linux/arch/arm/mach-s3c64xx/dma.c

753 lines
16 KiB
C
Raw Normal View History

/* linux/arch/arm/plat-s3c64xx/dma.c
*
* Copyright 2009 Openmoko, Inc.
* Copyright 2009 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* http://armlinux.simtec.co.uk/
*
* S3C64XX DMA core
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/dmapool.h>
#include <linux/sysdev.h>
#include <linux/errno.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <mach/dma.h>
#include <mach/map.h>
#include <mach/irqs.h>
#include <mach/regs-sys.h>
#include <asm/hardware/pl080.h>
/* dma channel state information */
struct s3c64xx_dmac {
struct sys_device sysdev;
struct clk *clk;
void __iomem *regs;
struct s3c2410_dma_chan *channels;
enum dma_ch chanbase;
};
/* pool to provide LLI buffers */
static struct dma_pool *dma_pool;
/* Debug configuration and code */
static unsigned char debug_show_buffs = 0;
static void dbg_showchan(struct s3c2410_dma_chan *chan)
{
pr_debug("DMA%d: %08x->%08x L %08x C %08x,%08x S %08x\n",
chan->number,
readl(chan->regs + PL080_CH_SRC_ADDR),
readl(chan->regs + PL080_CH_DST_ADDR),
readl(chan->regs + PL080_CH_LLI),
readl(chan->regs + PL080_CH_CONTROL),
readl(chan->regs + PL080S_CH_CONTROL2),
readl(chan->regs + PL080S_CH_CONFIG));
}
static void show_lli(struct pl080s_lli *lli)
{
pr_debug("LLI[%p] %08x->%08x, NL %08x C %08x,%08x\n",
lli, lli->src_addr, lli->dst_addr, lli->next_lli,
lli->control0, lli->control1);
}
static void dbg_showbuffs(struct s3c2410_dma_chan *chan)
{
struct s3c64xx_dma_buff *ptr;
struct s3c64xx_dma_buff *end;
pr_debug("DMA%d: buffs next %p, curr %p, end %p\n",
chan->number, chan->next, chan->curr, chan->end);
ptr = chan->next;
end = chan->end;
if (debug_show_buffs) {
for (; ptr != NULL; ptr = ptr->next) {
pr_debug("DMA%d: %08x ",
chan->number, ptr->lli_dma);
show_lli(ptr->lli);
}
}
}
/* End of Debug */
static struct s3c2410_dma_chan *s3c64xx_dma_map_channel(unsigned int channel)
{
struct s3c2410_dma_chan *chan;
unsigned int start, offs;
start = 0;
if (channel >= DMACH_PCM1_TX)
start = 8;
for (offs = 0; offs < 8; offs++) {
chan = &s3c2410_chans[start + offs];
if (!chan->in_use)
goto found;
}
return NULL;
found:
s3c_dma_chan_map[channel] = chan;
return chan;
}
int s3c2410_dma_config(unsigned int channel, int xferunit)
{
struct s3c2410_dma_chan *chan = s3c_dma_lookup_channel(channel);
if (chan == NULL)
return -EINVAL;
switch (xferunit) {
case 1:
chan->hw_width = 0;
break;
case 2:
chan->hw_width = 1;
break;
case 4:
chan->hw_width = 2;
break;
default:
printk(KERN_ERR "%s: illegal width %d\n", __func__, xferunit);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(s3c2410_dma_config);
static void s3c64xx_dma_fill_lli(struct s3c2410_dma_chan *chan,
struct pl080s_lli *lli,
dma_addr_t data, int size)
{
dma_addr_t src, dst;
u32 control0, control1;
switch (chan->source) {
case S3C2410_DMASRC_HW:
src = chan->dev_addr;
dst = data;
control0 = PL080_CONTROL_SRC_AHB2;
control0 |= PL080_CONTROL_DST_INCR;
break;
case S3C2410_DMASRC_MEM:
src = data;
dst = chan->dev_addr;
control0 = PL080_CONTROL_DST_AHB2;
control0 |= PL080_CONTROL_SRC_INCR;
break;
default:
BUG();
}
/* note, we do not currently setup any of the burst controls */
control1 = size >> chan->hw_width; /* size in no of xfers */
control0 |= PL080_CONTROL_PROT_SYS; /* always in priv. mode */
control0 |= PL080_CONTROL_TC_IRQ_EN; /* always fire IRQ */
control0 |= (u32)chan->hw_width << PL080_CONTROL_DWIDTH_SHIFT;
control0 |= (u32)chan->hw_width << PL080_CONTROL_SWIDTH_SHIFT;
lli->src_addr = src;
lli->dst_addr = dst;
lli->next_lli = 0;
lli->control0 = control0;
lli->control1 = control1;
}
static void s3c64xx_lli_to_regs(struct s3c2410_dma_chan *chan,
struct pl080s_lli *lli)
{
void __iomem *regs = chan->regs;
pr_debug("%s: LLI %p => regs\n", __func__, lli);
show_lli(lli);
writel(lli->src_addr, regs + PL080_CH_SRC_ADDR);
writel(lli->dst_addr, regs + PL080_CH_DST_ADDR);
writel(lli->next_lli, regs + PL080_CH_LLI);
writel(lli->control0, regs + PL080_CH_CONTROL);
writel(lli->control1, regs + PL080S_CH_CONTROL2);
}
static int s3c64xx_dma_start(struct s3c2410_dma_chan *chan)
{
struct s3c64xx_dmac *dmac = chan->dmac;
u32 config;
u32 bit = chan->bit;
dbg_showchan(chan);
pr_debug("%s: clearing interrupts\n", __func__);
/* clear interrupts */
writel(bit, dmac->regs + PL080_TC_CLEAR);
writel(bit, dmac->regs + PL080_ERR_CLEAR);
pr_debug("%s: starting channel\n", __func__);
config = readl(chan->regs + PL080S_CH_CONFIG);
config |= PL080_CONFIG_ENABLE;
config &= ~PL080_CONFIG_HALT;
pr_debug("%s: writing config %08x\n", __func__, config);
writel(config, chan->regs + PL080S_CH_CONFIG);
return 0;
}
static int s3c64xx_dma_stop(struct s3c2410_dma_chan *chan)
{
u32 config;
int timeout;
pr_debug("%s: stopping channel\n", __func__);
dbg_showchan(chan);
config = readl(chan->regs + PL080S_CH_CONFIG);
config |= PL080_CONFIG_HALT;
writel(config, chan->regs + PL080S_CH_CONFIG);
timeout = 1000;
do {
config = readl(chan->regs + PL080S_CH_CONFIG);
pr_debug("%s: %d - config %08x\n", __func__, timeout, config);
if (config & PL080_CONFIG_ACTIVE)
udelay(10);
else
break;
} while (--timeout > 0);
if (config & PL080_CONFIG_ACTIVE) {
printk(KERN_ERR "%s: channel still active\n", __func__);
return -EFAULT;
}
config = readl(chan->regs + PL080S_CH_CONFIG);
config &= ~PL080_CONFIG_ENABLE;
writel(config, chan->regs + PL080S_CH_CONFIG);
return 0;
}
static inline void s3c64xx_dma_bufffdone(struct s3c2410_dma_chan *chan,
struct s3c64xx_dma_buff *buf,
enum s3c2410_dma_buffresult result)
{
if (chan->callback_fn != NULL)
(chan->callback_fn)(chan, buf->pw, 0, result);
}
static void s3c64xx_dma_freebuff(struct s3c64xx_dma_buff *buff)
{
dma_pool_free(dma_pool, buff->lli, buff->lli_dma);
kfree(buff);
}
static int s3c64xx_dma_flush(struct s3c2410_dma_chan *chan)
{
struct s3c64xx_dma_buff *buff, *next;
u32 config;
dbg_showchan(chan);
pr_debug("%s: flushing channel\n", __func__);
config = readl(chan->regs + PL080S_CH_CONFIG);
config &= ~PL080_CONFIG_ENABLE;
writel(config, chan->regs + PL080S_CH_CONFIG);
/* dump all the buffers associated with this channel */
for (buff = chan->curr; buff != NULL; buff = next) {
next = buff->next;
pr_debug("%s: buff %p (next %p)\n", __func__, buff, buff->next);
