->signaled)
fence_enable_sw_signaling(fence);
for (i = 0; fobj && i < fobj->shared_count; ++i) {
fence = rcu_dereference_protected(fobj->shared[i],
reservation_object_held(bo->resv));
if (!fence->ops->signaled)
fence_enable_sw_signaling(fence);
}
}
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
int put_count;
int ret;
spin_lock(&glob->lru_lock);
ret = __ttm_bo_reserve(bo, false, true, NULL);
if (!ret) {
if (!ttm_bo_wait(bo, false, true)) {
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return;
} else
ttm_bo_flush_all_fences(bo);
/*
* Make NO_EVICT bos immediately available to
* shrinkers, now that they are queued for
* destruction.
*/
if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
ttm_bo_add_to_lru(bo);
}
__ttm_bo_unreserve(bo);
}
kref_get(&bo->list_kref);
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
spin_unlock(&glob->lru_lock);
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
/**
* function ttm_bo_cleanup_refs_and_unlock
* If bo idle, remove from delayed- and lru lists, and unref.
* If not idle, do nothing.
*
* Must be called with lru_lock and reservation held, this function
* will drop both before returning.
*
* @interruptible Any sleeps should occur interruptibly.
* @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
*/
static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_global *glob = bo->glob;
int put_count;
int ret;
ret = ttm_bo_wait(bo, false, true);
if (ret && !no_wait_gpu) {
long lret;
ww_mutex_unlock(&bo->resv->lock);
spin_unlock(&glob->lru_lock);
lret = reservation_object_wait_timeout_rcu(bo->resv,
true,
interruptible,
30 * HZ);
if (lret < 0)
return lret;
else if (lret == 0)
return -EBUSY;
spin_lock(&glob->lru_lock);
ret = __ttm_bo_reserve(bo, false, true, NULL);
/*
* We raced, and lost, someone else holds the reservation now,
* and is probably busy in ttm_bo_cleanup_memtype_use.
*
* Even if it's not the case, because we finished waiting any
* delayed destruction would succeed, so just return success
* here.
*/
if (ret) {
spin_unlock(&glob->lru_lock);
return 0;
}
/*
* remove sync_obj with ttm_bo_wait, the wait should be
* finished, and no new wait object should have been added.
*/
ret = ttm_bo_wait(bo, false, true);
WARN_ON(ret);
}
if (ret || unlikely(list_empty(&bo->ddestroy))) {
__ttm_bo_unreserve(bo);
spin_unlock(&glob->lru_lock);
return ret;
}
put_count = ttm_bo_del_from_lru(bo);
list_del_init(&bo->ddestroy);
++put_count;
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return 0;
}
/**
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
* encountered buffers.
*/
static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_buffer_object *entry = NULL;
int ret = 0;
spin_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
goto out_unlock;
entry = list_first_entry(&bdev->ddestroy,
struct ttm_buffer_object, ddestroy);
kref_get(&entry->list_kref);
for (;;) {
struct ttm_buffer_object *nentry = NULL;
if (entry->ddestroy.next != &bdev->ddestroy) {
nentry = list_first_entry(&entry->ddestroy,
struct ttm_buffer_object, ddestroy);
kref_get(&nentry->list_kref);
}
ret = __ttm_bo_reserve(entry, false, true, NULL);
if (remove_all && ret) {
spin_unlock(&glob->lru_lock);
ret = __ttm_bo_reserve(entry, false, false, NULL);
spin_lock(&glob->lru_lock);
}
if (!ret)
ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
!remove_all);
else
spin_unlock(&glob->lru_lock);
kref_put(&entry->list_kref, ttm_bo_release_list);
entry = nentry;
if (ret || !entry)
goto out;
spin_lock(&glob->lru_lock);
if (list_empty(&entry->ddestroy))
break;
}
out_unlock:
spin_unlock(&glob->lru_lock);
out:
if (entry)
kref_put(&entry->list_kref, ttm_bo_release_list);
return ret;
}
static void ttm_bo_delayed_workqueue(struct work_struct *work)
{
struct ttm_bo_device *bdev =
container_of(work, struct ttm_bo_device, wq.work);
if (ttm_bo_delayed_delete(bdev, false)) {
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
}
static void ttm_bo_release(struct kref *kref)
{
struct ttm_buffer_object *bo =
container_of(kref, struct ttm_buffer_object, kref);
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
