linux/drivers/net/irda/pxaficp_ir.c

1076 lines
26 KiB
C
Raw Normal View History

/*
* linux/drivers/net/irda/pxaficp_ir.c
*
* Based on sa1100_ir.c by Russell King
*
* Changes copyright (C) 2003-2005 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Infra-red driver (SIR/FIR) for the PXA2xx embedded microprocessor
*
*/
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/pxa-dma.h>
#include <linux/gpio.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <net/irda/irda.h>
#include <net/irda/irmod.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>
ARM: pxa: move platform_data definitions Platform data for device drivers should be defined in include/linux/platform_data/*.h, not in the architecture and platform specific directories. This moves such data out of the pxa include directories Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com> Acked-by: Igor Grinberg <grinberg@compulab.co.il> Acked-by: Jeff Garzik <jgarzik@redhat.com> Acked-by: Marek Vasut <marex@denx.de> Acked-by: Robert Jarzmik <robert.jarzmik@free.fr> Acked-by: Paul Parsons <lost.distance@yahoo.com> Acked-by: Vinod Koul <vinod.koul@linux.intel.com> Acked-By: Stefan Schmidt <stefan@openezx.org> Cc: Eric Miao <eric.y.miao@gmail.com> Cc: Haojian Zhuang <haojian.zhuang@gmail.com> Cc: Daniel Ribeiro <drwyrm@gmail.com> Cc: Harald Welte <laforge@openezx.org> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Tomas Cech <sleep_walker@suse.cz> Cc: Sergey Lapin <slapin@ossfans.org> Cc: Jonathan Cameron <jic23@cam.ac.uk> Cc: Dan Williams <djbw@fb.com> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Chris Ball <cjb@laptop.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Samuel Ortiz <samuel@sortiz.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: Liam Girdwood <lrg@ti.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.de> Cc: Guennadi Liakhovetski <g.liakhovetski@gmx.de> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: openezx-devel@lists.openezx.org
2012-08-24 13:16:48 +00:00
#include <linux/platform_data/irda-pxaficp.h>
#undef __REG
#define __REG(x) ((x) & 0xffff)
#include <mach/regs-uart.h>
#define ICCR0 0x0000 /* ICP Control Register 0 */
#define ICCR1 0x0004 /* ICP Control Register 1 */
#define ICCR2 0x0008 /* ICP Control Register 2 */
#define ICDR 0x000c /* ICP Data Register */
#define ICSR0 0x0014 /* ICP Status Register 0 */
#define ICSR1 0x0018 /* ICP Status Register 1 */
#define ICCR0_AME (1 << 7) /* Address match enable */
#define ICCR0_TIE (1 << 6) /* Transmit FIFO interrupt enable */
#define ICCR0_RIE (1 << 5) /* Receive FIFO interrupt enable */
#define ICCR0_RXE (1 << 4) /* Receive enable */
#define ICCR0_TXE (1 << 3) /* Transmit enable */
#define ICCR0_TUS (1 << 2) /* Transmit FIFO underrun select */
#define ICCR0_LBM (1 << 1) /* Loopback mode */
#define ICCR0_ITR (1 << 0) /* IrDA transmission */
#define ICCR2_RXP (1 << 3) /* Receive Pin Polarity select */
#define ICCR2_TXP (1 << 2) /* Transmit Pin Polarity select */
#define ICCR2_TRIG (3 << 0) /* Receive FIFO Trigger threshold */
#define ICCR2_TRIG_8 (0 << 0) /* >= 8 bytes */
#define ICCR2_TRIG_16 (1 << 0) /* >= 16 bytes */