s3c64xx_dma_bufffdone(chan, buff, S3C2410_RES_ABORT);
s3c64xx_dma_freebuff(buff);
}
chan->curr = chan->next = chan->end = NULL;
return 0;
}
int s3c2410_dma_ctrl(unsigned int channel, enum s3c2410_chan_op op)
{
struct s3c2410_dma_chan *chan = s3c_dma_lookup_channel(channel);
WARN_ON(!chan);
if (!chan)
return -EINVAL;
switch (op) {
case S3C2410_DMAOP_START:
return s3c64xx_dma_start(chan);
case S3C2410_DMAOP_STOP:
return s3c64xx_dma_stop(chan);
case S3C2410_DMAOP_FLUSH:
return s3c64xx_dma_flush(chan);
/* believe PAUSE/RESUME are no-ops */
case S3C2410_DMAOP_PAUSE:
case S3C2410_DMAOP_RESUME:
case S3C2410_DMAOP_STARTED:
case S3C2410_DMAOP_TIMEOUT:
return 0;
}
return -ENOENT;
}
EXPORT_SYMBOL(s3c2410_dma_ctrl);
/* s3c2410_dma_enque
*
*/
int s3c2410_dma_enqueue(unsigned int channel, void *id,
dma_addr_t data, int size)
{
struct s3c2410_dma_chan *chan = s3c_dma_lookup_channel(channel);
struct s3c64xx_dma_buff *next;
struct s3c64xx_dma_buff *buff;
struct pl080s_lli *lli;
unsigned long flags;
int ret;
WARN_ON(!chan);
if (!chan)
return -EINVAL;
buff = kzalloc(sizeof(struct s3c64xx_dma_buff), GFP_ATOMIC);
if (!buff) {
printk(KERN_ERR "%s: no memory for buffer\n", __func__);
return -ENOMEM;
}
lli = dma_pool_alloc(dma_pool, GFP_ATOMIC, &buff->lli_dma);
if (!lli) {
printk(KERN_ERR "%s: no memory for lli\n", __func__);
ret = -ENOMEM;
goto err_buff;
}
pr_debug("%s: buff %p, dp %08x lli (%p, %08x) %d\n",
__func__, buff, data, lli, (u32)buff->lli_dma, size);
buff->lli = lli;
buff->pw = id;
s3c64xx_dma_fill_lli(chan, lli, data, size);
local_irq_save(flags);
if ((next = chan->next) != NULL) {
struct s3c64xx_dma_buff *end = chan->end;
struct pl080s_lli *endlli = end->lli;
pr_debug("enquing onto channel\n");
end->next = buff;
endlli->next_lli = buff->lli_dma;
if (chan->flags & S3C2410_DMAF_CIRCULAR) {
struct s3c64xx_dma_buff *curr = chan->curr;
lli->next_lli = curr->lli_dma;
}
if (next == chan->curr) {
writel(buff->lli_dma, chan->regs + PL080_CH_LLI);
chan->next = buff;
}
show_lli(endlli);
chan->end = buff;
} else {
pr_debug("enquing onto empty channel\n");
chan->curr = buff;
chan->next = buff;
chan->end = buff;
s3c64xx_lli_to_regs(chan, lli);
}
local_irq_restore(flags);
show_lli(lli);
dbg_showchan(chan);
dbg_showbuffs(chan);
return 0;
err_buff:
kfree(buff);
return ret;
}
EXPORT_SYMBOL(s3c2410_dma_enqueue);
int s3c2410_dma_devconfig(unsigned int channel,
enum s3c2410_dmasrc source,
unsigned long devaddr)
{
struct s3c2410_dma_chan *chan = s3c_dma_lookup_channel(channel);
u32 peripheral;
u32 config = 0;
pr_debug("%s: channel %d, source %d, dev %08lx, chan %p\n",
__func__, channel, source, devaddr, chan);
WARN_ON(!chan);
if (!chan)
return -EINVAL;
peripheral = (chan->peripheral & 0xf);
chan->source = source;
chan->dev_addr = devaddr;
pr_debug("%s: peripheral %d\n", __func__, peripheral);
switch (source) {
case S3C2410_DMASRC_HW:
config = 2 << PL080_CONFIG_FLOW_CONTROL_SHIFT;
config |= peripheral << PL080_CONFIG_SRC_SEL_SHIFT;
break;
case S3C2410_DMASRC_MEM:
config = 1 << PL080_CONFIG_FLOW_CONTROL_SHIFT;
config |= peripheral << PL080_CONFIG_DST_SEL_SHIFT;
break;
default:
printk(KERN_ERR "%s: bad source\n", __func__);
return -EINVAL;
}
/* allow TC and ERR interrupts */
config |= PL080_CONFIG_TC_IRQ_MASK;
config |= PL080_CONFIG_ERR_IRQ_MASK;
pr_debug("%s: config %08x\n", __func__, config);
writel(config, chan->regs + PL080S_CH_CONFIG);
return 0;
}
EXPORT_SYMBOL(s3c2410_dma_devconfig);
int s3c2410_dma_getposition(unsigned int channel,
dma_addr_t *src, dma_addr_t *dst)
{
struct s3c2410_dma_chan *chan = s3c_dma_lookup_channel(channel);
WARN_ON(!chan);
if (!chan)
return -EINVAL;
if (src != NULL)
*src = readl(chan->regs + PL080_CH_SRC_ADDR);
if (dst != NULL)
*dst = readl(chan->regs + PL080_CH_DST_ADDR);
return 0;
}
EXPORT_SYMBOL(s3c2410_dma_getposition);
/* s3c2410_request_dma
*
* get control of an dma channel
*/
int s3c2410_dma_request(unsigned int channel,
struct s3c2410_dma_client *client,
void *dev)
{
struct s3c2410_dma_chan *chan;
unsigned long flags;
pr_debug("dma%d: s3c2410_request_dma: client=%s, dev=%p\n",
channel, client->name, dev);
local_irq_save(flags);
chan = s3c64xx_dma_map_channel(channel);
if (chan == NULL) {
local_irq_restore(flags);
return -EBUSY;
}
dbg_showchan(chan);
chan->client = client;
chan->in_use = 1;
chan->peripheral = channel;
local_irq_restore(flags);
/* need to setup */
pr_debug("%s: channel initialised, %p\n", __func__, chan);
return chan->number | DMACH_LOW_LEVEL;
}
EXPORT_SYMBOL(s3c2410_dma_request);
/* s3c2410_dma_free
*
* release the given channel back to the system, will stop and flush
* any outstanding transfers, and ensure the channel is ready for the
* next claimant.
*
* Note, although a warning is currently printed if the freeing client
* info is not the same as the registrant's client info, the free is still
* allowed to go through.
*/
int s3c2410_dma_free(unsigned int channel, struct s3c2410_dma_client *client)
{
struct s3c2410_dma_chan *chan = s3c_dma_lookup_channel(channel);
unsigned long flags;
if (chan == NULL)
return -EINVAL;
local_irq_save(flags);
if (chan->client != client) {
printk(KERN_WARNING "dma%d: possible free from different client (channel %p, passed %p)\n",
channel, chan->client, client);
}
/* sort out stopping and freeing the channel */
chan->client = NULL;
chan->in_use = 0;
if (!(channel & DMACH_LOW_LEVEL))
s3c_dma_chan_map[channel] = NULL;
local_irq_restore(flags);
return 0;
}
EXPORT_SYMBOL(s3c2410_dma_free);
static irqreturn_t s3c64xx_dma_irq(int irq, void *pw)
{
struct s3c64xx_dmac *dmac = pw;
struct s3c2410_dma_chan *chan;
enum s3c2410_dma_buffresult res;
u32 tcstat, errstat;
u32 bit;
int offs;
tcstat = readl(dmac->regs + PL080_TC_STATUS);
errstat = readl(dmac->regs + PL080_ERR_STATUS);
for (offs = 0, bit = 1; offs < 8; offs++, bit <<= 1) {
struct s3c64xx_dma_buff *buff;
if (!(errstat & bit) && !(tcstat & bit))
continue;
chan = dmac->channels + offs;
res = S3C2410_RES_ERR;
if (tcstat & bit) {
writel(bit, dmac->regs + PL080_TC_CLEAR);
res = S3C2410_RES_OK;
}
if (errstat & bit)
writel(bit, dmac->regs + PL080_ERR_CLEAR);
/* 'next' points to the buffer that is next to the
* currently active buffer.
* For CIRCULAR queues, 'next' will be same as 'curr'
* when 'end' is the active buffer.
