linux/drivers/iio/adc/vf610_adc.c

995 lines
24 KiB
C
Raw Normal View History

/*
* Freescale Vybrid vf610 ADC driver
*
* Copyright 2013 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/regulator/consumer.h>
#include <linux/of_platform.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/* This will be the driver name the kernel reports */
#define DRIVER_NAME "vf610-adc"
/* Vybrid/IMX ADC registers */
#define VF610_REG_ADC_HC0 0x00
#define VF610_REG_ADC_HC1 0x04
#define VF610_REG_ADC_HS 0x08
#define VF610_REG_ADC_R0 0x0c
#define VF610_REG_ADC_R1 0x10
#define VF610_REG_ADC_CFG 0x14
#define VF610_REG_ADC_GC 0x18
#define VF610_REG_ADC_GS 0x1c
#define VF610_REG_ADC_CV 0x20
#define VF610_REG_ADC_OFS 0x24
#define VF610_REG_ADC_CAL 0x28
#define VF610_REG_ADC_PCTL 0x30
/* Configuration register field define */
#define VF610_ADC_MODE_BIT8 0x00
#define VF610_ADC_MODE_BIT10 0x04
#define VF610_ADC_MODE_BIT12 0x08
#define VF610_ADC_MODE_MASK 0x0c
#define VF610_ADC_BUSCLK2_SEL 0x01
#define VF610_ADC_ALTCLK_SEL 0x02
#define VF610_ADC_ADACK_SEL 0x03
#define VF610_ADC_ADCCLK_MASK 0x03
#define VF610_ADC_CLK_DIV2 0x20
#define VF610_ADC_CLK_DIV4 0x40
#define VF610_ADC_CLK_DIV8 0x60
#define VF610_ADC_CLK_MASK 0x60
#define VF610_ADC_ADLSMP_LONG 0x10
#define VF610_ADC_ADSTS_SHORT 0x100
#define VF610_ADC_ADSTS_NORMAL 0x200
#define VF610_ADC_ADSTS_LONG 0x300
#define VF610_ADC_ADSTS_MASK 0x300
#define VF610_ADC_ADLPC_EN 0x80
#define VF610_ADC_ADHSC_EN 0x400
#define VF610_ADC_REFSEL_VALT 0x100
#define VF610_ADC_REFSEL_VBG 0x1000
#define VF610_ADC_ADTRG_HARD 0x2000
#define VF610_ADC_AVGS_8 0x4000
#define VF610_ADC_AVGS_16 0x8000
#define VF610_ADC_AVGS_32 0xC000
#define VF610_ADC_AVGS_MASK 0xC000
#define VF610_ADC_OVWREN 0x10000
/* General control register field define */
#define VF610_ADC_ADACKEN 0x1
#define VF610_ADC_DMAEN 0x2
#define VF610_ADC_ACREN 0x4
#define VF610_ADC_ACFGT 0x8
#define VF610_ADC_ACFE 0x10
#define VF610_ADC_AVGEN 0x20
#define VF610_ADC_ADCON 0x40
#define VF610_ADC_CAL 0x80
/* Other field define */
#define VF610_ADC_ADCHC(x) ((x) & 0x1F)
#define VF610_ADC_AIEN (0x1 << 7)
#define VF610_ADC_CONV_DISABLE 0x1F
#define VF610_ADC_HS_COCO0 0x1
#define VF610_ADC_CALF 0x2
#define VF610_ADC_TIMEOUT msecs_to_jiffies(100)
#define DEFAULT_SAMPLE_TIME 1000
/* V at 25°C of 696 mV */
#define VF610_VTEMP25_3V0 950
/* V at 25°C of 699 mV */
#define VF610_VTEMP25_3V3 867
/* Typical sensor slope coefficient at all temperatures */
#define VF610_TEMP_SLOPE_COEFF 1840
enum clk_sel {
VF610_ADCIOC_BUSCLK_SET,
VF610_ADCIOC_ALTCLK_SET,
VF610_ADCIOC_ADACK_SET,
};
enum vol_ref {
VF610_ADCIOC_VR_VREF_SET,
VF610_ADCIOC_VR_VALT_SET,
VF610_ADCIOC_VR_VBG_SET,
};