#define ICCR2_TRIG_32 (2 << 0) /* >= 32 bytes */
#define ICSR0_EOC (1 << 6) /* DMA End of Descriptor Chain */
#define ICSR0_FRE (1 << 5) /* Framing error */
#define ICSR0_RFS (1 << 4) /* Receive FIFO service request */
#define ICSR0_TFS (1 << 3) /* Transnit FIFO service request */
#define ICSR0_RAB (1 << 2) /* Receiver abort */
#define ICSR0_TUR (1 << 1) /* Trunsmit FIFO underun */
#define ICSR0_EIF (1 << 0) /* End/Error in FIFO */
#define ICSR1_ROR (1 << 6) /* Receiver FIFO underrun */
#define ICSR1_CRE (1 << 5) /* CRC error */
#define ICSR1_EOF (1 << 4) /* End of frame */
#define ICSR1_TNF (1 << 3) /* Transmit FIFO not full */
#define ICSR1_RNE (1 << 2) /* Receive FIFO not empty */
#define ICSR1_TBY (1 << 1) /* Tramsmiter busy flag */
#define ICSR1_RSY (1 << 0) /* Recevier synchronized flag */
#define IrSR_RXPL_NEG_IS_ZERO (1<<4)
#define IrSR_RXPL_POS_IS_ZERO 0x0
#define IrSR_TXPL_NEG_IS_ZERO (1<<3)
#define IrSR_TXPL_POS_IS_ZERO 0x0
#define IrSR_XMODE_PULSE_1_6 (1<<2)
#define IrSR_XMODE_PULSE_3_16 0x0
#define IrSR_RCVEIR_IR_MODE (1<<1)
#define IrSR_RCVEIR_UART_MODE 0x0
#define IrSR_XMITIR_IR_MODE (1<<0)
#define IrSR_XMITIR_UART_MODE 0x0
#define IrSR_IR_RECEIVE_ON (\
IrSR_RXPL_NEG_IS_ZERO | \
IrSR_TXPL_POS_IS_ZERO | \
IrSR_XMODE_PULSE_3_16 | \
IrSR_RCVEIR_IR_MODE | \
IrSR_XMITIR_UART_MODE)
#define IrSR_IR_TRANSMIT_ON (\
IrSR_RXPL_NEG_IS_ZERO | \
IrSR_TXPL_POS_IS_ZERO | \
IrSR_XMODE_PULSE_3_16 | \
IrSR_RCVEIR_UART_MODE | \
IrSR_XMITIR_IR_MODE)
/* macros for registers read/write */
#define ficp_writel(irda, val, off) \
do { \
dev_vdbg(irda->dev, \
"%s():%d ficp_writel(0x%x, %s)\n", \
__func__, __LINE__, (val), #off); \
writel_relaxed((val), (irda)->irda_base + (off)); \
} while (0)
#define ficp_readl(irda, off) \
({ \
unsigned int _v; \
_v = readl_relaxed((irda)->irda_base + (off)); \
dev_vdbg(irda->dev, \
"%s():%d ficp_readl(%s): 0x%x\n", \
__func__, __LINE__, #off, _v); \
_v; \
})
#define stuart_writel(irda, val, off) \
do { \
dev_vdbg(irda->dev, \
"%s():%d stuart_writel(0x%x, %s)\n", \
__func__, __LINE__, (val), #off); \
writel_relaxed((val), (irda)->stuart_base + (off)); \
} while (0)
#define stuart_readl(irda, off) \
({ \
unsigned int _v; \
_v = readl_relaxed((irda)->stuart_base + (off)); \
dev_vdbg(irda->dev, \
"%s():%d stuart_readl(%s): 0x%x\n", \
__func__, __LINE__, #off, _v); \
_v; \
})
struct pxa_irda {
int speed;
int newspeed;
unsigned long long last_clk;
void __iomem *stuart_base;
void __iomem *irda_base;
unsigned char *dma_rx_buff;
unsigned char *dma_tx_buff;
dma_addr_t dma_rx_buff_phy;
dma_addr_t dma_tx_buff_phy;
unsigned int dma_tx_buff_len;
struct dma_chan *txdma;
struct dma_chan *rxdma;
dma_cookie_t rx_cookie;
dma_cookie_t tx_cookie;
int drcmr_rx;
int drcmr_tx;
int uart_irq;
int icp_irq;
struct irlap_cb *irlap;
struct qos_info qos;
iobuff_t tx_buff;
iobuff_t rx_buff;
struct device *dev;
struct pxaficp_platform_data *pdata;
struct clk *fir_clk;
struct clk *sir_clk;
struct clk *cur_clk;
};
static int pxa_irda_set_speed(struct pxa_irda *si, int speed);
static inline void pxa_irda_disable_clk(struct pxa_irda *si)
{
if (si->cur_clk)
