2012-02-21 21:19:22 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
|
|
*
|
|
|
|
* Pentium III FXSR, SSE support
|
|
|
|
* General FPU state handling cleanups
|
|
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
|
|
* x86-64 work by Andi Kleen 2002
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _FPU_INTERNAL_H
|
|
|
|
#define _FPU_INTERNAL_H
|
|
|
|
|
|
|
|
#include <linux/kernel_stat.h>
|
|
|
|
#include <linux/regset.h>
|
2012-07-24 23:05:27 +00:00
|
|
|
#include <linux/compat.h>
|
2012-02-21 21:19:22 +00:00
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/asm.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/sigcontext.h>
|
|
|
|
#include <asm/user.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/xsave.h>
|
2012-09-22 00:18:44 +00:00
|
|
|
#include <asm/smap.h>
|
2012-02-21 21:19:22 +00:00
|
|
|
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
# include <asm/sigcontext32.h>
|
|
|
|
# include <asm/user32.h>
|
2012-11-10 04:51:47 +00:00
|
|
|
struct ksignal;
|
|
|
|
int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
compat_sigset_t *set, struct pt_regs *regs);
|
2012-11-10 04:51:47 +00:00
|
|
|
int ia32_setup_frame(int sig, struct ksignal *ksig,
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
compat_sigset_t *set, struct pt_regs *regs);
|
|
|
|
#else
|
|
|
|
# define user_i387_ia32_struct user_i387_struct
|
|
|
|
# define user32_fxsr_struct user_fxsr_struct
|
|
|
|
# define ia32_setup_frame __setup_frame
|
|
|
|
# define ia32_setup_rt_frame __setup_rt_frame
|
|
|
|
#endif
|
|
|
|
|
|
|
|
extern unsigned int mxcsr_feature_mask;
|
2012-02-21 21:19:22 +00:00
|
|
|
extern void fpu_init(void);
|
2012-09-06 21:58:52 +00:00
|
|
|
extern void eager_fpu_init(void);
|
2012-02-21 21:19:22 +00:00
|
|
|
|
|
|
|
DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
|
|
|
|
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
|
|
|
|
struct task_struct *tsk);
|
|
|
|
extern void convert_to_fxsr(struct task_struct *tsk,
|
|
|
|
const struct user_i387_ia32_struct *env);
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
extern user_regset_active_fn fpregs_active, xfpregs_active;
|
|
|
|
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
|
|
|
|
xstateregs_get;
|
|
|
|
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
|
|
|
|
xstateregs_set;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* xstateregs_active == fpregs_active. Please refer to the comment
|
|
|
|
* at the definition of fpregs_active.
|
|
|
|
*/
|
|
|
|
#define xstateregs_active fpregs_active
|
|
|
|
|
|
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
|
|
extern void finit_soft_fpu(struct i387_soft_struct *soft);
|
|
|
|
#else
|
|
|
|
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
|
|
|
|
#endif
|
|
|
|
|
2012-07-24 23:05:27 +00:00
|
|
|
static inline int is_ia32_compat_frame(void)
|
|
|
|
{
|
|
|
|
return config_enabled(CONFIG_IA32_EMULATION) &&
|
|
|
|
test_thread_flag(TIF_IA32);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int is_ia32_frame(void)
|
|
|
|
{
|
|
|
|
return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int is_x32_frame(void)
|
|
|
|
{
|
|
|
|
return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
|
|
|
|
}
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
#define X87_FSW_ES (1 << 7) /* Exception Summary */
|
|
|
|
|
2012-09-06 21:58:52 +00:00
|
|
|
static __always_inline __pure bool use_eager_fpu(void)
|
|
|
|
{
|
2014-03-27 22:10:40 +00:00
|
|
|
return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
|
2012-09-06 21:58:52 +00:00
|
|
|
}
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
static __always_inline __pure bool use_xsaveopt(void)
|
|
|
|
{
|
2014-03-27 22:10:40 +00:00
|
|
|
return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline __pure bool use_xsave(void)
|
|
|
|
{
|
2014-03-27 22:10:40 +00:00
|
|
|
return static_cpu_has_safe(X86_FEATURE_XSAVE);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline __pure bool use_fxsr(void)
|
|
|
|
{
|
2014-03-27 22:10:40 +00:00
|
|
|
return static_cpu_has_safe(X86_FEATURE_FXSR);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
2012-09-06 21:58:52 +00:00
|
|
|
static inline void fx_finit(struct i387_fxsave_struct *fx)
|
|
|
|
{
|
|
|
|
memset(fx, 0, xstate_size);