enum average_sel {
VF610_ADC_SAMPLE_1,
VF610_ADC_SAMPLE_4,
VF610_ADC_SAMPLE_8,
VF610_ADC_SAMPLE_16,
VF610_ADC_SAMPLE_32,
};
enum conversion_mode_sel {
VF610_ADC_CONV_NORMAL,
VF610_ADC_CONV_HIGH_SPEED,
VF610_ADC_CONV_LOW_POWER,
};
enum lst_adder_sel {
VF610_ADCK_CYCLES_3,
VF610_ADCK_CYCLES_5,
VF610_ADCK_CYCLES_7,
VF610_ADCK_CYCLES_9,
VF610_ADCK_CYCLES_13,
VF610_ADCK_CYCLES_17,
VF610_ADCK_CYCLES_21,
VF610_ADCK_CYCLES_25,
};
struct vf610_adc_feature {
enum clk_sel clk_sel;
enum vol_ref vol_ref;
enum conversion_mode_sel conv_mode;
int clk_div;
int sample_rate;
int res_mode;
u32 lst_adder_index;
u32 default_sample_time;
bool calibration;
bool ovwren;
};
struct vf610_adc {
struct device *dev;
void __iomem *regs;
struct clk *clk;
u32 vref_uv;
u32 value;
struct regulator *vref;
u32 max_adck_rate[3];
struct vf610_adc_feature adc_feature;
u32 sample_freq_avail[5];
struct completion completion;
u16 buffer[8];
};
static const u32 vf610_hw_avgs[] = { 1, 4, 8, 16, 32 };
static const u32 vf610_lst_adder[] = { 3, 5, 7, 9, 13, 17, 21, 25 };
static inline void vf610_adc_calculate_rates(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &info->adc_feature;
unsigned long adck_rate, ipg_rate = clk_get_rate(info->clk);
u32 adck_period, lst_addr_min;
int divisor, i;
adck_rate = info->max_adck_rate[adc_feature->conv_mode];
if (adck_rate) {
/* calculate clk divider which is within specification */
divisor = ipg_rate / adck_rate;
adc_feature->clk_div = 1 << fls(divisor + 1);
} else {
/* fall-back value using a safe divisor */
adc_feature->clk_div = 8;
}
iio: adc: vf610_adc: Fix division by zero error In case the fsl,adck-max-frequency property is not present in the device tree, a division by zero error results during the probe call on kernel boot (see below). This patch fixes it and also restores device tree compatibility in case kernels are booting with old device trees without this property specified. [ 1.063229] Division by zero in kernel. [ 1.067152] CPU: 0 PID: 1 Comm: swapper Not tainted 4.3.0-rc5-00212-gcc88cef #37 [ 1.074650] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 1.081135] Backtrace: [ 1.083694] [<800134a4>] (dump_backtrace) from [<8001369c>] (show_stack+0x18/0x1c) [ 1.091340] r7:00000008 r6:8e0ae210 r5:00000000 r4:8e299800 [ 1.097146] [<80013684>] (show_stack) from [<80297b1c>] (dump_stack+0x24/0x28) [ 1.104483] [<80297af8>] (dump_stack) from [<80013608>] (__div0+0x1c/0x20) [ 1.111421] [<800135ec>] (__div0) from [<802968b4>] (Ldiv0+0x8/0x10) [ 1.117865] [<80424350>] (vf610_adc_probe) from [<803153b4>] (platform_drv_probe+0x4c/0xac) [ 1.126311] r10:00000000 r9:8076a5ec r8:00000000 r7:fffffdfb r6:807cc67c r5:8e0ae210 [ 1.134319] r4:807f6c54 [ 1.136915] [<80315368>] (platform_drv_probe) from [<803138bc>] (driver_probe_device+0x20c/0x2f8) [ 1.145882] r7:807cc67c r6:00000000 r5:8e0ae210 r4:807f6c54 [ 1.151657] [<803136b0>] (driver_probe_device) from [<80313a3c>] (__driver_attach+0x94/0x98) [ 1.160190] r9:8076a5ec r8:00000098 r7:00000000 r6:8e0ae244 r5:807cc67c r4:8e0ae210 [ 1.168112] [<803139a8>] (__driver_attach) from [<80311cb8>] (bus_for_each_dev+0x70/0xa4) [ 1.176383] r7:00000000 r6:803139a8 r5:807cc67c r4:00000000 [ 1.182159] [<80311c48>] (bus_for_each_dev) from [<80313318>] (driver_attach+0x24/0x28) [ 1.190260] r6:807bb568 r5:8e2a5b00 r4:807cc67c [ 1.194996] [<803132f4>] (driver_attach) from [<80312f50>] (bus_add_driver+0x1a4/0x21c) [ 1.203113] [<80312dac>] (bus_add_driver) from [<803142a8>] (driver_register+0x80/0x100) [ 1.211275] r7:8e2a7dc0 r6:807a8160 r5:80789e14 r4:807cc67c [ 1.217075] [<80314228>] (driver_register) from [<803152f8>] (__platform_driver_register+0x5c/0x64) [ 1.226216] r5:80789e14 r4:807a8160 [ 1.229877] [<8031529c>] (__platform_driver_register) from [<80789e30>] (vf610_adc_driver_init+0x1c/0x20) [ 1.239556] [<80789e14>] (vf610_adc_driver_init) from [<800095f8>] (do_one_initcall+0x94/0x1dc) [ 1.248365] [<80009564>] (do_one_initcall) from [<8076ae34>] (kernel_init_freeable+0x13c/0x1e0) [ 1.257155] r10:80794830 r9:8076a5ec r8:00000098 r7:807d5780 r6:807d5780 r5:00000006 [ 1.265153] r4:807a0ee8 [ 1.267753] [<8076acf8>] (kernel_init_freeable) from [<80590ef0>] (kernel_init+0x18/0xf0) [ 1.276021] r10:00000000 r9:00000000 r8:00000000 r7:00000000 r6:00000000 r5:80590ed8 [ 1.284015] r4:807d5780 [ 1.286615] [<80590ed8>] (kernel_init) from [<8000f878>] (ret_from_fork+0x14/0x3c) [ 1.294278] r5:80590ed8 r4:00000000 Signed-off-by: Sanchayan Maity <maitysanchayan@gmail.com> Acked-by: Fugang Duan <B38611@freescale.com> Acked-by: Stefan Agner <stefan@agner.ch> Cc: <Stable@vger.kernel.org> Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2015-10-19 07:43:52 +00:00
adck_rate = ipg_rate / adc_feature->clk_div;
/*
* Determine the long sample time adder value to be used based
* on the default minimum sample time provided.
*/
adck_period = NSEC_PER_SEC / adck_rate;
lst_addr_min = adc_feature->default_sample_time / adck_period;
for (i = 0; i < ARRAY_SIZE(vf610_lst_adder); i++) {
if (vf610_lst_adder[i] > lst_addr_min) {
adc_feature->lst_adder_index = i;
break;
}
}
/*
* Calculate ADC sample frequencies
* Sample time unit is ADCK cycles. ADCK clk source is ipg clock,
* which is the same as bus clock.
*
* ADC conversion time = SFCAdder + AverageNum x (BCT + LSTAdder)
* SFCAdder: fixed to 6 ADCK cycles
* AverageNum: 1, 4, 8, 16, 32 samples for hardware average.