clk_disable_unprepare(si->cur_clk);
si->cur_clk = NULL;
}
static inline void pxa_irda_enable_firclk(struct pxa_irda *si)
{
si->cur_clk = si->fir_clk;
clk_prepare_enable(si->fir_clk);
}
static inline void pxa_irda_enable_sirclk(struct pxa_irda *si)
{
si->cur_clk = si->sir_clk;
clk_prepare_enable(si->sir_clk);
}
#define IS_FIR(si) ((si)->speed >= 4000000)
#define IRDA_FRAME_SIZE_LIMIT 2047
static void pxa_irda_fir_dma_rx_irq(void *data);
static void pxa_irda_fir_dma_tx_irq(void *data);
inline static void pxa_irda_fir_dma_rx_start(struct pxa_irda *si)
{
struct dma_async_tx_descriptor *tx;
tx = dmaengine_prep_slave_single(si->rxdma, si->dma_rx_buff_phy,
IRDA_FRAME_SIZE_LIMIT, DMA_FROM_DEVICE,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(si->dev, "prep_slave_sg() failed\n");
return;
}
tx->callback = pxa_irda_fir_dma_rx_irq;
tx->callback_param = si;
si->rx_cookie = dmaengine_submit(tx);
dma_async_issue_pending(si->rxdma);
}
inline static void pxa_irda_fir_dma_tx_start(struct pxa_irda *si)
{
struct dma_async_tx_descriptor *tx;
tx = dmaengine_prep_slave_single(si->txdma, si->dma_tx_buff_phy,
si->dma_tx_buff_len, DMA_TO_DEVICE,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(si->dev, "prep_slave_sg() failed\n");
return;
}
tx->callback = pxa_irda_fir_dma_tx_irq;
tx->callback_param = si;
si->tx_cookie = dmaengine_submit(tx);
dma_async_issue_pending(si->rxdma);
}
/*
* Set the IrDA communications mode.
*/
static void pxa_irda_set_mode(struct pxa_irda *si, int mode)
{
if (si->pdata->transceiver_mode)
si->pdata->transceiver_mode(si->dev, mode);
else {
if (gpio_is_valid(si->pdata->gpio_pwdown))
gpio_set_value(si->pdata->gpio_pwdown,
!(mode & IR_OFF) ^
!si->pdata->gpio_pwdown_inverted);
pxa2xx_transceiver_mode(si->dev, mode);
}
}
/*
* Set the IrDA communications speed.
*/
static int pxa_irda_set_speed(struct pxa_irda *si, int speed)
{
unsigned long flags;
unsigned int divisor;
switch (speed) {
case 9600: case 19200: case 38400:
case 57600: case 115200:
/* refer to PXA250/210 Developer's Manual 10-7 */
/* BaudRate = 14.7456 MHz / (16*Divisor) */
divisor = 14745600 / (16 * speed);
local_irq_save(flags);
if (IS_FIR(si)) {
/* stop RX DMA */
dmaengine_terminate_all(si->rxdma);
/* disable FICP */
ficp_writel(si, 0, ICCR0);
pxa_irda_disable_clk(si);
/* set board transceiver to SIR mode */
pxa_irda_set_mode(si, IR_SIRMODE);
/* enable the STUART clock */
pxa_irda_enable_sirclk(si);
}
/* disable STUART first */
stuart_writel(si, 0, STIER);
/* access DLL & DLH */
stuart_writel(si, stuart_readl(si, STLCR) | LCR_DLAB, STLCR);
stuart_writel(si, divisor & 0xff, STDLL);
stuart_writel(si, divisor >> 8, STDLH);
stuart_writel(si, stuart_readl(si, STLCR) & ~LCR_DLAB, STLCR);
si->speed = speed;
stuart_writel(si, IrSR_IR_RECEIVE_ON | IrSR_XMODE_PULSE_1_6,
STISR);
stuart_writel(si, IER_UUE | IER_RLSE | IER_RAVIE | IER_RTIOE,
STIER);
local_irq_restore(flags);
break;
case 4000000:
local_irq_save(flags);
/* disable STUART */
stuart_writel(si, 0, STIER);
stuart_writel(si, 0, STISR);
pxa_irda_disable_clk(si);
/* disable FICP first */
ficp_writel(si, 0, ICCR0);
/* set board transceiver to FIR mode */