ttm_mem_io_lock(man, false);
ttm_mem_io_free_vm(bo);
ttm_mem_io_unlock(man);
ttm_bo_cleanup_refs_or_queue(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
}
void ttm_bo_unref(struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo = *p_bo;
*p_bo = NULL;
kref_put(&bo->kref, ttm_bo_release);
}
EXPORT_SYMBOL(ttm_bo_unref);
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
if (resched)
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_reg evict_mem;
struct ttm_placement placement;
int ret = 0;
ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
if (unlikely(ret != 0)) {
if (ret != -ERESTARTSYS) {
pr_err("Failed to expire sync object before buffer eviction\n");
}
goto out;
}
lockdep_assert_held(&bo->resv->lock.base);
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.bus.io_reserved_vm = false;
evict_mem.bus.io_reserved_count = 0;
placement.num_placement = 0;
placement.num_busy_placement = 0;
bdev->driver->evict_flags(bo, &placement);
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS) {
pr_err("Failed to find memory space for buffer 0x%p eviction\n",
bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS)
pr_err("Buffer eviction failed\n");
ttm_bo_mem_put(bo, &evict_mem);
goto out;
}
bo->evicted = true;
out:
return ret;
}
static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
uint32_t mem_type,
const struct ttm_place *place,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_buffer_object *bo;
int ret = -EBUSY, put_count;
spin_lock(&glob->lru_lock);
list_for_each_entry(bo, &man->lru, lru) {
ret = __ttm_bo_reserve(bo, false, true, NULL);
if (!ret) {
if (place && (place->fpfn || place->lpfn)) {
/* Don't evict this BO if it's outside of the
* requested placement range
*/
if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
(place->lpfn && place->lpfn <= bo->mem.start)) {
__ttm_bo_unreserve(bo);
ret = -EBUSY;
continue;
}
}
break;
}
}
if (ret) {
spin_unlock(&glob->lru_lock);
return ret;
}
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
no_wait_gpu);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
BUG_ON(ret != 0);
ttm_bo_list_ref_sub(bo, put_count, true);
ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
ttm_bo_unreserve(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
if (mem->mm_node)
(*man->func->put_node)(man, mem);
}
EXPORT_SYMBOL(ttm_bo_mem_put);
/**
* Repeatedly evict memory from the LRU for @mem_type until we create enough
* space, or we've evicted everything and there isn't enough space.
*/
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
uint32_t mem_type,
const struct ttm_place *place,
struct ttm_mem_reg *mem,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
int ret;
do {
ret = (*man->func->get_node)(man, bo, place, mem);
if (unlikely(ret != 0))
return ret;
if (mem->mm_node)
break;
ret = ttm_mem_evict_first(bdev, mem_type, place,
interruptible, no_wait_gpu);
if (unlikely(ret != 0))
return ret;
} while (1);
if (mem->mm_node == NULL)
return -ENOMEM;
mem->mem_type = mem_type;
return 0;
}
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
uint32_t cur_placement,
uint32_t proposed_placement)
{
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
/**
* Keep current caching if possible.
*/
if ((cur_placement & caching) != 0)
result |= (cur_placement & caching);
else if ((man->default_caching & caching) != 0)
result |= man->default_caching;
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
result |= TTM_PL_FLAG_CACHED;
else if ((TTM_PL_FLAG_WC & caching) != 0)
result |= TTM_PL_FLAG_WC;
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
result |= TTM_PL_FLAG_UNCACHED;
return result;
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
uint32_t mem_type,
const struct ttm_place *place,
uint32_t *masked_placement)
{
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
return false;
if ((place->flags & man->available_caching) == 0)
return false;
cur_flags |= (place->flags & man->available_caching);
*masked_placement = cur_flags;
return true;
}
/**
* Creates space for memory region @mem according to its type.
