linux/drivers/firmware/qcom_scm-32.c

717 lines
17 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd.
*/
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/qcom_scm.h>
#include <linux/arm-smccc.h>
#include <linux/dma-mapping.h>
#include "qcom_scm.h"
#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
struct qcom_scm_entry {
int flag;
void *entry;
};
static struct qcom_scm_entry qcom_scm_wb[] = {
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
};
static DEFINE_MUTEX(qcom_scm_lock);
#define MAX_QCOM_SCM_ARGS 10
#define MAX_QCOM_SCM_RETS 3
enum qcom_scm_arg_types {
QCOM_SCM_VAL,
QCOM_SCM_RO,
QCOM_SCM_RW,
QCOM_SCM_BUFVAL,
};
#define QCOM_SCM_ARGS_IMPL(num, a, b, c, d, e, f, g, h, i, j, ...) (\
(((a) & 0x3) << 4) | \
(((b) & 0x3) << 6) | \
(((c) & 0x3) << 8) | \
(((d) & 0x3) << 10) | \
(((e) & 0x3) << 12) | \
(((f) & 0x3) << 14) | \
(((g) & 0x3) << 16) | \
(((h) & 0x3) << 18) | \
(((i) & 0x3) << 20) | \
(((j) & 0x3) << 22) | \
((num) & 0xf))
#define QCOM_SCM_ARGS(...) QCOM_SCM_ARGS_IMPL(__VA_ARGS__, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
/**
* struct qcom_scm_desc
* @arginfo: Metadata describing the arguments in args[]
* @args: The array of arguments for the secure syscall
*/
struct qcom_scm_desc {
u32 svc;
u32 cmd;
u32 arginfo;
u64 args[MAX_QCOM_SCM_ARGS];
u32 owner;
};
/**
* struct qcom_scm_res
* @result: The values returned by the secure syscall
*/
struct qcom_scm_res {
u64 result[MAX_QCOM_SCM_RETS];
};
/**
* struct arm_smccc_args
* @args: The array of values used in registers in smc instruction
*/
struct arm_smccc_args {
unsigned long args[8];
};
#define SCM_LEGACY_FNID(s, c) (((s) << 10) | ((c) & 0x3ff))
/**
* struct scm_legacy_command - one SCM command buffer
* @len: total available memory for command and response
* @buf_offset: start of command buffer
* @resp_hdr_offset: start of response buffer
* @id: command to be executed
* @buf: buffer returned from scm_legacy_get_command_buffer()
*
* An SCM command is laid out in memory as follows:
*
* ------------------- <--- struct scm_legacy_command
* | command header |
* ------------------- <--- scm_legacy_get_command_buffer()
* | command buffer |
* ------------------- <--- struct scm_legacy_response and
* | response header | scm_legacy_command_to_response()
* ------------------- <--- scm_legacy_get_response_buffer()
* | response buffer |
* -------------------
*
* There can be arbitrary padding between the headers and buffers so
* you should always use the appropriate scm_legacy_get_*_buffer() routines
* to access the buffers in a safe manner.
*/
struct scm_legacy_command {
__le32 len;
__le32 buf_offset;
__le32 resp_hdr_offset;
__le32 id;
__le32 buf[0];
};
/**
* struct scm_legacy_response - one SCM response buffer
* @len: total available memory for response
* @buf_offset: start of response data relative to start of scm_legacy_response
* @is_complete: indicates if the command has finished processing
*/
struct scm_legacy_response {
__le32 len;
__le32 buf_offset;
__le32 is_complete;
};
/**
* scm_legacy_command_to_response() - Get a pointer to a scm_legacy_response
* @cmd: command
*
* Returns a pointer to a response for a command.
*/
static inline struct scm_legacy_response *scm_legacy_command_to_response(
const struct scm_legacy_command *cmd)
{
return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
}
/**
* scm_legacy_get_command_buffer() - Get a pointer to a command buffer
* @cmd: command
*
* Returns a pointer to the command buffer of a command.