pxa_irda_set_mode(si, IR_FIRMODE);
/* enable the FICP clock */
pxa_irda_enable_firclk(si);
si->speed = speed;
pxa_irda_fir_dma_rx_start(si);
ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0);
local_irq_restore(flags);
break;
default:
return -EINVAL;
}
return 0;
}
/* SIR interrupt service routine. */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t pxa_irda_sir_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct pxa_irda *si = netdev_priv(dev);
int iir, lsr, data;
iir = stuart_readl(si, STIIR);
switch (iir & 0x0F) {
case 0x06: /* Receiver Line Status */
lsr = stuart_readl(si, STLSR);
while (lsr & LSR_FIFOE) {
data = stuart_readl(si, STRBR);
if (lsr & (LSR_OE | LSR_PE | LSR_FE | LSR_BI)) {
printk(KERN_DEBUG "pxa_ir: sir receiving error\n");
dev->stats.rx_errors++;
if (lsr & LSR_FE)
dev->stats.rx_frame_errors++;
if (lsr & LSR_OE)
dev->stats.rx_fifo_errors++;
} else {
dev->stats.rx_bytes++;
async_unwrap_char(dev, &dev->stats,
&si->rx_buff, data);
}
lsr = stuart_readl(si, STLSR);
}
si->last_clk = sched_clock();
break;
case 0x04: /* Received Data Available */
/* forth through */
case 0x0C: /* Character Timeout Indication */
do {
dev->stats.rx_bytes++;
async_unwrap_char(dev, &dev->stats, &si->rx_buff,
stuart_readl(si, STRBR));
} while (stuart_readl(si, STLSR) & LSR_DR);
si->last_clk = sched_clock();
break;
case 0x02: /* Transmit FIFO Data Request */
while ((si->tx_buff.len) &&
(stuart_readl(si, STLSR) & LSR_TDRQ)) {
stuart_writel(si, *si->tx_buff.data++, STTHR);
si->tx_buff.len -= 1;
}
if (si->tx_buff.len == 0) {
dev->stats.tx_packets++;
dev->stats.tx_bytes += si->tx_buff.data - si->tx_buff.head;
/* We need to ensure that the transmitter has finished. */
while ((stuart_readl(si, STLSR) & LSR_TEMT) == 0)
cpu_relax();
si->last_clk = sched_clock();
/*
* Ok, we've finished transmitting. Now enable
* the receiver. Sometimes we get a receive IRQ
* immediately after a transmit...
*/
if (si->newspeed) {
pxa_irda_set_speed(si, si->newspeed);
si->newspeed = 0;
} else {
/* enable IR Receiver, disable IR Transmitter */
stuart_writel(si, IrSR_IR_RECEIVE_ON |
IrSR_XMODE_PULSE_1_6, STISR);
/* enable STUART and receive interrupts */
stuart_writel(si, IER_UUE | IER_RLSE |
IER_RAVIE | IER_RTIOE, STIER);
}
/* I'm hungry! */
netif_wake_queue(dev);
}
break;
}
return IRQ_HANDLED;
}
/* FIR Receive DMA interrupt handler */
static void pxa_irda_fir_dma_rx_irq(void *data)
{
struct net_device *dev = data;
struct pxa_irda *si = netdev_priv(dev);
dmaengine_terminate_all(si->rxdma);
netdev_dbg(dev, "pxa_ir: fir rx dma bus error\n");
}
/* FIR Transmit DMA interrupt handler */
static void pxa_irda_fir_dma_tx_irq(void *data)
{
struct net_device *dev = data;
struct pxa_irda *si = netdev_priv(dev);
dmaengine_terminate_all(si->txdma);
if (dmaengine_tx_status(si->txdma, si->tx_cookie, NULL) == DMA_ERROR) {
dev->stats.tx_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += si->dma_tx_buff_len;
}
while (ficp_readl(si, ICSR1) & ICSR1_TBY)
cpu_relax();
si->last_clk = sched_clock();
/*
* HACK: It looks like the TBY bit is dropped too soon.
* Without this delay things break.