|
|
|
|
fx->cwd = 0x37f;
|
2012-09-10 17:40:08 +00:00
|
|
|
fx->mxcsr = MXCSR_DEFAULT;
|
2012-09-06 21:58:52 +00:00
|
|
|
}
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
extern void __sanitize_i387_state(struct task_struct *);
|
|
|
|
|
|
|
|
static inline void sanitize_i387_state(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
if (!use_xsaveopt())
|
|
|
|
return;
|
|
|
|
__sanitize_i387_state(tsk);
|
|
|
|
}
|
|
|
|
|
2012-09-22 00:18:44 +00:00
|
|
|
#define user_insn(insn, output, input...) \
|
|
|
|
({ \
|
|
|
|
int err; \
|
|
|
|
asm volatile(ASM_STAC "\n" \
|
|
|
|
"1:" #insn "\n\t" \
|
|
|
|
"2: " ASM_CLAC "\n" \
|
|
|
|
".section .fixup,\"ax\"\n" \
|
|
|
|
"3: movl $-1,%[err]\n" \
|
|
|
|
" jmp 2b\n" \
|
|
|
|
".previous\n" \
|
|
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
|
|
: [err] "=r" (err), output \
|
|
|
|
: "0"(0), input); \
|
|
|
|
err; \
|
|
|
|
})
|
|
|
|
|
2012-07-24 23:05:28 +00:00
|
|
|
#define check_insn(insn, output, input...) \
|
|
|
|
({ \
|
|
|
|
int err; \
|
|
|
|
asm volatile("1:" #insn "\n\t" \
|
|
|
|
"2:\n" \
|
|
|
|
".section .fixup,\"ax\"\n" \
|
|
|
|
"3: movl $-1,%[err]\n" \
|
|
|
|
" jmp 2b\n" \
|
|
|
|
".previous\n" \
|
|
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
|
|
: [err] "=r" (err), output \
|
|
|
|
: "0"(0), input); \
|
|
|
|
err; \
|
|
|
|
})
|
|
|
|
|
|
|
|
static inline int fsave_user(struct i387_fsave_struct __user *fx)
|
2012-02-21 21:19:22 +00:00
|
|
|
{
|
2012-09-22 00:18:44 +00:00
|
|
|
return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
|
|
|
|
{
|
2012-07-24 23:05:28 +00:00
|
|
|
if (config_enabled(CONFIG_X86_32))
|
2012-09-22 00:18:44 +00:00
|
|
|
return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
|
2012-07-24 23:05:28 +00:00
|
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
2012-09-22 00:18:44 +00:00
|
|
|
return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
|
2012-02-21 21:19:22 +00:00
|
|
|
|
2012-07-24 23:05:28 +00:00
|
|
|
/* See comment in fpu_fxsave() below. */
|
2012-09-22 00:18:44 +00:00
|
|
|
return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
2012-07-24 23:05:28 +00:00
|
|
|
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
|
2012-02-21 21:19:22 +00:00
|
|
|
{
|
2012-07-24 23:05:28 +00:00
|
|
|
if (config_enabled(CONFIG_X86_32))
|
|
|
|
return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
|
|
return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
2012-02-21 21:19:22 +00:00
|
|
|
|
2012-07-24 23:05:28 +00:00
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
|
|
return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
|
|
"m" (*fx));
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
2012-09-25 22:42:18 +00:00
|
|
|
static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
|
|
|
|
{
|
|
|
|
if (config_enabled(CONFIG_X86_32))
|
|
|
|
return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
|
|
return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
|
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
|
|
return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
|
|
"m" (*fx));
|
|
|
|
}
|
|
|
|
|
2012-07-24 23:05:28 +00:00
|
|
|
static inline int frstor_checking(struct i387_fsave_struct *fx)
|
2012-02-21 21:19:22 +00:00
|
|
|
{
|
2012-07-24 23:05:28 +00:00
|
|
|
return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
2012-09-25 22:42:18 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline int frstor_user(struct i387_fsave_struct __user *fx)
|
|
|
|
{
|
|
|
|
return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void fpu_fxsave(struct fpu *fpu)
|
|
|
|
{
|
2012-07-24 23:05:28 +00:00
|
|
|
if (config_enabled(CONFIG_X86_32))
|
|
|
|
asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
|
|
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
2014-12-21 14:02:23 +00:00
|
|
|
asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state->fxsave));
|
2012-07-24 23:05:28 +00:00
|
|
|
else {
|
|
|
|
/* Using "rex64; fxsave %0" is broken because, if the memory
|
|
|
|
* operand uses any extended registers for addressing, a second
|
|
|
|
* REX prefix will be generated (to the assembler, rex64
|
|
|
|
* followed by semicolon is a separate instruction), and hence
|
|
|
|
* the 64-bitness is lost.