* BCT (Base Conversion Time): fixed to 25 ADCK cycles for 12 bit mode
* LSTAdder(Long Sample Time): 3, 5, 7, 9, 13, 17, 21, 25 ADCK cycles
*/
for (i = 0; i < ARRAY_SIZE(vf610_hw_avgs); i++)
info->sample_freq_avail[i] =
adck_rate / (6 + vf610_hw_avgs[i] *
(25 + vf610_lst_adder[adc_feature->lst_adder_index]));
}
static inline void vf610_adc_cfg_init(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &info->adc_feature;
/* set default Configuration for ADC controller */
adc_feature->clk_sel = VF610_ADCIOC_BUSCLK_SET;
adc_feature->vol_ref = VF610_ADCIOC_VR_VREF_SET;
adc_feature->calibration = true;
adc_feature->ovwren = true;
adc_feature->res_mode = 12;
adc_feature->sample_rate = 1;
adc_feature->conv_mode = VF610_ADC_CONV_LOW_POWER;
vf610_adc_calculate_rates(info);
}
static void vf610_adc_cfg_post_set(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &info->adc_feature;
int cfg_data = 0;
int gc_data = 0;
switch (adc_feature->clk_sel) {
case VF610_ADCIOC_ALTCLK_SET:
cfg_data |= VF610_ADC_ALTCLK_SEL;
break;
case VF610_ADCIOC_ADACK_SET:
cfg_data |= VF610_ADC_ADACK_SEL;
break;
default:
break;
}
/* low power set for calibration */
cfg_data |= VF610_ADC_ADLPC_EN;
/* enable high speed for calibration */
cfg_data |= VF610_ADC_ADHSC_EN;
/* voltage reference */
switch (adc_feature->vol_ref) {
case VF610_ADCIOC_VR_VREF_SET:
break;
case VF610_ADCIOC_VR_VALT_SET:
cfg_data |= VF610_ADC_REFSEL_VALT;
break;
case VF610_ADCIOC_VR_VBG_SET:
cfg_data |= VF610_ADC_REFSEL_VBG;
break;
default:
dev_err(info->dev, "error voltage reference\n");
}
/* data overwrite enable */
if (adc_feature->ovwren)
cfg_data |= VF610_ADC_OVWREN;
writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
writel(gc_data, info->regs + VF610_REG_ADC_GC);
}
static void vf610_adc_calibration(struct vf610_adc *info)
{
int adc_gc, hc_cfg;
if (!info->adc_feature.calibration)
return;
/* enable calibration interrupt */
hc_cfg = VF610_ADC_AIEN | VF610_ADC_CONV_DISABLE;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
adc_gc = readl(info->regs + VF610_REG_ADC_GC);
writel(adc_gc | VF610_ADC_CAL, info->regs + VF610_REG_ADC_GC);
if (!wait_for_completion_timeout(&info->completion, VF610_ADC_TIMEOUT))
dev_err(info->dev, "Timeout for adc calibration\n");
adc_gc = readl(info->regs + VF610_REG_ADC_GS);
if (adc_gc & VF610_ADC_CALF)
dev_err(info->dev, "ADC calibration failed\n");
info->adc_feature.calibration = false;
}
static void vf610_adc_cfg_set(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &(info->adc_feature);
int cfg_data;
cfg_data = readl(info->regs + VF610_REG_ADC_CFG);
cfg_data &= ~VF610_ADC_ADLPC_EN;
if (adc_feature->conv_mode == VF610_ADC_CONV_LOW_POWER)
cfg_data |= VF610_ADC_ADLPC_EN;
cfg_data &= ~VF610_ADC_ADHSC_EN;
if (adc_feature->conv_mode == VF610_ADC_CONV_HIGH_SPEED)
cfg_data |= VF610_ADC_ADHSC_EN;
writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
}
static void vf610_adc_sample_set(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &(info->adc_feature);
int cfg_data, gc_data;
cfg_data = readl(info->regs + VF610_REG_ADC_CFG);
gc_data = readl(info->regs + VF610_REG_ADC_GC);
/* resolution mode */
cfg_data &= ~VF610_ADC_MODE_MASK;
switch (adc_feature->res_mode) {
case 8:
cfg_data |= VF610_ADC_MODE_BIT8;
break;
case 10:
cfg_data |= VF610_ADC_MODE_BIT10;
break;
case 12:
cfg_data |= VF610_ADC_MODE_BIT12;
break;
default:
dev_err(info->dev, "error resolution mode\n");
break;
}
/* clock select and clock divider */
cfg_data &= ~(VF610_ADC_CLK_MASK | VF610_ADC_ADCCLK_MASK);
switch (adc_feature->clk_div) {
case 1:
break;
case 2:
cfg_data |= VF610_ADC_CLK_DIV2;
break;
case 4:
cfg_data |= VF610_ADC_CLK_DIV4;
break;
case 8:
cfg_data |= VF610_ADC_CLK_DIV8;
break;
case 16:
switch (adc_feature->clk_sel) {
case VF610_ADCIOC_BUSCLK_SET:
cfg_data |= VF610_ADC_BUSCLK2_SEL | VF610_ADC_CLK_DIV8;
break;
default:
dev_err(info->dev, "error clk divider\n");
break;
}
break;
}
/*
* Set ADLSMP and ADSTS based on the Long Sample Time Adder value
* determined.