*
* This function first searches for free space in compatible memory types in
* the priority order defined by the driver. If free space isn't found, then
* ttm_bo_mem_force_space is attempted in priority order to evict and find
* space.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
uint32_t mem_type = TTM_PL_SYSTEM;
uint32_t cur_flags = 0;
bool type_found = false;
bool type_ok = false;
bool has_erestartsys = false;
int i, ret;
mem->mm_node = NULL;
for (i = 0; i < placement->num_placement; ++i) {
const struct ttm_place *place = &placement->placement[i];
ret = ttm_mem_type_from_place(place, &mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type || !man->use_type)
continue;
type_ok = ttm_bo_mt_compatible(man, mem_type, place,
&cur_flags);
if (!type_ok)
continue;
type_found = true;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, place->flags,
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM)
break;
ret = (*man->func->get_node)(man, bo, place, mem);
if (unlikely(ret))
return ret;
if (mem->mm_node)
break;
}
if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
return 0;
}
for (i = 0; i < placement->num_busy_placement; ++i) {
const struct ttm_place *place = &placement->busy_placement[i];
ret = ttm_mem_type_from_place(place, &mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type || !man->use_type)
continue;
if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
continue;
type_found = true;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, place->flags,
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
mem->mm_node = NULL;
return 0;
}
ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
interruptible, no_wait_gpu);
if (ret == 0 && mem->mm_node) {
mem->placement = cur_flags;
return 0;
}
if (ret == -ERESTARTSYS)
has_erestartsys = true;
}
if (!type_found) {
printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
return -EINVAL;
}
return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
}
EXPORT_SYMBOL(ttm_bo_mem_space);
static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible,
bool no_wait_gpu)
{
int ret = 0;
struct ttm_mem_reg mem;
lockdep_assert_held(&bo->resv->lock.base);
/*
* Don't wait for the BO on initial allocation. This is important when
* the BO has an imported reservation object.
*/
if (bo->mem.mem_type != TTM_PL_SYSTEM || bo->ttm != NULL) {
/*
* FIXME: It's possible to pipeline buffer moves.
* Have the driver move function wait for idle when necessary,
* instead of doing it here.
*/
ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
if (ret)
return ret;
}
mem.num_pages = bo->num_pages;
mem.size = mem.num_pages << PAGE_SHIFT;
mem.page_alignment = bo->mem.page_alignment;
mem.bus.io_reserved_vm = false;
mem.bus.io_reserved_count = 0;
/*
* Determine where to move the buffer.
*/
ret = ttm_bo_mem_space(bo, placement, &mem,
interruptible, no_wait_gpu);
if (ret)
goto out_unlock;
ret = ttm_bo_handle_move_mem(bo, &mem, false,
interruptible, no_wait_gpu);
out_unlock:
if (ret && mem.mm_node)
ttm_bo_mem_put(bo, &mem);
return ret;
}
static bool ttm_bo_mem_compat(struct ttm_placement *placement,
struct ttm_mem_reg *mem,
uint32_t *new_flags)
{
int i;
for (i = 0; i < placement->num_placement; i++) {
const struct ttm_place *heap = &placement->placement[i];
if (mem->mm_node &&
(mem->start < heap->fpfn ||
(heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
continue;
*new_flags = heap->flags;
if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
(*new_flags & mem->placement & TTM_PL_MASK_MEM))
return true;
}
for (i = 0; i < placement->num_busy_placement; i++) {
const struct ttm_place *heap = &placement->busy_placement[i];
if (mem->mm_node &&
(mem->start < heap->fpfn ||
(heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
continue;
*new_flags = heap->flags;
if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
(*new_flags & mem->placement & TTM_PL_MASK_MEM))
return true;
}
return false;
}
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible,
bool no_wait_gpu)
{
int ret;
uint32_t new_flags;
lockdep_assert_held(&bo->resv->lock.base);
/*
* Check whether we need to move buffer.
*/
if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
ret = ttm_bo_move_buffer(bo, placement, interruptible,
no_wait_gpu);
if (ret)
return ret;
} else {
/*
* Use the access and other non-mapping-related flag bits from
* the compatible memory placement flags to the active flags
*/
ttm_flag_masked(&bo->mem.placement, new_flags,
~TTM_PL_MASK_MEMTYPE);
}
/*
* We might need to add a TTM.