|
|
|
|
*
|
|
|
|
* Using "fxsaveq %0" would be the ideal choice, but is only
|
|
|
|
* supported starting with gas 2.16.
|
|
|
|
*
|
|
|
|
* Using, as a workaround, the properly prefixed form below
|
|
|
|
* isn't accepted by any binutils version so far released,
|
|
|
|
* complaining that the same type of prefix is used twice if
|
|
|
|
* an extended register is needed for addressing (fix submitted
|
|
|
|
* to mainline 2005-11-21).
|
|
|
|
*
|
|
|
|
* asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
|
|
|
|
*
|
|
|
|
* This, however, we can work around by forcing the compiler to
|
|
|
|
* select an addressing mode that doesn't require extended
|
|
|
|
* registers.
|
|
|
|
*/
|
|
|
|
asm volatile( "rex64/fxsave (%[fx])"
|
|
|
|
: "=m" (fpu->state->fxsave)
|
|
|
|
: [fx] "R" (&fpu->state->fxsave));
|
|
|
|
}
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These must be called with preempt disabled. Returns
|
|
|
|
* 'true' if the FPU state is still intact.
|
|
|
|
*/
|
|
|
|
static inline int fpu_save_init(struct fpu *fpu)
|
|
|
|
{
|
|
|
|
if (use_xsave()) {
|
|
|
|
fpu_xsave(fpu);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* xsave header may indicate the init state of the FP.
|
|
|
|
*/
|
|
|
|
if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
|
|
|
|
return 1;
|
|
|
|
} else if (use_fxsr()) {
|
|
|
|
fpu_fxsave(fpu);
|
|
|
|
} else {
|
|
|
|
asm volatile("fnsave %[fx]; fwait"
|
|
|
|
: [fx] "=m" (fpu->state->fsave));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If exceptions are pending, we need to clear them so
|
|
|
|
* that we don't randomly get exceptions later.
|
|
|
|
*
|
|
|
|
* FIXME! Is this perhaps only true for the old-style
|
|
|
|
* irq13 case? Maybe we could leave the x87 state
|
|
|
|
* intact otherwise?
|
|
|
|
*/
|
|
|
|
if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
|
|
|
|
asm volatile("fnclex");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int __save_init_fpu(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
return fpu_save_init(&tsk->thread.fpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int fpu_restore_checking(struct fpu *fpu)
|
|
|
|
{
|
|
|
|
if (use_xsave())
|
2012-07-24 23:05:28 +00:00
|
|
|
return fpu_xrstor_checking(&fpu->state->xsave);
|
|
|
|
else if (use_fxsr())
|
|
|
|
return fxrstor_checking(&fpu->state->fxsave);
|
2012-02-21 21:19:22 +00:00
|
|
|
else
|
2012-07-24 23:05:28 +00:00
|
|
|
return frstor_checking(&fpu->state->fsave);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline int restore_fpu_checking(struct task_struct *tsk)
|
|
|
|
{
|
2014-12-21 14:02:23 +00:00
|
|
|
/*
|
|
|
|
* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
|
|
|
|
* pending. Clear the x87 state here by setting it to fixed values.
|
|
|
|
* "m" is a random variable that should be in L1.
|
|
|
|
*/
|
2014-06-17 22:06:23 +00:00
|
|
|
if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
|
2014-01-12 03:15:52 +00:00
|
|
|
asm volatile(
|
|
|
|
"fnclex\n\t"
|
|
|
|
"emms\n\t"
|
|
|
|
"fildl %P[addr]" /* set F?P to defined value */
|
|
|
|
: : [addr] "m" (tsk->thread.fpu.has_fpu));
|
|
|
|
}
|
2012-02-21 21:19:22 +00:00
|
|
|
|
|
|
|
return fpu_restore_checking(&tsk->thread.fpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Software FPU state helpers. Careful: these need to
|
|
|
|
* be preemption protection *and* they need to be
|
|
|
|
* properly paired with the CR0.TS changes!