*/
switch (adc_feature->lst_adder_index) {
case VF610_ADCK_CYCLES_3:
break;
case VF610_ADCK_CYCLES_5:
cfg_data |= VF610_ADC_ADSTS_SHORT;
break;
case VF610_ADCK_CYCLES_7:
cfg_data |= VF610_ADC_ADSTS_NORMAL;
break;
case VF610_ADCK_CYCLES_9:
cfg_data |= VF610_ADC_ADSTS_LONG;
break;
case VF610_ADCK_CYCLES_13:
cfg_data |= VF610_ADC_ADLSMP_LONG;
break;
case VF610_ADCK_CYCLES_17:
cfg_data |= VF610_ADC_ADLSMP_LONG;
cfg_data |= VF610_ADC_ADSTS_SHORT;
break;
case VF610_ADCK_CYCLES_21:
cfg_data |= VF610_ADC_ADLSMP_LONG;
cfg_data |= VF610_ADC_ADSTS_NORMAL;
break;
case VF610_ADCK_CYCLES_25:
cfg_data |= VF610_ADC_ADLSMP_LONG;
cfg_data |= VF610_ADC_ADSTS_NORMAL;
break;
default:
dev_err(info->dev, "error in sample time select\n");
}
/* update hardware average selection */
cfg_data &= ~VF610_ADC_AVGS_MASK;
gc_data &= ~VF610_ADC_AVGEN;
switch (adc_feature->sample_rate) {
case VF610_ADC_SAMPLE_1:
break;
case VF610_ADC_SAMPLE_4:
gc_data |= VF610_ADC_AVGEN;
break;
case VF610_ADC_SAMPLE_8:
gc_data |= VF610_ADC_AVGEN;
cfg_data |= VF610_ADC_AVGS_8;
break;
case VF610_ADC_SAMPLE_16:
gc_data |= VF610_ADC_AVGEN;
cfg_data |= VF610_ADC_AVGS_16;
break;
case VF610_ADC_SAMPLE_32:
gc_data |= VF610_ADC_AVGEN;
cfg_data |= VF610_ADC_AVGS_32;
break;
default:
dev_err(info->dev,
"error hardware sample average select\n");
}
writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
writel(gc_data, info->regs + VF610_REG_ADC_GC);
}
static void vf610_adc_hw_init(struct vf610_adc *info)
{
/* CFG: Feature set */
vf610_adc_cfg_post_set(info);
vf610_adc_sample_set(info);
/* adc calibration */
vf610_adc_calibration(info);
/* CFG: power and speed set */
vf610_adc_cfg_set(info);
}
static int vf610_set_conversion_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct vf610_adc *info = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
info->adc_feature.conv_mode = mode;
vf610_adc_calculate_rates(info);
vf610_adc_hw_init(info);
mutex_unlock(&indio_dev->mlock);
return 0;
}
static int vf610_get_conversion_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct vf610_adc *info = iio_priv(indio_dev);
return info->adc_feature.conv_mode;
}
static const char * const vf610_conv_modes[] = { "normal", "high-speed",
"low-power" };
static const struct iio_enum vf610_conversion_mode = {
.items = vf610_conv_modes,
.num_items = ARRAY_SIZE(vf610_conv_modes),
.get = vf610_get_conversion_mode,
.set = vf610_set_conversion_mode,
};
static const struct iio_chan_spec_ext_info vf610_ext_info[] = {
IIO_ENUM("conversion_mode", IIO_SHARED_BY_DIR, &vf610_conversion_mode),
{},
};
#define VF610_ADC_CHAN(_idx, _chan_type) { \
.type = (_chan_type), \
.indexed = 1, \
.channel = (_idx), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.ext_info = vf610_ext_info, \
.scan_index = (_idx), \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
}, \
}
#define VF610_ADC_TEMPERATURE_CHAN(_idx, _chan_type) { \
.type = (_chan_type), \
.channel = (_idx), \
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
.scan_index = (_idx), \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
}, \
}
static const struct iio_chan_spec vf610_adc_iio_channels[] = {
VF610_ADC_CHAN(0, IIO_VOLTAGE),