*/
udelay(120);
if (si->newspeed) {
pxa_irda_set_speed(si, si->newspeed);
si->newspeed = 0;
} else {
int i = 64;
ficp_writel(si, 0, ICCR0);
pxa_irda_fir_dma_rx_start(si);
while ((ficp_readl(si, ICSR1) & ICSR1_RNE) && i--)
ficp_readl(si, ICDR);
ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0);
if (i < 0)
printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n");
}
netif_wake_queue(dev);
}
/* EIF(Error in FIFO/End in Frame) handler for FIR */
static void pxa_irda_fir_irq_eif(struct pxa_irda *si, struct net_device *dev, int icsr0)
{
unsigned int len, stat, data;
struct dma_tx_state state;
/* Get the current data position. */
dmaengine_tx_status(si->rxdma, si->rx_cookie, &state);
len = IRDA_FRAME_SIZE_LIMIT - state.residue;
do {
/* Read Status, and then Data. */
stat = ficp_readl(si, ICSR1);
rmb();
data = ficp_readl(si, ICDR);
if (stat & (ICSR1_CRE | ICSR1_ROR)) {
dev->stats.rx_errors++;
if (stat & ICSR1_CRE) {
printk(KERN_DEBUG "pxa_ir: fir receive CRC error\n");
dev->stats.rx_crc_errors++;
}
if (stat & ICSR1_ROR) {
printk(KERN_DEBUG "pxa_ir: fir receive overrun\n");
dev->stats.rx_over_errors++;
}
} else {
si->dma_rx_buff[len++] = data;
}
/* If we hit the end of frame, there's no point in continuing. */
if (stat & ICSR1_EOF)
break;
} while (ficp_readl(si, ICSR0) & ICSR0_EIF);
if (stat & ICSR1_EOF) {
/* end of frame. */
struct sk_buff *skb;
if (icsr0 & ICSR0_FRE) {
printk(KERN_ERR "pxa_ir: dropping erroneous frame\n");
dev->stats.rx_dropped++;
return;
}
skb = alloc_skb(len+1,GFP_ATOMIC);
if (!skb) {
printk(KERN_ERR "pxa_ir: fir out of memory for receive skb\n");
dev->stats.rx_dropped++;
return;
}
/* Align IP header to 20 bytes */
skb_reserve(skb, 1);
skb_copy_to_linear_data(skb, si->dma_rx_buff, len);
skb_put(skb, len);
/* Feed it to IrLAP */
skb->dev = dev;
skb_reset_mac_header(skb);
skb->protocol = htons(ETH_P_IRDA);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
}
}
/* FIR interrupt handler */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t pxa_irda_fir_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct pxa_irda *si = netdev_priv(dev);
int icsr0, i = 64;
/* stop RX DMA */
dmaengine_terminate_all(si->rxdma);
si->last_clk = sched_clock();
icsr0 = ficp_readl(si, ICSR0);
if (icsr0 & (ICSR0_FRE | ICSR0_RAB)) {
if (icsr0 & ICSR0_FRE) {
printk(KERN_DEBUG "pxa_ir: fir receive frame error\n");
dev->stats.rx_frame_errors++;
} else {
printk(KERN_DEBUG "pxa_ir: fir receive abort\n");
dev->stats.rx_errors++;
}
ficp_writel(si, icsr0 & (ICSR0_FRE | ICSR0_RAB), ICSR0);
}
if (icsr0 & ICSR0_EIF) {
/* An error in FIFO occurred, or there is a end of frame */
pxa_irda_fir_irq_eif(si, dev, icsr0);
}
ficp_writel(si, 0, ICCR0);
pxa_irda_fir_dma_rx_start(si);
while ((ficp_readl(si, ICSR1) & ICSR1_RNE) && i--)
ficp_readl(si, ICDR);
ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0);
if (i < 0)
printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n");
return IRQ_HANDLED;
}
/* hard_xmit interface of irda device */
static int pxa_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct pxa_irda *si = netdev_priv(dev);
int speed = irda_get_next_speed(skb);
/*
* Does this packet contain a request to change the interface
* speed? If so, remember it until we complete the transmission
* of this frame.
*/
if (speed != si->speed && speed != -1)
si->newspeed = speed;
/*
* If this is an empty frame, we can bypass a lot.