|
|
|
|
*/
|
|
|
|
static inline int __thread_has_fpu(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
return tsk->thread.fpu.has_fpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Must be paired with an 'stts' after! */
|
|
|
|
static inline void __thread_clear_has_fpu(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
tsk->thread.fpu.has_fpu = 0;
|
2012-05-11 07:35:27 +00:00
|
|
|
this_cpu_write(fpu_owner_task, NULL);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Must be paired with a 'clts' before! */
|
|
|
|
static inline void __thread_set_has_fpu(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
tsk->thread.fpu.has_fpu = 1;
|
2012-05-11 07:35:27 +00:00
|
|
|
this_cpu_write(fpu_owner_task, tsk);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encapsulate the CR0.TS handling together with the
|
|
|
|
* software flag.
|
|
|
|
*
|
|
|
|
* These generally need preemption protection to work,
|
|
|
|
* do try to avoid using these on their own.
|
|
|
|
*/
|
|
|
|
static inline void __thread_fpu_end(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
__thread_clear_has_fpu(tsk);
|
2012-09-06 21:58:52 +00:00
|
|
|
if (!use_eager_fpu())
|
2012-08-24 21:13:02 +00:00
|
|
|
stts();
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __thread_fpu_begin(struct task_struct *tsk)
|
|
|
|
{
|
2014-09-02 17:57:20 +00:00
|
|
|
if (!use_eager_fpu())
|
2012-08-24 21:13:02 +00:00
|
|
|
clts();
|
2012-02-21 21:19:22 +00:00
|
|
|
__thread_set_has_fpu(tsk);
|
|
|
|
}
|
|
|
|
|
2012-08-24 21:13:02 +00:00
|
|
|
static inline void __drop_fpu(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
if (__thread_has_fpu(tsk)) {
|
|
|
|
/* Ignore delayed exceptions from user space */
|
|
|
|
asm volatile("1: fwait\n"
|
|
|
|
"2:\n"
|
|
|
|
_ASM_EXTABLE(1b, 2b));
|
|
|
|
__thread_fpu_end(tsk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void drop_fpu(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Forget coprocessor state..
|
|
|
|
*/
|
|
|
|
preempt_disable();
|
2013-11-12 23:08:46 +00:00
|
|
|
tsk->thread.fpu_counter = 0;
|
2012-08-24 21:13:02 +00:00
|
|
|
__drop_fpu(tsk);
|
|
|
|
clear_used_math();
|
|
|
|
preempt_enable();
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void drop_init_fpu(struct task_struct *tsk)
|
|
|
|
{
|
2012-09-06 21:58:52 +00:00
|
|
|
if (!use_eager_fpu())
|
2012-08-24 21:13:02 +00:00
|
|
|
drop_fpu(tsk);
|
2012-09-06 21:58:52 +00:00
|
|
|
else {
|
|
|
|
if (use_xsave())
|
|
|
|
xrstor_state(init_xstate_buf, -1);
|
|
|
|
else
|
|
|
|
fxrstor_checking(&init_xstate_buf->i387);
|
|
|
|
}
|
2012-08-24 21:13:02 +00:00
|
|
|
}
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
/*
|
|
|
|
* FPU state switching for scheduling.
|
|
|
|
*
|
|
|
|
* This is a two-stage process:
|
|
|
|
*
|
|
|
|
* - switch_fpu_prepare() saves the old state and
|
|
|
|
* sets the new state of the CR0.TS bit. This is
|
|
|
|
* done within the context of the old process.
|
|
|
|
*
|
|
|
|
* - switch_fpu_finish() restores the new state as
|
|
|
|
* necessary.
|
|
|
|
*/
|
|
|
|
typedef struct { int preload; } fpu_switch_t;
|
|
|
|
|
|
|
|
/*
|
2012-11-30 20:15:32 +00:00
|
|
|
* Must be run with preemption disabled: this clears the fpu_owner_task,
|
|
|
|
* on this CPU.
|
2012-02-21 21:19:22 +00:00
|
|
|
*
|
2012-11-30 20:15:32 +00:00
|
|
|
* This will disable any lazy FPU state restore of the current FPU state,
|
|
|
|
* but if the current thread owns the FPU, it will still be saved by.