*/
if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
ret = ttm_bo_add_ttm(bo, true);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_validate);
int ttm_bo_init(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct file *persistent_swap_storage,
size_t acc_size,
struct sg_table *sg,
struct reservation_object *resv,
void (*destroy) (struct ttm_buffer_object *))
{
int ret = 0;
unsigned long num_pages;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
bool locked;
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (ret) {
pr_err("Out of kernel memory\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
return -ENOMEM;
}
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
pr_err("Illegal buffer object size\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
ttm_mem_global_free(mem_glob, acc_size);
return -EINVAL;
}
bo->destroy = destroy;
kref_init(&bo->kref);
kref_init(&bo->list_kref);
atomic_set(&bo->cpu_writers, 0);
INIT_LIST_HEAD(&bo->lru);
INIT_LIST_HEAD(&bo->ddestroy);
INIT_LIST_HEAD(&bo->swap);
INIT_LIST_HEAD(&bo->io_reserve_lru);
mutex_init(&bo->wu_mutex);
bo->bdev = bdev;
bo->glob = bdev->glob;
bo->type = type;
bo->num_pages = num_pages;
bo->mem.size = num_pages << PAGE_SHIFT;
bo->mem.mem_type = TTM_PL_SYSTEM;
bo->mem.num_pages = bo->num_pages;
bo->mem.mm_node = NULL;
bo->mem.page_alignment = page_alignment;
bo->mem.bus.io_reserved_vm = false;
bo->mem.bus.io_reserved_count = 0;
bo->priv_flags = 0;
bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
bo->persistent_swap_storage = persistent_swap_storage;
bo->acc_size = acc_size;
bo->sg = sg;
if (resv) {
bo->resv = resv;
lockdep_assert_held(&bo->resv->lock.base);
} else {
bo->resv = &bo->ttm_resv;
reservation_object_init(&bo->ttm_resv);
}
atomic_inc(&bo->glob->bo_count);
drm_vma_node_reset(&bo->vma_node);
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device ||
bo->type == ttm_bo_type_sg)
ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
bo->mem.num_pages);
/* passed reservation objects should already be locked,
* since otherwise lockdep will be angered in radeon.
*/
if (!resv) {
locked = ww_mutex_trylock(&bo->resv->lock);
WARN_ON(!locked);
}
if (likely(!ret))
ret = ttm_bo_validate(bo, placement, interruptible, false);
if (!resv) {
ttm_bo_unreserve(bo);
} else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
spin_lock(&bo->glob->lru_lock);
ttm_bo_add_to_lru(bo);
spin_unlock(&bo->glob->lru_lock);
}
if (unlikely(ret))
ttm_bo_unref(&bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_init);
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += ttm_round_pot(npages * sizeof(void *));
size += ttm_round_pot(sizeof(struct ttm_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_acc_size);
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
size += ttm_round_pot(sizeof(struct ttm_dma_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_dma_acc_size);
int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct file *persistent_swap_storage,
struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo;
size_t acc_size;
int ret;
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (unlikely(bo == NULL))
return -ENOMEM;
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
interruptible, persistent_swap_storage, acc_size,
NULL, NULL, NULL);
if (likely(ret == 0))
*p_bo = bo;
return ret;
}
EXPORT_SYMBOL(ttm_bo_create);
static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
unsigned mem_type, bool allow_errors)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_bo_global *glob = bdev->glob;
int ret;
/*
* Can't use standard list traversal since we're unlocking.
*/
spin_lock(&glob->lru_lock);
while (!list_empty(&man->lru)) {
spin_unlock(&glob->lru_lock);
ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
if (ret) {
if (allow_errors) {
return ret;
} else {
pr_err("Cleanup eviction failed\n");
}
}
spin_lock(&glob->lru_lock);
}
spin_unlock(&glob->lru_lock);
return 0;
}
int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man;
int ret = -EINVAL;
if (mem_type >= TTM_NUM_MEM_TYPES) {
pr_err("Illegal memory type %d\n", mem_type);
return ret;
}
man = &bdev->man[mem_type];
if (!man->has_type) {
pr_err("Trying to take down uninitialized memory manager type %u\n",
mem_type);
return ret;
}
man->use_type = false;
man->has_type = false;
ret = 0;
if (mem_type > 0) {