*/
if (skb->len == 0) {
if (si->newspeed) {
si->newspeed = 0;
pxa_irda_set_speed(si, speed);
}
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
netif_stop_queue(dev);
if (!IS_FIR(si)) {
si->tx_buff.data = si->tx_buff.head;
si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data, si->tx_buff.truesize);
/* Disable STUART interrupts and switch to transmit mode. */
stuart_writel(si, 0, STIER);
stuart_writel(si, IrSR_IR_TRANSMIT_ON | IrSR_XMODE_PULSE_1_6,
STISR);
/* enable STUART and transmit interrupts */
stuart_writel(si, IER_UUE | IER_TIE, STIER);
} else {
unsigned long mtt = irda_get_mtt(skb);
si->dma_tx_buff_len = skb->len;
skb_copy_from_linear_data(skb, si->dma_tx_buff, skb->len);
if (mtt)
while ((sched_clock() - si->last_clk) * 1000 < mtt)
cpu_relax();
/* stop RX DMA, disable FICP */
dmaengine_terminate_all(si->rxdma);
ficp_writel(si, 0, ICCR0);
pxa_irda_fir_dma_tx_start(si);
ficp_writel(si, ICCR0_ITR | ICCR0_TXE, ICCR0);
}
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int pxa_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
{
struct if_irda_req *rq = (struct if_irda_req *)ifreq;
struct pxa_irda *si = netdev_priv(dev);
int ret;
switch (cmd) {
case SIOCSBANDWIDTH:
ret = -EPERM;
if (capable(CAP_NET_ADMIN)) {
/*
* We are unable to set the speed if the
* device is not running.
*/
if (netif_running(dev)) {
ret = pxa_irda_set_speed(si,
rq->ifr_baudrate);
} else {
printk(KERN_INFO "pxa_ir: SIOCSBANDWIDTH: !netif_running\n");
ret = 0;
}
}
break;
case SIOCSMEDIABUSY:
ret = -EPERM;
if (capable(CAP_NET_ADMIN)) {
irda_device_set_media_busy(dev, TRUE);
ret = 0;
}
break;
case SIOCGRECEIVING:
ret = 0;
rq->ifr_receiving = IS_FIR(si) ? 0
: si->rx_buff.state != OUTSIDE_FRAME;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static void pxa_irda_startup(struct pxa_irda *si)
{
/* Disable STUART interrupts */
stuart_writel(si, 0, STIER);
/* enable STUART interrupt to the processor */
stuart_writel(si, MCR_OUT2, STMCR);
/* configure SIR frame format: StartBit - Data 7 ... Data 0 - Stop Bit */
stuart_writel(si, LCR_WLS0 | LCR_WLS1, STLCR);
/* enable FIFO, we use FIFO to improve performance */
stuart_writel(si, FCR_TRFIFOE | FCR_ITL_32, STFCR);
/* disable FICP */
ficp_writel(si, 0, ICCR0);
/* configure FICP ICCR2 */
ficp_writel(si, ICCR2_TXP | ICCR2_TRIG_32, ICCR2);
/* force SIR reinitialization */
si->speed = 4000000;
pxa_irda_set_speed(si, 9600);
printk(KERN_DEBUG "pxa_ir: irda startup\n");
}
static void pxa_irda_shutdown(struct pxa_irda *si)
{
unsigned long flags;
local_irq_save(flags);
/* disable STUART and interrupt */
stuart_writel(si, 0, STIER);
/* disable STUART SIR mode */
stuart_writel(si, 0, STISR);
/* disable DMA */
dmaengine_terminate_all(si->rxdma);
dmaengine_terminate_all(si->txdma);
/* disable FICP */
ficp_writel(si, 0, ICCR0);
/* disable the STUART or FICP clocks */
pxa_irda_disable_clk(si);
local_irq_restore(flags);
/* power off board transceiver */
pxa_irda_set_mode(si, IR_OFF);
printk(KERN_DEBUG "pxa_ir: irda shutdown\n");
}
static int pxa_irda_start(struct net_device *dev)
{
struct pxa_irda *si = netdev_priv(dev);
dma_cap_mask_t mask;
struct dma_slave_config config;
struct pxad_param param;
int err;
si->speed = 9600;
err = request_irq(si->uart_irq, pxa_irda_sir_irq, 0, dev->name, dev);
if (err)
goto err_irq1;
err = request_irq(si->icp_irq, pxa_irda_fir_irq, 0, dev->name, dev);
if (err)
goto err_irq2;
/*
* The interrupt must remain disabled for now.