*/
static inline void *scm_legacy_get_command_buffer(
const struct scm_legacy_command *cmd)
{
return (void *)cmd->buf;
}
/**
* scm_legacy_get_response_buffer() - Get a pointer to a response buffer
* @rsp: response
*
* Returns a pointer to a response buffer of a response.
*/
static inline void *scm_legacy_get_response_buffer(
const struct scm_legacy_response *rsp)
{
return (void *)rsp + le32_to_cpu(rsp->buf_offset);
}
static void __scm_legacy_do(const struct arm_smccc_args *smc,
struct arm_smccc_res *res)
{
do {
arm_smccc_smc(smc->args[0], smc->args[1], smc->args[2],
smc->args[3], smc->args[4], smc->args[5],
smc->args[6], smc->args[7], res);
} while (res->a0 == QCOM_SCM_INTERRUPTED);
}
/**
* qcom_scm_call() - Sends a command to the SCM and waits for the command to
* finish processing.
*
* A note on cache maintenance:
* Note that any buffers that are expected to be accessed by the secure world
* must be flushed before invoking qcom_scm_call and invalidated in the cache
* immediately after qcom_scm_call returns. Cache maintenance on the command
* and response buffers is taken care of by qcom_scm_call; however, callers are
* responsible for any other cached buffers passed over to the secure world.
*/
static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
struct qcom_scm_res *res)
{
u8 arglen = desc->arginfo & 0xf;
int ret = 0, context_id;
unsigned int i;
struct scm_legacy_command *cmd;
struct scm_legacy_response *rsp;
struct arm_smccc_args smc = {0};
struct arm_smccc_res smc_res;
const size_t cmd_len = arglen * sizeof(__le32);
const size_t resp_len = MAX_QCOM_SCM_RETS * sizeof(__le32);
size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len;
dma_addr_t cmd_phys;
__le32 *arg_buf;
const __le32 *res_buf;
cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->len = cpu_to_le32(alloc_len);
cmd->buf_offset = cpu_to_le32(sizeof(*cmd));
cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len);
cmd->id = cpu_to_le32(SCM_LEGACY_FNID(desc->svc, desc->cmd));
arg_buf = scm_legacy_get_command_buffer(cmd);
for (i = 0; i < arglen; i++)
arg_buf[i] = cpu_to_le32(desc->args[i]);
rsp = scm_legacy_command_to_response(cmd);
cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, cmd_phys)) {
kfree(cmd);
return -ENOMEM;
}
smc.args[0] = 1;
smc.args[1] = (unsigned long)&context_id;
smc.args[2] = cmd_phys;
mutex_lock(&qcom_scm_lock);
__scm_legacy_do(&smc, &smc_res);
if (smc_res.a0)
ret = qcom_scm_remap_error(smc_res.a0);
mutex_unlock(&qcom_scm_lock);
if (ret)
goto out;
do {
dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len,
sizeof(*rsp), DMA_FROM_DEVICE);
} while (!rsp->is_complete);
dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len +
le32_to_cpu(rsp->buf_offset),
resp_len, DMA_FROM_DEVICE);
if (res) {
res_buf = scm_legacy_get_response_buffer(rsp);
for (i = 0; i < MAX_QCOM_SCM_RETS; i++)
res->result[i] = le32_to_cpu(res_buf[i]);
}
out:
dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE);