ttm_bo_force_list_clean(bdev, mem_type, false);
ret = (*man->func->takedown)(man);
}
return ret;
}
EXPORT_SYMBOL(ttm_bo_clean_mm);
int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
pr_err("Illegal memory manager memory type %u\n", mem_type);
return -EINVAL;
}
if (!man->has_type) {
pr_err("Memory type %u has not been initialized\n", mem_type);
return 0;
}
return ttm_bo_force_list_clean(bdev, mem_type, true);
}
EXPORT_SYMBOL(ttm_bo_evict_mm);
int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
unsigned long p_size)
{
int ret = -EINVAL;
struct ttm_mem_type_manager *man;
BUG_ON(type >= TTM_NUM_MEM_TYPES);
man = &bdev->man[type];
BUG_ON(man->has_type);
man->io_reserve_fastpath = true;
man->use_io_reserve_lru = false;
mutex_init(&man->io_reserve_mutex);
INIT_LIST_HEAD(&man->io_reserve_lru);
ret = bdev->driver->init_mem_type(bdev, type, man);
if (ret)
return ret;
man->bdev = bdev;
ret = 0;
if (type != TTM_PL_SYSTEM) {
ret = (*man->func->init)(man, p_size);
if (ret)
return ret;
}
man->has_type = true;
man->use_type = true;
man->size = p_size;
INIT_LIST_HEAD(&man->lru);
return 0;
}
EXPORT_SYMBOL(ttm_bo_init_mm);
static void ttm_bo_global_kobj_release(struct kobject *kobj)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
__free_page(glob->dummy_read_page);
kfree(glob);
}
void ttm_bo_global_release(struct drm_global_reference *ref)
{
struct ttm_bo_global *glob = ref->object;
kobject_del(&glob->kobj);
kobject_put(&glob->kobj);
}
EXPORT_SYMBOL(ttm_bo_global_release);
int ttm_bo_global_init(struct drm_global_reference *ref)
{
struct ttm_bo_global_ref *bo_ref =
container_of(ref, struct ttm_bo_global_ref, ref);
struct ttm_bo_global *glob = ref->object;
int ret;
mutex_init(&glob->device_list_mutex);
spin_lock_init(&glob->lru_lock);
glob->mem_glob = bo_ref->mem_glob;
glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
if (unlikely(glob->dummy_read_page == NULL)) {
ret = -ENOMEM;
goto out_no_drp;
}
INIT_LIST_HEAD(&glob->swap_lru);
INIT_LIST_HEAD(&glob->device_list);
ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
if (unlikely(ret != 0)) {
pr_err("Could not register buffer object swapout\n");
goto out_no_shrink;
}
atomic_set(&glob->bo_count, 0);
ret = kobject_init_and_add(
&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
if (unlikely(ret != 0))
kobject_put(&glob->kobj);
return ret;
out_no_shrink:
__free_page(glob->dummy_read_page);
out_no_drp:
kfree(glob);
return ret;
}
EXPORT_SYMBOL(ttm_bo_global_init);
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
int ret = 0;
unsigned i = TTM_NUM_MEM_TYPES;
struct ttm_mem_type_manager *man;
struct ttm_bo_global *glob = bdev->glob;
while (i--) {
man = &bdev->man[i];
if (man->has_type) {
man->use_type = false;
if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
ret = -EBUSY;
pr_err("DRM memory manager type %d is not clean\n",
i);
}
man->has_type = false;
}
}
mutex_lock(&glob->device_list_mutex);
list_del(&bdev->device_list);
mutex_unlock(&glob->device_list_mutex);
cancel_delayed_work_sync(&bdev->wq);
while (ttm_bo_delayed_delete(bdev, true))
;
spin_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
TTM_DEBUG("Delayed destroy list was clean\n");
if (list_empty(&bdev->man[0].lru))
TTM_DEBUG("Swap list was clean\n");
spin_unlock(&glob->lru_lock);
drm_vma_offset_manager_destroy(&bdev->vma_manager);
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_release);
int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_bo_global *glob,
struct ttm_bo_driver *driver,
struct address_space *mapping,
uint64_t file_page_offset,
bool need_dma32)
{
int ret = -EINVAL;
bdev->driver = driver;
memset(bdev->man, 0, sizeof(bdev->man));
/*
* Initialize the system memory buffer type.
* Other types need to be driver / IOCTL initialized.
*/
ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
if (unlikely(ret != 0))
goto out_no_sys;
drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
0x10000000);
INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
INIT_LIST_HEAD(&bdev->ddestroy);
bdev->dev_mapping = mapping;
bdev->glob = glob;
bdev->need_dma32 = need_dma32;
mutex_lock(&glob->device_list_mutex);
list_add_tail(&bdev->device_list, &glob->device_list);
mutex_unlock(&glob->device_list_mutex);
return 0;
out_no_sys:
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_init);
/*
* buffer object vm functions.
