linux/Documentation/devicetree/bindings/display/msm/dsi.txt

180 lines
5.8 KiB
Plaintext
Raw Normal View History

Qualcomm Technologies Inc. adreno/snapdragon DSI output
DSI Controller:
Required properties:
- compatible:
* "qcom,mdss-dsi-ctrl"
- reg: Physical base address and length of the registers of controller
- reg-names: The names of register regions. The following regions are required:
* "dsi_ctrl"
- qcom,dsi-host-index: The ID of DSI controller hardware instance. This should
be 0 or 1, since we have 2 DSI controllers at most for now.
- interrupts: The interrupt signal from the DSI block.
- power-domains: Should be <&mmcc MDSS_GDSC>.
- clocks: device clocks
See Documentation/devicetree/bindings/clocks/clock-bindings.txt for details.
- clock-names: the following clocks are required:
* "mdp_core_clk"
* "iface_clk"
* "bus_clk"
* "core_mmss_clk"
* "byte_clk"
* "pixel_clk"
* "core_clk"
For DSIv2, we need an additional clock:
* "src_clk"
- vdd-supply: phandle to vdd regulator device node
- vddio-supply: phandle to vdd-io regulator device node
- vdda-supply: phandle to vdda regulator device node
- qcom,dsi-phy: phandle to DSI PHY device node
- syscon-sfpb: A phandle to mmss_sfpb syscon node (only for DSIv2)
Optional properties:
- panel@0: Node of panel connected to this DSI controller.
See files in Documentation/devicetree/bindings/display/panel/ for each supported
panel.
- qcom,dual-dsi-mode: Boolean value indicating if the DSI controller is
driving a panel which needs 2 DSI links.
- qcom,master-dsi: Boolean value indicating if the DSI controller is driving
the master link of the 2-DSI panel.
- qcom,sync-dual-dsi: Boolean value indicating if the DSI controller is
driving a 2-DSI panel whose 2 links need receive command simultaneously.
- interrupt-parent: phandle to the MDP block if the interrupt signal is routed
through MDP block
- pinctrl-names: the pin control state names; should contain "default"
- pinctrl-0: the default pinctrl state (active)
- pinctrl-n: the "sleep" pinctrl state
- port: DSI controller output port, containing one endpoint subnode.
DSI Endpoint properties:
- remote-endpoint: set to phandle of the connected panel's endpoint.
See Documentation/devicetree/bindings/graph.txt for device graph info.
- qcom,data-lane-map: this describes how the logical DSI lanes are mapped
to the physical lanes on the given platform. The value contained in
index n describes what logical data lane is mapped to the physical data
lane n (DATAn, where n lies between 0 and 3).
For example:
qcom,data-lane-map = <3 0 1 2>;
The above mapping describes that the logical data lane DATA3 is mapped to
the physical data lane DATA0, logical DATA0 to physical DATA1, logic DATA1
to phys DATA2 and logic DATA2 to phys DATA3.
There are only a limited number of physical to logical mappings possible:
"0123": Logic 0->Phys 0; Logic 1->Phys 1; Logic 2->Phys 2; Logic 3->Phys 3;
"3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
"2301": Logic 2->Phys 0; Logic 3->Phys 1; Logic 0->Phys 2; Logic 1->Phys 3;
"1230": Logic 1->Phys 0; Logic 2->Phys 1; Logic 3->Phys 2; Logic 0->Phys 3;
"0321": Logic 0->Phys 0; Logic 3->Phys 1; Logic 2->Phys 2; Logic 1->Phys 3;
"1032": Logic 1->Phys 0; Logic 0->Phys 1; Logic 3->Phys 2; Logic 2->Phys 3;
"2103": Logic 2->Phys 0; Logic 1->Phys 1; Logic 0->Phys 2; Logic 3->Phys 3;
"3210": Logic 3->Phys 0; Logic 2->Phys 1; Logic 1->Phys 2; Logic 0->Phys 3;
DSI PHY:
Required properties:
- compatible: Could be the following
* "qcom,dsi-phy-28nm-hpm"
* "qcom,dsi-phy-28nm-lp"
* "qcom,dsi-phy-20nm"
* "qcom,dsi-phy-28nm-8960"
- reg: Physical base address and length of the registers of PLL, PHY and PHY
regulator
- reg-names: The names of register regions. The following regions are required:
* "dsi_pll"
* "dsi_phy"
* "dsi_phy_regulator"
- qcom,dsi-phy-index: The ID of DSI PHY hardware instance. This should
be 0 or 1, since we have 2 DSI PHYs at most for now.
- power-domains: Should be <&mmcc MDSS_GDSC>.
- clocks: device clocks
See Documentation/devicetree/bindings/clocks/clock-bindings.txt for details.
- clock-names: the following clocks are required:
* "iface_clk"
- vddio-supply: phandle to vdd-io regulator device node
Optional properties:
- qcom,dsi-phy-regulator-ldo-mode: Boolean value indicating if the LDO mode PHY
regulator is wanted.
Example:
mdss_dsi0: qcom,mdss_dsi@fd922800 {
compatible = "qcom,mdss-dsi-ctrl";
qcom,dsi-host-index = <0>;
interrupt-parent = <&mdss_mdp>;
interrupts = <4 0>;
reg-names = "dsi_ctrl";
reg = <0xfd922800 0x200>;
power-domains = <&mmcc MDSS_GDSC>;
clock-names =
"bus_clk",
"byte_clk",
"core_clk",
"core_mmss_clk",
"iface_clk",
"mdp_core_clk",
"pixel_clk";
clocks =
<&mmcc MDSS_AXI_CLK>,
<&mmcc MDSS_BYTE0_CLK>,
<&mmcc MDSS_ESC0_CLK>,
<&mmcc MMSS_MISC_AHB_CLK>,
<&mmcc MDSS_AHB_CLK>,
<&mmcc MDSS_MDP_CLK>,
<&mmcc MDSS_PCLK0_CLK>;
vdda-supply = <&pma8084_l2>;
vdd-supply = <&pma8084_l22>;
vddio-supply = <&pma8084_l12>;
qcom,dsi-phy = <&mdss_dsi_phy0>;
qcom,dual-dsi-mode;
qcom,master-dsi;
qcom,sync-dual-dsi;
pinctrl-names = "default", "sleep";
pinctrl-0 = <&mdss_dsi_active>;
pinctrl-1 = <&mdss_dsi_suspend>;
panel: panel@0 {
compatible = "sharp,lq101r1sx01";
reg = <0>;
link2 = <&secondary>;
power-supply = <...>;
backlight = <...>;
port {
panel_in: endpoint {
remote-endpoint = <&dsi0_out>;
};
};
};
port {
dsi0_out: endpoint {
remote-endpoint = <&panel_in>;
lanes = <0 1 2 3>;
};
};
};
mdss_dsi_phy0: qcom,mdss_dsi_phy@fd922a00 {
compatible = "qcom,dsi-phy-28nm-hpm";
qcom,dsi-phy-index = <0>;
reg-names =
"dsi_pll",
"dsi_phy",
"dsi_phy_regulator";
reg = <0xfd922a00 0xd4>,
<0xfd922b00 0x2b0>,
<0xfd922d80 0x7b>;
clock-names = "iface_clk";
clocks = <&mmcc MDSS_AHB_CLK>;
vddio-supply = <&pma8084_l12>;
qcom,dsi-phy-regulator-ldo-mode;
};