|
2012-02-21 21:19:22 +00:00
|
|
|
*/
|
2012-11-30 20:15:32 +00:00
|
|
|
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
|
|
|
|
{
|
|
|
|
per_cpu(fpu_owner_task, cpu) = NULL;
|
|
|
|
}
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
|
|
|
|
{
|
2012-05-11 07:35:27 +00:00
|
|
|
return new == this_cpu_read_stable(fpu_owner_task) &&
|
2012-02-21 21:19:22 +00:00
|
|
|
cpu == new->thread.fpu.last_cpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
|
|
|
|
{
|
|
|
|
fpu_switch_t fpu;
|
|
|
|
|
2012-08-24 21:13:02 +00:00
|
|
|
/*
|
|
|
|
* If the task has used the math, pre-load the FPU on xsave processors
|
|
|
|
* or if the past 5 consecutive context-switches used math.
|
|
|
|
*/
|
2012-09-06 21:58:52 +00:00
|
|
|
fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
|
2013-11-12 23:08:46 +00:00
|
|
|
new->thread.fpu_counter > 5);
|
2012-02-21 21:19:22 +00:00
|
|
|
if (__thread_has_fpu(old)) {
|
|
|
|
if (!__save_init_fpu(old))
|
|
|
|
cpu = ~0;
|
|
|
|
old->thread.fpu.last_cpu = cpu;
|
|
|
|
old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
|
|
|
|
|
|
|
|
/* Don't change CR0.TS if we just switch! */
|
|
|
|
if (fpu.preload) {
|
2013-11-12 23:08:46 +00:00
|
|
|
new->thread.fpu_counter++;
|
2012-02-21 21:19:22 +00:00
|
|
|
__thread_set_has_fpu(new);
|
|
|
|
prefetch(new->thread.fpu.state);
|
2012-09-06 21:58:52 +00:00
|
|
|
} else if (!use_eager_fpu())
|
2012-02-21 21:19:22 +00:00
|
|
|
stts();
|
|
|
|
} else {
|
2013-11-12 23:08:46 +00:00
|
|
|
old->thread.fpu_counter = 0;
|
2012-02-21 21:19:22 +00:00
|
|
|
old->thread.fpu.last_cpu = ~0;
|
|
|
|
if (fpu.preload) {
|
2013-11-12 23:08:46 +00:00
|
|
|
new->thread.fpu_counter++;
|
2012-09-06 21:58:52 +00:00
|
|
|
if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
|
2012-02-21 21:19:22 +00:00
|
|
|
fpu.preload = 0;
|
|
|
|
else
|
|
|
|
prefetch(new->thread.fpu.state);
|
|
|
|
__thread_fpu_begin(new);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return fpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* By the time this gets called, we've already cleared CR0.TS and
|
|
|
|
* given the process the FPU if we are going to preload the FPU
|
|
|
|
* state - all we need to do is to conditionally restore the register
|
|
|
|
* state itself.
|
|
|
|
*/
|
|
|
|
static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
|
|
|
|
{
|
|
|
|
if (fpu.preload) {
|
|
|
|
if (unlikely(restore_fpu_checking(new)))
|
2012-08-24 21:13:02 +00:00
|
|
|
drop_init_fpu(new);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Signal frame handlers...
|
|
|
|
*/
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
|
|
|
|
extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
|
2012-02-21 21:19:22 +00:00
|
|
|
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
static inline int xstate_sigframe_size(void)
|
2012-02-21 21:19:22 +00:00
|
|
|
{
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
|
|
|
|
{
|
|
|
|
void __user *buf_fx = buf;
|
|
|
|
int size = xstate_sigframe_size();
|
|
|
|
|
|
|
|
if (ia32_frame && use_fxsr()) {
|
|
|
|
buf_fx = buf + sizeof(struct i387_fsave_struct);
|
|
|
|
size += sizeof(struct i387_fsave_struct);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
|
|
|
|
return __restore_xstate_sig(buf, buf_fx, size);
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2012-08-24 21:12:58 +00:00
|
|
|
* Need to be preemption-safe.
|
2012-02-21 21:19:22 +00:00
|
|
|
*
|
2012-08-24 21:12:58 +00:00
|
|
|
* NOTE! user_fpu_begin() must be used only immediately before restoring
|
|
|
|
* it. This function does not do any save/restore on their own.