*/
disable_irq(si->uart_irq);
disable_irq(si->icp_irq);
err = -EBUSY;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
param.prio = PXAD_PRIO_LOWEST;
memset(&config, 0, sizeof(config));
config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
config.src_addr = (dma_addr_t)si->irda_base + ICDR;
config.dst_addr = (dma_addr_t)si->irda_base + ICDR;
config.src_maxburst = 32;
config.dst_maxburst = 32;
param.drcmr = si->drcmr_rx;
si->rxdma = dma_request_slave_channel_compat(mask, pxad_filter_fn,
&param, &dev->dev, "rx");
if (!si->rxdma)
goto err_rx_dma;
param.drcmr = si->drcmr_tx;
si->txdma = dma_request_slave_channel_compat(mask, pxad_filter_fn,
&param, &dev->dev, "tx");
if (!si->txdma)
goto err_tx_dma;
err = dmaengine_slave_config(si->rxdma, &config);
if (err)
goto err_dma_rx_buff;
err = dmaengine_slave_config(si->txdma, &config);
if (err)
goto err_dma_rx_buff;
err = -ENOMEM;
si->dma_rx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT,
&si->dma_rx_buff_phy, GFP_KERNEL);
if (!si->dma_rx_buff)
goto err_dma_rx_buff;
si->dma_tx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT,
&si->dma_tx_buff_phy, GFP_KERNEL);
if (!si->dma_tx_buff)
goto err_dma_tx_buff;
/* Setup the serial port for the initial speed. */
pxa_irda_startup(si);
/*
* Open a new IrLAP layer instance.
*/
si->irlap = irlap_open(dev, &si->qos, "pxa");
err = -ENOMEM;
if (!si->irlap)
goto err_irlap;
/*
* Now enable the interrupt and start the queue
*/
enable_irq(si->uart_irq);
enable_irq(si->icp_irq);
netif_start_queue(dev);
printk(KERN_DEBUG "pxa_ir: irda driver opened\n");
return 0;
err_irlap:
pxa_irda_shutdown(si);
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy);
err_dma_tx_buff:
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy);
err_dma_rx_buff:
dma_release_channel(si->txdma);
err_tx_dma:
dma_release_channel(si->rxdma);
err_rx_dma:
free_irq(si->icp_irq, dev);
err_irq2:
free_irq(si->uart_irq, dev);
err_irq1:
return err;
}
static int pxa_irda_stop(struct net_device *dev)
{
struct pxa_irda *si = netdev_priv(dev);
netif_stop_queue(dev);
pxa_irda_shutdown(si);
/* Stop IrLAP */
if (si->irlap) {
irlap_close(si->irlap);
si->irlap = NULL;
}
free_irq(si->uart_irq, dev);
free_irq(si->icp_irq, dev);
dmaengine_terminate_all(si->rxdma);
dmaengine_terminate_all(si->txdma);
dma_release_channel(si->rxdma);
dma_release_channel(si->txdma);
if (si->dma_rx_buff)
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy);
if (si->dma_tx_buff)
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy);
printk(KERN_DEBUG "pxa_ir: irda driver closed\n");
return 0;
}
static int pxa_irda_suspend(struct platform_device *_dev, pm_message_t state)
{
struct net_device *dev = platform_get_drvdata(_dev);
struct pxa_irda *si;
if (dev && netif_running(dev)) {
si = netdev_priv(dev);
netif_device_detach(dev);
pxa_irda_shutdown(si);
}
return 0;
}
static int pxa_irda_resume(struct platform_device *_dev)
{
struct net_device *dev = platform_get_drvdata(_dev);
struct pxa_irda *si;
if (dev && netif_running(dev)) {
si = netdev_priv(dev);
pxa_irda_startup(si);
netif_device_attach(dev);
netif_wake_queue(dev);
}
return 0;
}
static int pxa_irda_init_iobuf(iobuff_t *io, int size)
{
io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
if (io->head != NULL) {
io->truesize = size;
io->in_frame = FALSE;
io->state = OUTSIDE_FRAME;
io->data = io->head;
}
return io->head ? 0 : -ENOMEM;
}
static const struct net_device_ops pxa_irda_netdev_ops = {
.ndo_open = pxa_irda_start,
.ndo_stop = pxa_irda_stop,