kfree(cmd);
return ret;
}
#define SCM_LEGACY_ATOMIC_N_REG_ARGS 5
#define SCM_LEGACY_ATOMIC_FIRST_REG_IDX 2
#define SCM_LEGACY_CLASS_REGISTER (0x2 << 8)
#define SCM_LEGACY_MASK_IRQS BIT(5)
#define SCM_LEGACY_ATOMIC_ID(svc, cmd, n) \
((SCM_LEGACY_FNID(svc, cmd) << 12) | \
SCM_LEGACY_CLASS_REGISTER | \
SCM_LEGACY_MASK_IRQS | \
(n & 0xf))
/**
* qcom_scm_call_atomic() - Send an atomic SCM command with up to 5 arguments
* and 3 return values
* @desc: SCM call descriptor containing arguments
* @res: SCM call return values
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
static int qcom_scm_call_atomic(struct device *unused,
const struct qcom_scm_desc *desc,
struct qcom_scm_res *res)
{
int context_id;
struct arm_smccc_res smc_res;
size_t arglen = desc->arginfo & 0xf;
BUG_ON(arglen > SCM_LEGACY_ATOMIC_N_REG_ARGS);
arm_smccc_smc(SCM_LEGACY_ATOMIC_ID(desc->svc, desc->cmd, arglen),
(unsigned long)&context_id,
desc->args[0], desc->args[1], desc->args[2],
desc->args[3], desc->args[4], 0, &smc_res);
if (res) {
res->result[0] = smc_res.a1;
res->result[1] = smc_res.a2;
res->result[2] = smc_res.a3;
}
return smc_res.a0;
}
/**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the cold boot address of the cpus. Any cpu outside the supported
* range would be removed from the cpu present mask.
*/
int __qcom_scm_set_cold_boot_addr(struct device *dev, void *entry,
const cpumask_t *cpus)
{
int flags = 0;
int cpu;
int scm_cb_flags[] = {
QCOM_SCM_FLAG_COLDBOOT_CPU0,
QCOM_SCM_FLAG_COLDBOOT_CPU1,
QCOM_SCM_FLAG_COLDBOOT_CPU2,
QCOM_SCM_FLAG_COLDBOOT_CPU3,
};
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_ADDR,
};
if (!cpus || (cpus && cpumask_empty(cpus)))
return -EINVAL;
for_each_cpu(cpu, cpus) {
if (cpu < ARRAY_SIZE(scm_cb_flags))
flags |= scm_cb_flags[cpu];
else
set_cpu_present(cpu, false);
}
desc.args[0] = flags;
desc.args[1] = virt_to_phys(entry);
desc.arginfo = QCOM_SCM_ARGS(2);
return qcom_scm_call_atomic(dev, &desc, NULL);
}
/**
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/
int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
const cpumask_t *cpus)
{
int ret;
int flags = 0;
int cpu;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_ADDR,
};
/*
* Reassign only if we are switching from hotplug entry point
* to cpuidle entry point or vice versa.
*/
for_each_cpu(cpu, cpus) {
if (entry == qcom_scm_wb[cpu].entry)
continue;
flags |= qcom_scm_wb[cpu].flag;
}
/* No change in entry function */
if (!flags)
return 0;
desc.args[0] = flags;
desc.args[1] = virt_to_phys(entry);
desc.arginfo = QCOM_SCM_ARGS(2);
ret = qcom_scm_call(dev, &desc, NULL);
if (!ret) {
for_each_cpu(cpu, cpus)
qcom_scm_wb[cpu].entry = entry;
}
return ret;
}
/**
* qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache
*
* This is an end point to power down cpu. If there was a pending interrupt,
* the control would return from this function, otherwise, the cpu jumps to the
* warm boot entry point set for this cpu upon reset.