VF610_ADC_CHAN(1, IIO_VOLTAGE),
VF610_ADC_CHAN(2, IIO_VOLTAGE),
VF610_ADC_CHAN(3, IIO_VOLTAGE),
VF610_ADC_CHAN(4, IIO_VOLTAGE),
VF610_ADC_CHAN(5, IIO_VOLTAGE),
VF610_ADC_CHAN(6, IIO_VOLTAGE),
VF610_ADC_CHAN(7, IIO_VOLTAGE),
VF610_ADC_CHAN(8, IIO_VOLTAGE),
VF610_ADC_CHAN(9, IIO_VOLTAGE),
VF610_ADC_CHAN(10, IIO_VOLTAGE),
VF610_ADC_CHAN(11, IIO_VOLTAGE),
VF610_ADC_CHAN(12, IIO_VOLTAGE),
VF610_ADC_CHAN(13, IIO_VOLTAGE),
VF610_ADC_CHAN(14, IIO_VOLTAGE),
VF610_ADC_CHAN(15, IIO_VOLTAGE),
VF610_ADC_TEMPERATURE_CHAN(26, IIO_TEMP),
IIO_CHAN_SOFT_TIMESTAMP(32),
/* sentinel */
};
static int vf610_adc_read_data(struct vf610_adc *info)
{
int result;
result = readl(info->regs + VF610_REG_ADC_R0);
switch (info->adc_feature.res_mode) {
case 8:
result &= 0xFF;
break;
case 10:
result &= 0x3FF;
break;
case 12:
result &= 0xFFF;
break;
default:
break;
}
return result;
}
static irqreturn_t vf610_adc_isr(int irq, void *dev_id)
{
struct iio_dev *indio_dev = (struct iio_dev *)dev_id;
struct vf610_adc *info = iio_priv(indio_dev);
int coco;
coco = readl(info->regs + VF610_REG_ADC_HS);
if (coco & VF610_ADC_HS_COCO0) {
info->value = vf610_adc_read_data(info);
if (iio_buffer_enabled(indio_dev)) {
info->buffer[0] = info->value;
iio_push_to_buffers_with_timestamp(indio_dev,
info->buffer,
iio_get_time_ns(indio_dev));
iio_trigger_notify_done(indio_dev->trig);
} else
complete(&info->completion);
}
return IRQ_HANDLED;
}
static ssize_t vf610_show_samp_freq_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct vf610_adc *info = iio_priv(dev_to_iio_dev(dev));
size_t len = 0;
int i;
for (i = 0; i < ARRAY_SIZE(info->sample_freq_avail); i++)
len += scnprintf(buf + len, PAGE_SIZE - len,
"%u ", info->sample_freq_avail[i]);
/* replace trailing space by newline */
buf[len - 1] = '\n';
return len;
}
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(vf610_show_samp_freq_avail);
static struct attribute *vf610_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL
};
static const struct attribute_group vf610_attribute_group = {
.attrs = vf610_attributes,
};
static int vf610_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct vf610_adc *info = iio_priv(indio_dev);
unsigned int hc_cfg;
long ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
mutex_lock(&indio_dev->mlock);
if (iio_buffer_enabled(indio_dev)) {
mutex_unlock(&indio_dev->mlock);
return -EBUSY;
}
reinit_completion(&info->completion);
hc_cfg = VF610_ADC_ADCHC(chan->channel);
hc_cfg |= VF610_ADC_AIEN;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
ret = wait_for_completion_interruptible_timeout
(&info->completion, VF610_ADC_TIMEOUT);
if (ret == 0) {
mutex_unlock(&indio_dev->mlock);
return -ETIMEDOUT;
}
if (ret < 0) {
mutex_unlock(&indio_dev->mlock);
return ret;
}
switch (chan->type) {
case IIO_VOLTAGE:
*val = info->value;
break;
case IIO_TEMP:
/*
* Calculate in degree Celsius times 1000
* Using the typical sensor slope of 1.84 mV/°C
* and VREFH_ADC at 3.3V, V at 25°C of 699 mV
*/
*val = 25000 - ((int)info->value - VF610_VTEMP25_3V3) *
1000000 / VF610_TEMP_SLOPE_COEFF;
break;
default:
mutex_unlock(&indio_dev->mlock);