|
2012-02-21 21:19:22 +00:00
|
|
|
*/
|
|
|
|
static inline void user_fpu_begin(void)
|
|
|
|
{
|
|
|
|
preempt_disable();
|
|
|
|
if (!user_has_fpu())
|
|
|
|
__thread_fpu_begin(current);
|
|
|
|
preempt_enable();
|
|
|
|
}
|
|
|
|
|
2012-09-06 21:58:52 +00:00
|
|
|
static inline void __save_fpu(struct task_struct *tsk)
|
|
|
|
{
|
2014-05-29 18:12:41 +00:00
|
|
|
if (use_xsave()) {
|
|
|
|
if (unlikely(system_state == SYSTEM_BOOTING))
|
|
|
|
xsave_state_booting(&tsk->thread.fpu.state->xsave, -1);
|
|
|
|
else
|
|
|
|
xsave_state(&tsk->thread.fpu.state->xsave, -1);
|
|
|
|
} else
|
2012-09-06 21:58:52 +00:00
|
|
|
fpu_fxsave(&tsk->thread.fpu);
|
|
|
|
}
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
/*
|
|
|
|
* These disable preemption on their own and are safe
|
|
|
|
*/
|
|
|
|
static inline void save_init_fpu(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
WARN_ON_ONCE(!__thread_has_fpu(tsk));
|
2012-08-24 21:13:02 +00:00
|
|
|
|
2012-09-06 21:58:52 +00:00
|
|
|
if (use_eager_fpu()) {
|
|
|
|
__save_fpu(tsk);
|
2012-08-24 21:13:02 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-02-21 21:19:22 +00:00
|
|
|
preempt_disable();
|
|
|
|
__save_init_fpu(tsk);
|
|
|
|
__thread_fpu_end(tsk);
|
|
|
|
preempt_enable();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* i387 state interaction
|
|
|
|
*/
|
|
|
|
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
if (cpu_has_fxsr) {
|
|
|
|
return tsk->thread.fpu.state->fxsave.cwd;
|
|
|
|
} else {
|
|
|
|
return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned short get_fpu_swd(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
if (cpu_has_fxsr) {
|
|
|
|
return tsk->thread.fpu.state->fxsave.swd;
|
|
|
|
} else {
|
|
|
|
return (unsigned short)tsk->thread.fpu.state->fsave.swd;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
if (cpu_has_xmm) {
|
|
|
|
return tsk->thread.fpu.state->fxsave.mxcsr;
|
|
|
|
} else {
|
|
|
|
return MXCSR_DEFAULT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool fpu_allocated(struct fpu *fpu)
|
|
|
|
{
|
|
|
|
return fpu->state != NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int fpu_alloc(struct fpu *fpu)
|
|
|
|
{
|
|
|
|
if (fpu_allocated(fpu))
|
|
|
|
return 0;
|
|
|
|
fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
|
|
|
|
if (!fpu->state)
|
|
|
|
return -ENOMEM;
|
|
|
|
WARN_ON((unsigned long)fpu->state & 15);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void fpu_free(struct fpu *fpu)
|
|
|
|
{
|
|
|
|
if (fpu->state) {
|
|
|
|
kmem_cache_free(task_xstate_cachep, fpu->state);
|
|
|
|
fpu->state = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-08-24 21:13:02 +00:00
|
|
|
static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
|
2012-02-21 21:19:22 +00:00
|
|
|
{
|
2012-09-06 21:58:52 +00:00
|
|
|
if (use_eager_fpu()) {
|
|
|
|
memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
|
|
|
|
__save_fpu(dst);
|
2012-08-24 21:13:02 +00:00
|
|
|
} else {
|
|
|
|
struct fpu *dfpu = &dst->thread.fpu;
|
|
|
|
struct fpu *sfpu = &src->thread.fpu;
|
|
|
|
|
|
|
|
unlazy_fpu(src);
|
|
|
|
memcpy(dfpu->state, sfpu->state, xstate_size);
|
|
|
|
}
|
2012-02-21 21:19:22 +00:00
|
|
|
}
|
|
|
|
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
static inline unsigned long
|
|
|
|
alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
|
|
|
|
unsigned long *size)
|
|
|
|
{
|
|
|
|
unsigned long frame_size = xstate_sigframe_size();
|
|
|
|
|
|
|
|
*buf_fx = sp = round_down(sp - frame_size, 64);
|
|
|
|
if (ia32_frame && use_fxsr()) {
|
|
|
|
frame_size += sizeof(struct i387_fsave_struct);
|
|
|
|
sp -= sizeof(struct i387_fsave_struct);
|
|
|
|
}
|
|
|
|
|
|
|
|
*size = frame_size;
|
|
|
|
return sp;
|
|
|
|
}
|
2012-02-21 21:19:22 +00:00
|
|
|
|
|
|
|
#endif
|