.ndo_start_xmit = pxa_irda_hard_xmit,
.ndo_do_ioctl = pxa_irda_ioctl,
};
static int pxa_irda_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct resource *res;
struct pxa_irda *si;
void __iomem *ficp, *stuart;
unsigned int baudrate_mask;
int err;
if (!pdev->dev.platform_data)
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ficp = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ficp)) {
dev_err(&pdev->dev, "resource ficp not defined\n");
return PTR_ERR(ficp);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
stuart = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(stuart)) {
dev_err(&pdev->dev, "resource stuart not defined\n");
return PTR_ERR(stuart);
}
dev = alloc_irdadev(sizeof(struct pxa_irda));
if (!dev) {
err = -ENOMEM;
goto err_mem_1;
}
SET_NETDEV_DEV(dev, &pdev->dev);
si = netdev_priv(dev);
si->dev = &pdev->dev;
si->pdata = pdev->dev.platform_data;
si->irda_base = ficp;
si->stuart_base = stuart;
si->uart_irq = platform_get_irq(pdev, 0);
si->icp_irq = platform_get_irq(pdev, 1);
si->sir_clk = devm_clk_get(&pdev->dev, "UARTCLK");
si->fir_clk = devm_clk_get(&pdev->dev, "FICPCLK");
if (IS_ERR(si->sir_clk) || IS_ERR(si->fir_clk)) {
err = PTR_ERR(IS_ERR(si->sir_clk) ? si->sir_clk : si->fir_clk);
goto err_mem_4;
}
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (res)
si->drcmr_rx = res->start;
res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (res)
si->drcmr_tx = res->start;
/*
* Initialise the SIR buffers
*/
err = pxa_irda_init_iobuf(&si->rx_buff, 14384);
if (err)
goto err_mem_4;
err = pxa_irda_init_iobuf(&si->tx_buff, 4000);
if (err)
goto err_mem_5;
if (gpio_is_valid(si->pdata->gpio_pwdown)) {
err = gpio_request(si->pdata->gpio_pwdown, "IrDA switch");
if (err)
goto err_startup;
err = gpio_direction_output(si->pdata->gpio_pwdown,
!si->pdata->gpio_pwdown_inverted);
if (err) {
gpio_free(si->pdata->gpio_pwdown);
goto err_startup;
}
}
if (si->pdata->startup) {
err = si->pdata->startup(si->dev);
if (err)
goto err_startup;
}
if (gpio_is_valid(si->pdata->gpio_pwdown) && si->pdata->startup)
dev_warn(si->dev, "gpio_pwdown and startup() both defined!\n");
dev->netdev_ops = &pxa_irda_netdev_ops;
irda_init_max_qos_capabilies(&si->qos);
baudrate_mask = 0;
if (si->pdata->transceiver_cap & IR_SIRMODE)
baudrate_mask |= IR_9600|IR_19200|IR_38400|IR_57600|IR_115200;
if (si->pdata->transceiver_cap & IR_FIRMODE)
baudrate_mask |= IR_4000000 << 8;
si->qos.baud_rate.bits &= baudrate_mask;
si->qos.min_turn_time.bits = 7; /* 1ms or more */
irda_qos_bits_to_value(&si->qos);
err = register_netdev(dev);
if (err == 0)
platform_set_drvdata(pdev, dev);
if (err) {
if (si->pdata->shutdown)
si->pdata->shutdown(si->dev);
err_startup:
kfree(si->tx_buff.head);
err_mem_5:
kfree(si->rx_buff.head);
err_mem_4:
free_netdev(dev);
}
err_mem_1:
return err;
}
static int pxa_irda_remove(struct platform_device *_dev)
{
struct net_device *dev = platform_get_drvdata(_dev);
if (dev) {
struct pxa_irda *si = netdev_priv(dev);
unregister_netdev(dev);
if (gpio_is_valid(si->pdata->gpio_pwdown))
gpio_free(si->pdata->gpio_pwdown);
if (si->pdata->shutdown)
si->pdata->shutdown(si->dev);
kfree(si->tx_buff.head);
kfree(si->rx_buff.head);
free_netdev(dev);
}
return 0;
}
static struct platform_driver pxa_ir_driver = {
.driver = {
.name = "pxa2xx-ir",
},
.probe = pxa_irda_probe,
.remove = pxa_irda_remove,
.suspend = pxa_irda_suspend,
.resume = pxa_irda_resume,
};
module_platform_driver(pxa_ir_driver);
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa2xx-ir");