return -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = info->vref_uv / 1000;
*val2 = info->adc_feature.res_mode;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = info->sample_freq_avail[info->adc_feature.sample_rate];
*val2 = 0;
return IIO_VAL_INT;
default:
break;
}
return -EINVAL;
}
static int vf610_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct vf610_adc *info = iio_priv(indio_dev);
int i;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
for (i = 0;
i < ARRAY_SIZE(info->sample_freq_avail);
i++)
if (val == info->sample_freq_avail[i]) {
info->adc_feature.sample_rate = i;
vf610_adc_sample_set(info);
return 0;
}
break;
default:
break;
}
return -EINVAL;
}
static int vf610_adc_buffer_postenable(struct iio_dev *indio_dev)
{
struct vf610_adc *info = iio_priv(indio_dev);
unsigned int channel;
int ret;
int val;
ret = iio_triggered_buffer_postenable(indio_dev);
if (ret)
return ret;
val = readl(info->regs + VF610_REG_ADC_GC);
val |= VF610_ADC_ADCON;
writel(val, info->regs + VF610_REG_ADC_GC);
channel = find_first_bit(indio_dev->active_scan_mask,
indio_dev->masklength);
val = VF610_ADC_ADCHC(channel);
val |= VF610_ADC_AIEN;
writel(val, info->regs + VF610_REG_ADC_HC0);
return 0;
}
static int vf610_adc_buffer_predisable(struct iio_dev *indio_dev)
{
struct vf610_adc *info = iio_priv(indio_dev);
unsigned int hc_cfg = 0;
int val;
val = readl(info->regs + VF610_REG_ADC_GC);
val &= ~VF610_ADC_ADCON;
writel(val, info->regs + VF610_REG_ADC_GC);
hc_cfg |= VF610_ADC_CONV_DISABLE;
hc_cfg &= ~VF610_ADC_AIEN;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
return iio_triggered_buffer_predisable(indio_dev);
}
static const struct iio_buffer_setup_ops iio_triggered_buffer_setup_ops = {
.postenable = &vf610_adc_buffer_postenable,
.predisable = &vf610_adc_buffer_predisable,
.validate_scan_mask = &iio_validate_scan_mask_onehot,
};
static int vf610_adc_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct vf610_adc *info = iio_priv(indio_dev);
if ((readval == NULL) ||
((reg % 4) || (reg > VF610_REG_ADC_PCTL)))
return -EINVAL;
*readval = readl(info->regs + reg);
return 0;
}
static const struct iio_info vf610_adc_iio_info = {
.driver_module = THIS_MODULE,
.read_raw = &vf610_read_raw,
.write_raw = &vf610_write_raw,
.debugfs_reg_access = &vf610_adc_reg_access,
.attrs = &vf610_attribute_group,
};
static const struct of_device_id vf610_adc_match[] = {
{ .compatible = "fsl,vf610-adc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vf610_adc_match);
static int vf610_adc_probe(struct platform_device *pdev)
{
struct vf610_adc *info;
struct iio_dev *indio_dev;
struct resource *mem;
int irq;
int ret;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct vf610_adc));
if (!indio_dev) {
dev_err(&pdev->dev, "Failed allocating iio device\n");
return -ENOMEM;
}
info = iio_priv(indio_dev);
info->dev = &pdev->dev;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
info->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(info->regs))
return PTR_ERR(info->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return irq;
}
ret = devm_request_irq(info->dev, irq,
vf610_adc_isr, 0,
dev_name(&pdev->dev), indio_dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed requesting irq, irq = %d\n", irq);