*/
buff = chan->curr;
while (buff && buff != chan->next
&& buff->next != chan->next)
buff = buff->next;
if (!buff)
BUG();
if (buff == chan->next)
buff = chan->end;
s3c64xx_dma_bufffdone(chan, buff, res);
/* Free the node and update curr, if non-circular queue */
if (!(chan->flags & S3C2410_DMAF_CIRCULAR)) {
chan->curr = buff->next;
s3c64xx_dma_freebuff(buff);
}
/* Update 'next' */
buff = chan->next;
if (chan->next == chan->end) {
chan->next = chan->curr;
if (!(chan->flags & S3C2410_DMAF_CIRCULAR))
chan->end = NULL;
} else {
chan->next = buff->next;
}
}
return IRQ_HANDLED;
}
static struct sysdev_class dma_sysclass = {
.name = "s3c64xx-dma",
};
static int s3c64xx_dma_init1(int chno, enum dma_ch chbase,
int irq, unsigned int base)
{
struct s3c2410_dma_chan *chptr = &s3c2410_chans[chno];
struct s3c64xx_dmac *dmac;
char clkname[16];
void __iomem *regs;
void __iomem *regptr;
int err, ch;
dmac = kzalloc(sizeof(struct s3c64xx_dmac), GFP_KERNEL);
if (!dmac) {
printk(KERN_ERR "%s: failed to alloc mem\n", __func__);
return -ENOMEM;
}
dmac->sysdev.id = chno / 8;
dmac->sysdev.cls = &dma_sysclass;
err = sysdev_register(&dmac->sysdev);
if (err) {
printk(KERN_ERR "%s: failed to register sysdevice\n", __func__);
goto err_alloc;
}
regs = ioremap(base, 0x200);
if (!regs) {
printk(KERN_ERR "%s: failed to ioremap()\n", __func__);
err = -ENXIO;
goto err_dev;
}
snprintf(clkname, sizeof(clkname), "dma%d", dmac->sysdev.id);
dmac->clk = clk_get(NULL, clkname);
if (IS_ERR(dmac->clk)) {
printk(KERN_ERR "%s: failed to get clock %s\n", __func__, clkname);
err = PTR_ERR(dmac->clk);
goto err_map;
}
clk_enable(dmac->clk);
dmac->regs = regs;
dmac->chanbase = chbase;
dmac->channels = chptr;
err = request_irq(irq, s3c64xx_dma_irq, 0, "DMA", dmac);
if (err < 0) {
printk(KERN_ERR "%s: failed to get irq\n", __func__);
goto err_clk;
}
regptr = regs + PL080_Cx_BASE(0);
for (ch = 0; ch < 8; ch++, chptr++) {
pr_debug("%s: registering DMA %d (%p)\n",
__func__, chno + ch, regptr);
chptr->bit = 1 << ch;
chptr->number = chno + ch;
chptr->dmac = dmac;
chptr->regs = regptr;
regptr += PL080_Cx_STRIDE;
}
/* for the moment, permanently enable the controller */
writel(PL080_CONFIG_ENABLE, regs + PL080_CONFIG);
printk(KERN_INFO "PL080: IRQ %d, at %p, channels %d..%d\n",
irq, regs, chno, chno+8);
return 0;
err_clk:
clk_disable(dmac->clk);
clk_put(dmac->clk);
err_map:
iounmap(regs);
err_dev:
sysdev_unregister(&dmac->sysdev);
err_alloc:
kfree(dmac);
return err;
}
static int __init s3c64xx_dma_init(void)
{
int ret;
printk(KERN_INFO "%s: Registering DMA channels\n", __func__);
dma_pool = dma_pool_create("DMA-LLI", NULL, sizeof(struct pl080s_lli), 16, 0);
if (!dma_pool) {
printk(KERN_ERR "%s: failed to create pool\n", __func__);
return -ENOMEM;
}
ret = sysdev_class_register(&dma_sysclass);
if (ret) {
printk(KERN_ERR "%s: failed to create sysclass\n", __func__);
return -ENOMEM;
}
/* Set all DMA configuration to be DMA, not SDMA */
writel(0xffffff, S3C_SYSREG(0x110));
/* Register standard DMA controllers */
s3c64xx_dma_init1(0, DMACH_UART0, IRQ_DMA0, 0x75000000);
s3c64xx_dma_init1(8, DMACH_PCM1_TX, IRQ_DMA1, 0x75100000);
return 0;
}
arch_initcall(s3c64xx_dma_init);