*/
void __qcom_scm_cpu_power_down(struct device *dev, u32 flags)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
.arginfo = QCOM_SCM_ARGS(1),
};
qcom_scm_call_atomic(dev, &desc, NULL);
}
int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_INFO,
.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id),
.arginfo = QCOM_SCM_ARGS(1),
};
struct qcom_scm_res res;
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req,
u32 req_cnt, u32 *resp)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_HDCP,
.cmd = QCOM_SCM_HDCP_INVOKE,
};
struct qcom_scm_res res;
if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
return -ERANGE;
desc.args[0] = req[0].addr;
desc.args[1] = req[0].val;
desc.args[2] = req[1].addr;
desc.args[3] = req[1].val;
desc.args[4] = req[2].addr;
desc.args[5] = req[2].val;
desc.args[6] = req[3].addr;
desc.args[7] = req[3].val;
desc.args[8] = req[4].addr;
desc.args[9] = req[4].val;
desc.arginfo = QCOM_SCM_ARGS(10);
ret = qcom_scm_call(dev, &desc, &res);
*resp = res.result[0];
return ret;
}
int __qcom_scm_ocmem_lock(struct device *dev, u32 id, u32 offset, u32 size,
u32 mode)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_OCMEM,
.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
};
desc.args[0] = id;
desc.args[1] = offset;
desc.args[2] = size;
desc.args[3] = mode;
desc.arginfo = QCOM_SCM_ARGS(4);
return qcom_scm_call(dev, &desc, NULL);
}
int __qcom_scm_ocmem_unlock(struct device *dev, u32 id, u32 offset, u32 size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_OCMEM,
.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
};
desc.args[0] = id;
desc.args[1] = offset;
desc.args[2] = size;
desc.arginfo = QCOM_SCM_ARGS(3);
return qcom_scm_call(dev, &desc, NULL);
}
void __qcom_scm_init(void)
{
}
bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
};
struct qcom_scm_res res;
desc.args[0] = peripheral;
desc.arginfo = QCOM_SCM_ARGS(1);
ret = qcom_scm_call(dev, &desc, &res);
return ret ? false : !!res.result[0];
}
int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral,
dma_addr_t metadata_phys)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
};
struct qcom_scm_res res;
desc.args[0] = peripheral;
desc.args[1] = metadata_phys;
desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW);
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral,
phys_addr_t addr, phys_addr_t size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
};
struct qcom_scm_res res;
desc.args[0] = peripheral;
desc.args[1] = addr;
desc.args[2] = size;
desc.arginfo = QCOM_SCM_ARGS(3);
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
};
struct qcom_scm_res res;
desc.args[0] = peripheral;
desc.arginfo = QCOM_SCM_ARGS(1);
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
};
struct qcom_scm_res res;
desc.args[0] = peripheral;
desc.arginfo = QCOM_SCM_ARGS(1);
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
};
struct qcom_scm_res res;
int ret;
desc.args[0] = reset;
desc.args[1] = 0;
desc.arginfo = QCOM_SCM_ARGS(2);
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
};
desc.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE;
desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
desc.arginfo = QCOM_SCM_ARGS(2);
return qcom_scm_call_atomic(dev, &desc, NULL);
}
int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
};
struct qcom_scm_res res;
int ret;
desc.args[0] = state;
desc.args[1] = id;
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
size_t mem_sz, phys_addr_t src, size_t src_sz,
phys_addr_t dest, size_t dest_sz)
{
return -ENODEV;
}
int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id,
u32 spare)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
};
struct qcom_scm_res res;
int ret;
desc.args[0] = device_id;
desc.args[1] = spare;
desc.arginfo = QCOM_SCM_ARGS(2);
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare,
size_t *size)
{
return -ENODEV;
}
int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size,
u32 spare)
{
return -ENODEV;
}
int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr,
unsigned int *val)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_IO,
.cmd = QCOM_SCM_IO_READ,
};
struct qcom_scm_res res;
desc.args[0] = addr;
desc.arginfo = QCOM_SCM_ARGS(1);
ret = qcom_scm_call_atomic(dev, &desc, &res);
if (ret >= 0)
*val = res.result[0];
return ret < 0 ? ret : 0;
}
int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_IO,
.cmd = QCOM_SCM_IO_WRITE,
};
desc.args[0] = addr;
desc.args[1] = val;
desc.arginfo = QCOM_SCM_ARGS(2);
return qcom_scm_call_atomic(dev, &desc, NULL);
}
int __qcom_scm_qsmmu500_wait_safe_toggle(struct device *dev, bool enable)
{
return -ENODEV;
}