return ret;
}
info->clk = devm_clk_get(&pdev->dev, "adc");
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
PTR_ERR(info->clk));
return PTR_ERR(info->clk);
}
info->vref = devm_regulator_get(&pdev->dev, "vref");
if (IS_ERR(info->vref))
return PTR_ERR(info->vref);
ret = regulator_enable(info->vref);
if (ret)
return ret;
info->vref_uv = regulator_get_voltage(info->vref);
of_property_read_u32_array(pdev->dev.of_node, "fsl,adck-max-frequency",
info->max_adck_rate, 3);
ret = of_property_read_u32(pdev->dev.of_node, "min-sample-time",
&info->adc_feature.default_sample_time);
if (ret)
info->adc_feature.default_sample_time = DEFAULT_SAMPLE_TIME;
platform_set_drvdata(pdev, indio_dev);
init_completion(&info->completion);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->info = &vf610_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = vf610_adc_iio_channels;
indio_dev->num_channels = ARRAY_SIZE(vf610_adc_iio_channels);
ret = clk_prepare_enable(info->clk);
if (ret) {
dev_err(&pdev->dev,
"Could not prepare or enable the clock.\n");
goto error_adc_clk_enable;
}
vf610_adc_cfg_init(info);
vf610_adc_hw_init(info);
ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
NULL, &iio_triggered_buffer_setup_ops);
if (ret < 0) {
dev_err(&pdev->dev, "Couldn't initialise the buffer\n");
goto error_iio_device_register;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(&pdev->dev, "Couldn't register the device.\n");
goto error_adc_buffer_init;
}
return 0;
error_adc_buffer_init:
iio_triggered_buffer_cleanup(indio_dev);
error_iio_device_register:
clk_disable_unprepare(info->clk);
error_adc_clk_enable:
regulator_disable(info->vref);
return ret;
}
static int vf610_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct vf610_adc *info = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
regulator_disable(info->vref);
clk_disable_unprepare(info->clk);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int vf610_adc_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct vf610_adc *info = iio_priv(indio_dev);
int hc_cfg;
/* ADC controller enters to stop mode */
hc_cfg = readl(info->regs + VF610_REG_ADC_HC0);
hc_cfg |= VF610_ADC_CONV_DISABLE;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
clk_disable_unprepare(info->clk);
regulator_disable(info->vref);
return 0;
}
static int vf610_adc_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct vf610_adc *info = iio_priv(indio_dev);
int ret;
ret = regulator_enable(info->vref);
if (ret)
return ret;
ret = clk_prepare_enable(info->clk);
if (ret)
goto disable_reg;
vf610_adc_hw_init(info);
return 0;
disable_reg:
regulator_disable(info->vref);
return ret;
}
#endif
static SIMPLE_DEV_PM_OPS(vf610_adc_pm_ops, vf610_adc_suspend, vf610_adc_resume);
static struct platform_driver vf610_adc_driver = {
.probe = vf610_adc_probe,
.remove = vf610_adc_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = vf610_adc_match,
.pm = &vf610_adc_pm_ops,
},
};
module_platform_driver(vf610_adc_driver);
MODULE_AUTHOR("Fugang Duan <B38611@freescale.com>");
MODULE_DESCRIPTION("Freescale VF610 ADC driver");
MODULE_LICENSE("GPL v2");