*/
bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (mem->mem_type == TTM_PL_SYSTEM)
return false;
if (man->flags & TTM_MEMTYPE_FLAG_CMA)
return false;
if (mem->placement & TTM_PL_FLAG_CACHED)
return false;
}
return true;
}
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
ttm_mem_io_free_vm(bo);
}
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
ttm_mem_io_lock(man, false);
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(man);
}
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
int ttm_bo_wait(struct ttm_buffer_object *bo,
bool interruptible, bool no_wait)
{
struct reservation_object_list *fobj;
struct reservation_object *resv;
struct fence *excl;
long timeout = 15 * HZ;
int i;
resv = bo->resv;
fobj = reservation_object_get_list(resv);
excl = reservation_object_get_excl(resv);
if (excl) {
if (!fence_is_signaled(excl)) {
if (no_wait)
return -EBUSY;
timeout = fence_wait_timeout(excl,
interruptible, timeout);
}
}
for (i = 0; fobj && timeout > 0 && i < fobj->shared_count; ++i) {
struct fence *fence;
fence = rcu_dereference_protected(fobj->shared[i],
reservation_object_held(resv));
if (!fence_is_signaled(fence)) {
if (no_wait)
return -EBUSY;
timeout = fence_wait_timeout(fence,
interruptible, timeout);
}
}
if (timeout < 0)
return timeout;
if (timeout == 0)
return -EBUSY;
reservation_object_add_excl_fence(resv, NULL);
clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);
int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
int ret = 0;
/*
* Using ttm_bo_reserve makes sure the lru lists are updated.
*/
ret = ttm_bo_reserve(bo, true, no_wait, NULL);
if (unlikely(ret != 0))
return ret;
ret = ttm_bo_wait(bo, true, no_wait);
if (likely(ret == 0))
atomic_inc(&bo->cpu_writers);
ttm_bo_unreserve(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
atomic_dec(&bo->cpu_writers);
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
/**
* A buffer object shrink method that tries to swap out the first
* buffer object on the bo_global::swap_lru list.
*/
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
{
struct ttm_bo_global *glob =
container_of(shrink, struct ttm_bo_global, shrink);
struct ttm_buffer_object *bo;
int ret = -EBUSY;
int put_count;
uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
spin_lock(&glob->lru_lock);
list_for_each_entry(bo, &glob->swap_lru, swap) {
ret = __ttm_bo_reserve(bo, false, true, NULL);
if (!ret)
break;
}
if (ret) {
spin_unlock(&glob->lru_lock);
return ret;
}
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
/**
* Wait for GPU, then move to system cached.
*/
ret = ttm_bo_wait(bo, false, false);
if (unlikely(ret != 0))
goto out;
if ((bo->mem.placement & swap_placement) != swap_placement) {
struct ttm_mem_reg evict_mem;
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
evict_mem.mem_type = TTM_PL_SYSTEM;
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
false, false);
if (unlikely(ret != 0))
goto out;
}
ttm_bo_unmap_virtual(bo);
/**
* Swap out. Buffer will be swapped in again as soon as
* anyone tries to access a ttm page.
*/
if (bo->bdev->driver->swap_notify)
bo->bdev->driver->swap_notify(bo);
ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
out:
/**
*
* Unreserve without putting on LRU to avoid swapping out an
* already swapped buffer.
*/
__ttm_bo_unreserve(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
;
}
EXPORT_SYMBOL(ttm_bo_swapout_all);
/**
* ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
* unreserved
*
* @bo: Pointer to buffer
*/
int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
{
int ret;
/*
* In the absense of a wait_unlocked API,
* Use the bo::wu_mutex to avoid triggering livelocks due to
* concurrent use of this function. Note that this use of
* bo::wu_mutex can go away if we change locking order to
* mmap_sem -> bo::reserve.
*/
ret = mutex_lock_interruptible(&bo->wu_mutex);
if (unlikely(ret != 0))
return -ERESTARTSYS;
if (!ww_mutex_is_locked(&bo->resv->lock))
goto out_unlock;
ret = __ttm_bo_reserve(bo, true, false, NULL);
if (unlikely(ret != 0))
goto out_unlock;
__ttm_bo_unreserve(bo);
out_unlock:
mutex_unlock(&bo->wu_mutex);
return ret;
}